blob: c54250a47978926a7b991dd01f01fbe60aaeda56 [file] [log] [blame]
//===--- Type.cpp - Type representation and manipulation ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements type-related functionality.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Type.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace clang;
bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
return (*this != Other) &&
// CVR qualifiers superset
(((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
// ObjC GC qualifiers superset
((getObjCGCAttr() == Other.getObjCGCAttr()) ||
(hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
// Address space superset.
((getAddressSpace() == Other.getAddressSpace()) ||
(hasAddressSpace()&& !Other.hasAddressSpace())) &&
// Lifetime qualifier superset.
((getObjCLifetime() == Other.getObjCLifetime()) ||
(hasObjCLifetime() && !Other.hasObjCLifetime()));
}
const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
const Type* ty = getTypePtr();
NamedDecl *ND = NULL;
if (ty->isPointerType() || ty->isReferenceType())
return ty->getPointeeType().getBaseTypeIdentifier();
else if (ty->isRecordType())
ND = ty->getAs<RecordType>()->getDecl();
else if (ty->isEnumeralType())
ND = ty->getAs<EnumType>()->getDecl();
else if (ty->getTypeClass() == Type::Typedef)
ND = ty->getAs<TypedefType>()->getDecl();
else if (ty->isArrayType())
return ty->castAsArrayTypeUnsafe()->
getElementType().getBaseTypeIdentifier();
if (ND)
return ND->getIdentifier();
return NULL;
}
bool QualType::isConstant(QualType T, ASTContext &Ctx) {
if (T.isConstQualified())
return true;
if (const ArrayType *AT = Ctx.getAsArrayType(T))
return AT->getElementType().isConstant(Ctx);
return false;
}
unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
QualType ElementType,
const llvm::APInt &NumElements) {
llvm::APSInt SizeExtended(NumElements, true);
unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
SizeExtended.getBitWidth()) * 2);
uint64_t ElementSize
= Context.getTypeSizeInChars(ElementType).getQuantity();
llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
TotalSize *= SizeExtended;
return TotalSize.getActiveBits();
}
unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
unsigned Bits = Context.getTypeSize(Context.getSizeType());
// GCC appears to only allow 63 bits worth of address space when compiling
// for 64-bit, so we do the same.
if (Bits == 64)
--Bits;
return Bits;
}
DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
QualType et, QualType can,
Expr *e, ArraySizeModifier sm,
unsigned tq,
SourceRange brackets)
: ArrayType(DependentSizedArray, et, can, sm, tq,
(et->containsUnexpandedParameterPack() ||
(e && e->containsUnexpandedParameterPack()))),
Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
{
}
void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
QualType ET,
ArraySizeModifier SizeMod,
unsigned TypeQuals,
Expr *E) {
ID.AddPointer(ET.getAsOpaquePtr());
ID.AddInteger(SizeMod);
ID.AddInteger(TypeQuals);
E->Profile(ID, Context, true);
}
DependentSizedExtVectorType::DependentSizedExtVectorType(const
ASTContext &Context,
QualType ElementType,
QualType can,
Expr *SizeExpr,
SourceLocation loc)
: Type(DependentSizedExtVector, can, /*Dependent=*/true,
/*InstantiationDependent=*/true,
ElementType->isVariablyModifiedType(),
(ElementType->containsUnexpandedParameterPack() ||
(SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
loc(loc)
{
}
void
DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
QualType ElementType, Expr *SizeExpr) {
ID.AddPointer(ElementType.getAsOpaquePtr());
SizeExpr->Profile(ID, Context, true);
}
VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
VectorKind vecKind)
: Type(Vector, canonType, vecType->isDependentType(),
vecType->isInstantiationDependentType(),
vecType->isVariablyModifiedType(),
vecType->containsUnexpandedParameterPack()),
ElementType(vecType)
{
VectorTypeBits.VecKind = vecKind;
VectorTypeBits.NumElements = nElements;
}
VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
QualType canonType, VectorKind vecKind)
: Type(tc, canonType, vecType->isDependentType(),
vecType->isInstantiationDependentType(),
vecType->isVariablyModifiedType(),
vecType->containsUnexpandedParameterPack()),
ElementType(vecType)
{
VectorTypeBits.VecKind = vecKind;
VectorTypeBits.NumElements = nElements;
}
/// getArrayElementTypeNoTypeQual - If this is an array type, return the
/// element type of the array, potentially with type qualifiers missing.
/// This method should never be used when type qualifiers are meaningful.
const Type *Type::getArrayElementTypeNoTypeQual() const {
// If this is directly an array type, return it.
if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType().getTypePtr();
// If the canonical form of this type isn't the right kind, reject it.
if (!isa<ArrayType>(CanonicalType))
return 0;
// If this is a typedef for an array type, strip the typedef off without
// losing all typedef information.
return cast<ArrayType>(getUnqualifiedDesugaredType())
->getElementType().getTypePtr();
}
/// getDesugaredType - Return the specified type with any "sugar" removed from
/// the type. This takes off typedefs, typeof's etc. If the outer level of
/// the type is already concrete, it returns it unmodified. This is similar
/// to getting the canonical type, but it doesn't remove *all* typedefs. For
/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
/// concrete.
QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
SplitQualType split = getSplitDesugaredType(T);
return Context.getQualifiedType(split.Ty, split.Quals);
}
QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
const ASTContext &Context) {
SplitQualType split = type.split();
QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
return Context.getQualifiedType(desugar, split.Quals);
}
QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
switch (getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *ty = cast<Class##Type>(this); \
if (!ty->isSugared()) return QualType(ty, 0); \
return ty->desugar(); \
}
#include "clang/AST/TypeNodes.def"
}
llvm_unreachable("bad type kind!");
}
SplitQualType QualType::getSplitDesugaredType(QualType T) {
QualifierCollector Qs;
QualType Cur = T;
while (true) {
const Type *CurTy = Qs.strip(Cur);
switch (CurTy->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *Ty = cast<Class##Type>(CurTy); \
if (!Ty->isSugared()) \
return SplitQualType(Ty, Qs); \
Cur = Ty->desugar(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
}
SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
SplitQualType split = type.split();
// All the qualifiers we've seen so far.
Qualifiers quals = split.Quals;
// The last type node we saw with any nodes inside it.
const Type *lastTypeWithQuals = split.Ty;
while (true) {
QualType next;
// Do a single-step desugar, aborting the loop if the type isn't
// sugared.
switch (split.Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Type::Class: { \
const Class##Type *ty = cast<Class##Type>(split.Ty); \
if (!ty->isSugared()) goto done; \
next = ty->desugar(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
// Otherwise, split the underlying type. If that yields qualifiers,
// update the information.
split = next.split();
if (!split.Quals.empty()) {
lastTypeWithQuals = split.Ty;
quals.addConsistentQualifiers(split.Quals);
}
}
done:
return SplitQualType(lastTypeWithQuals, quals);
}
QualType QualType::IgnoreParens(QualType T) {
// FIXME: this seems inherently un-qualifiers-safe.
while (const ParenType *PT = T->getAs<ParenType>())
T = PT->getInnerType();
return T;
}
/// \brief This will check for a TypedefType by removing any existing sugar
/// until it reaches a TypedefType or a non-sugared type.
template <> const TypedefType *Type::getAs() const {
const Type *Cur = this;
while (true) {
if (const TypedefType *TDT = dyn_cast<TypedefType>(Cur))
return TDT;
switch (Cur->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Class: { \
const Class##Type *Ty = cast<Class##Type>(Cur); \
if (!Ty->isSugared()) return 0; \
Cur = Ty->desugar().getTypePtr(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
}
/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
/// sugar off the given type. This should produce an object of the
/// same dynamic type as the canonical type.
const Type *Type::getUnqualifiedDesugaredType() const {
const Type *Cur = this;
while (true) {
switch (Cur->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Parent)
#define TYPE(Class, Parent) \
case Class: { \
const Class##Type *Ty = cast<Class##Type>(Cur); \
if (!Ty->isSugared()) return Cur; \
Cur = Ty->desugar().getTypePtr(); \
break; \
}
#include "clang/AST/TypeNodes.def"
}
}
}
bool Type::isDerivedType() const {
switch (CanonicalType->getTypeClass()) {
case Pointer:
case VariableArray:
case ConstantArray:
case IncompleteArray:
case FunctionProto:
case FunctionNoProto:
case LValueReference:
case RValueReference:
case Record:
return true;
default:
return false;
}
}
bool Type::isClassType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isClass();
return false;
}
bool Type::isStructureType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isStruct();
return false;
}
bool Type::isInterfaceType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isInterface();
return false;
}
bool Type::isStructureOrClassType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isStruct() || RT->getDecl()->isClass() ||
RT->getDecl()->isInterface();
return false;
}
bool Type::isVoidPointerType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType()->isVoidType();
return false;
}
bool Type::isUnionType() const {
if (const RecordType *RT = getAs<RecordType>())
return RT->getDecl()->isUnion();
return false;
}
bool Type::isComplexType() const {
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
return false;
}
bool Type::isComplexIntegerType() const {
// Check for GCC complex integer extension.
return getAsComplexIntegerType();
}
const ComplexType *Type::getAsComplexIntegerType() const {
if (const ComplexType *Complex = getAs<ComplexType>())
if (Complex->getElementType()->isIntegerType())
return Complex;
return 0;
}
QualType Type::getPointeeType() const {
if (const PointerType *PT = getAs<PointerType>())
return PT->getPointeeType();
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
return OPT->getPointeeType();
if (const BlockPointerType *BPT = getAs<BlockPointerType>())
return BPT->getPointeeType();
if (const ReferenceType *RT = getAs<ReferenceType>())
return RT->getPointeeType();
return QualType();
}
const RecordType *Type::getAsStructureType() const {
// If this is directly a structure type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isStruct())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isStruct())
return 0;
// If this is a typedef for a structure type, strip the typedef off without
// losing all typedef information.
return cast<RecordType>(getUnqualifiedDesugaredType());
}
return 0;
}
const RecordType *Type::getAsUnionType() const {
// If this is directly a union type, return it.
if (const RecordType *RT = dyn_cast<RecordType>(this)) {
if (RT->getDecl()->isUnion())
return RT;
}
// If the canonical form of this type isn't the right kind, reject it.
if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
if (!RT->getDecl()->isUnion())
return 0;
// If this is a typedef for a union type, strip the typedef off without
// losing all typedef information.
return cast<RecordType>(getUnqualifiedDesugaredType());
}
return 0;
}
ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols)
: Type(ObjCObject, Canonical, false, false, false, false),
BaseType(Base)
{
ObjCObjectTypeBits.NumProtocols = NumProtocols;
assert(getNumProtocols() == NumProtocols &&
"bitfield overflow in protocol count");
if (NumProtocols)
memcpy(getProtocolStorage(), Protocols,
NumProtocols * sizeof(ObjCProtocolDecl*));
}
const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
// There is no sugar for ObjCObjectType's, just return the canonical
// type pointer if it is the right class. There is no typedef information to
// return and these cannot be Address-space qualified.
if (const ObjCObjectType *T = getAs<ObjCObjectType>())
if (T->getNumProtocols() && T->getInterface())
return T;
return 0;
}
bool Type::isObjCQualifiedInterfaceType() const {
return getAsObjCQualifiedInterfaceType() != 0;
}
const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
// There is no sugar for ObjCQualifiedIdType's, just return the canonical
// type pointer if it is the right class.
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->isObjCQualifiedIdType())
return OPT;
}
return 0;
}
const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
// There is no sugar for ObjCQualifiedClassType's, just return the canonical
// type pointer if it is the right class.
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->isObjCQualifiedClassType())
return OPT;
}
return 0;
}
const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
if (OPT->getInterfaceType())
return OPT;
}
return 0;
}
const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
if (const PointerType *PT = getAs<PointerType>())
if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
return dyn_cast<CXXRecordDecl>(RT->getDecl());
return 0;
}
CXXRecordDecl *Type::getAsCXXRecordDecl() const {
if (const RecordType *RT = getAs<RecordType>())
return dyn_cast<CXXRecordDecl>(RT->getDecl());
else if (const InjectedClassNameType *Injected
= getAs<InjectedClassNameType>())
return Injected->getDecl();
return 0;
}
namespace {
class GetContainedAutoVisitor :
public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
public:
using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
AutoType *Visit(QualType T) {
if (T.isNull())
return 0;
return Visit(T.getTypePtr());
}
// The 'auto' type itself.
AutoType *VisitAutoType(const AutoType *AT) {
return const_cast<AutoType*>(AT);
}
// Only these types can contain the desired 'auto' type.
AutoType *VisitPointerType(const PointerType *T) {
return Visit(T->getPointeeType());
}
AutoType *VisitBlockPointerType(const BlockPointerType *T) {
return Visit(T->getPointeeType());
}
AutoType *VisitReferenceType(const ReferenceType *T) {
return Visit(T->getPointeeTypeAsWritten());
}
AutoType *VisitMemberPointerType(const MemberPointerType *T) {
return Visit(T->getPointeeType());
}
AutoType *VisitArrayType(const ArrayType *T) {
return Visit(T->getElementType());
}
AutoType *VisitDependentSizedExtVectorType(
const DependentSizedExtVectorType *T) {
return Visit(T->getElementType());
}
AutoType *VisitVectorType(const VectorType *T) {
return Visit(T->getElementType());
}
AutoType *VisitFunctionType(const FunctionType *T) {
return Visit(T->getResultType());
}
AutoType *VisitParenType(const ParenType *T) {
return Visit(T->getInnerType());
}
AutoType *VisitAttributedType(const AttributedType *T) {
return Visit(T->getModifiedType());
}
};
}
AutoType *Type::getContainedAutoType() const {
return GetContainedAutoVisitor().Visit(this);
}
bool Type::hasIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isIntegerType();
else
return isIntegerType();
}
/// \brief Determine whether this type is an integral type.
///
/// This routine determines whether the given type is an integral type per
/// C++ [basic.fundamental]p7. Although the C standard does not define the
/// term "integral type", it has a similar term "integer type", and in C++
/// the two terms are equivalent. However, C's "integer type" includes
/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
/// parameter is used to determine whether we should be following the C or
/// C++ rules when determining whether this type is an integral/integer type.
///
/// For cases where C permits "an integer type" and C++ permits "an integral
/// type", use this routine.
///
/// For cases where C permits "an integer type" and C++ permits "an integral
/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
///
/// \param Ctx The context in which this type occurs.
///
/// \returns true if the type is considered an integral type, false otherwise.
bool Type::isIntegralType(ASTContext &Ctx) const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
if (!Ctx.getLangOpts().CPlusPlus)
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
return false;
}
bool Type::isIntegralOrUnscopedEnumerationType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::Int128;
// Check for a complete enum type; incomplete enum types are not properly an
// enumeration type in the sense required here.
// C++0x: However, if the underlying type of the enum is fixed, it is
// considered complete.
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
return false;
}
bool Type::isCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char_U ||
BT->getKind() == BuiltinType::UChar ||
BT->getKind() == BuiltinType::Char_S ||
BT->getKind() == BuiltinType::SChar;
return false;
}
bool Type::isWideCharType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::WChar_S ||
BT->getKind() == BuiltinType::WChar_U;
return false;
}
bool Type::isChar16Type() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char16;
return false;
}
bool Type::isChar32Type() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() == BuiltinType::Char32;
return false;
}
/// \brief Determine whether this type is any of the built-in character
/// types.
bool Type::isAnyCharacterType() const {
const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
if (BT == 0) return false;
switch (BT->getKind()) {
default: return false;
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::WChar_U:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::Char_S:
case BuiltinType::SChar:
case BuiltinType::WChar_S:
return true;
}
}
/// isSignedIntegerType - Return true if this is an integer type that is
/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
/// an enum decl which has a signed representation
bool Type::isSignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::Int128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
}
return false;
}
bool Type::isSignedIntegerOrEnumerationType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Char_S &&
BT->getKind() <= BuiltinType::Int128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
if (ET->getDecl()->isComplete())
return ET->getDecl()->getIntegerType()->isSignedIntegerType();
}
return false;
}
bool Type::hasSignedIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isSignedIntegerType();
else
return isSignedIntegerType();
}
/// isUnsignedIntegerType - Return true if this is an integer type that is
/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
/// decl which has an unsigned representation
bool Type::isUnsignedIntegerType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::UInt128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
}
return false;
}
bool Type::isUnsignedIntegerOrEnumerationType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::UInt128;
}
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
if (ET->getDecl()->isComplete())
return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
}
return false;
}
bool Type::hasUnsignedIntegerRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isUnsignedIntegerType();
else
return isUnsignedIntegerType();
}
bool Type::isFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Half &&
BT->getKind() <= BuiltinType::LongDouble;
if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
return CT->getElementType()->isFloatingType();
return false;
}
bool Type::hasFloatingRepresentation() const {
if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
return VT->getElementType()->isFloatingType();
else
return isFloatingType();
}
bool Type::isRealFloatingType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->isFloatingPoint();
return false;
}
bool Type::isRealType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
return false;
}
bool Type::isArithmeticType() const {
if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
return BT->getKind() >= BuiltinType::Bool &&
BT->getKind() <= BuiltinType::LongDouble;
if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
// GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
// If a body isn't seen by the time we get here, return false.
//
// C++0x: Enumerations are not arithmetic types. For now, just return
// false for scoped enumerations since that will disable any
// unwanted implicit conversions.
return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
return isa<ComplexType>(CanonicalType);
}
Type::ScalarTypeKind Type::getScalarTypeKind() const {
assert(isScalarType());
const Type *T = CanonicalType.getTypePtr();
if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
if (BT->isInteger()) return STK_Integral;
if (BT->isFloatingPoint()) return STK_Floating;
llvm_unreachable("unknown scalar builtin type");
} else if (isa<PointerType>(T)) {
return STK_CPointer;
} else if (isa<BlockPointerType>(T)) {
return STK_BlockPointer;
} else if (isa<ObjCObjectPointerType>(T)) {
return STK_ObjCObjectPointer;
} else if (isa<MemberPointerType>(T)) {
return STK_MemberPointer;
} else if (isa<EnumType>(T)) {
assert(cast<EnumType>(T)->getDecl()->isComplete());
return STK_Integral;
} else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
if (CT->getElementType()->isRealFloatingType())
return STK_FloatingComplex;
return STK_IntegralComplex;
}
llvm_unreachable("unknown scalar type");
}
/// \brief Determines whether the type is a C++ aggregate type or C
/// aggregate or union type.
///
/// An aggregate type is an array or a class type (struct, union, or
/// class) that has no user-declared constructors, no private or
/// protected non-static data members, no base classes, and no virtual
/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
/// includes union types.
bool Type::isAggregateType() const {
if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
return ClassDecl->isAggregate();
return true;
}
return isa<ArrayType>(CanonicalType);
}
/// isConstantSizeType - Return true if this is not a variable sized type,
/// according to the rules of C99 6.7.5p3. It is not legal to call this on
/// incomplete types or dependent types.
bool Type::isConstantSizeType() const {
assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
assert(!isDependentType() && "This doesn't make sense for dependent types");
// The VAT must have a size, as it is known to be complete.
return !isa<VariableArrayType>(CanonicalType);
}
/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
/// - a type that can describe objects, but which lacks information needed to
/// determine its size.
bool Type::isIncompleteType(NamedDecl **Def) const {
if (Def)
*Def = 0;
switch (CanonicalType->getTypeClass()) {
default: return false;
case Builtin:
// Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
// be completed.
return isVoidType();
case Enum: {
EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
if (Def)
*Def = EnumD;
// An enumeration with fixed underlying type is complete (C++0x 7.2p3).
if (EnumD->isFixed())
return false;
return !EnumD->isCompleteDefinition();
}
case Record: {
// A tagged type (struct/union/enum/class) is incomplete if the decl is a
// forward declaration, but not a full definition (C99 6.2.5p22).
RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
if (Def)
*Def = Rec;
return !Rec->isCompleteDefinition();
}
case ConstantArray:
// An array is incomplete if its element type is incomplete
// (C++ [dcl.array]p1).
// We don't handle variable arrays (they're not allowed in C++) or
// dependent-sized arrays (dependent types are never treated as incomplete).
return cast<ArrayType>(CanonicalType)->getElementType()
->isIncompleteType(Def);
case IncompleteArray:
// An array of unknown size is an incomplete type (C99 6.2.5p22).
return true;
case ObjCObject:
return cast<ObjCObjectType>(CanonicalType)->getBaseType()
->isIncompleteType(Def);
case ObjCInterface: {
// ObjC interfaces are incomplete if they are @class, not @interface.
ObjCInterfaceDecl *Interface
= cast<ObjCInterfaceType>(CanonicalType)->getDecl();
if (Def)
*Def = Interface;
return !Interface->hasDefinition();
}
}
}
bool QualType::isPODType(ASTContext &Context) const {
// C++11 has a more relaxed definition of POD.
if (Context.getLangOpts().CPlusPlus0x)
return isCXX11PODType(Context);
return isCXX98PODType(Context);
}
bool QualType::isCXX98PODType(ASTContext &Context) const {
// The compiler shouldn't query this for incomplete types, but the user might.
// We return false for that case. Except for incomplete arrays of PODs, which
// are PODs according to the standard.
if (isNull())
return 0;
if ((*this)->isIncompleteArrayType())
return Context.getBaseElementType(*this).isCXX98PODType(Context);
if ((*this)->isIncompleteType())
return false;
if (Context.getLangOpts().ObjCAutoRefCount) {
switch (getObjCLifetime()) {
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Autoreleasing:
return false;
case Qualifiers::OCL_None:
break;
}
}
QualType CanonicalType = getTypePtr()->CanonicalType;
switch (CanonicalType->getTypeClass()) {
// Everything not explicitly mentioned is not POD.
default: return false;
case Type::VariableArray:
case Type::ConstantArray:
// IncompleteArray is handled above.
return Context.getBaseElementType(*this).isCXX98PODType(Context);
case Type::ObjCObjectPointer:
case Type::BlockPointer:
case Type::Builtin:
case Type::Complex:
case Type::Pointer:
case Type::MemberPointer:
case Type::Vector:
case Type::ExtVector:
return true;
case Type::Enum:
return true;
case Type::Record:
if (CXXRecordDecl *ClassDecl
= dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
return ClassDecl->isPOD();
// C struct/union is POD.
return true;
}
}
bool QualType::isTrivialType(ASTContext &Context) const {
// The compiler shouldn't query this for incomplete types, but the user might.
// We return false for that case. Except for incomplete arrays of PODs, which
// are PODs according to the standard.
if (isNull())
return 0;
if ((*this)->isArrayType())
return Context.getBaseElementType(*this).isTrivialType(Context);
// Return false for incomplete types after skipping any incomplete array
// types which are expressly allowed by the standard and thus our API.
if ((*this)->isIncompleteType())
return false;
if (Context.getLangOpts().ObjCAutoRefCount) {
switch (getObjCLifetime()) {
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Autoreleasing:
return false;
case Qualifiers::OCL_None:
if ((*this)->isObjCLifetimeType())
return false;
break;
}
}
QualType CanonicalType = getTypePtr()->CanonicalType;
if (CanonicalType->isDependentType())
return false;
// C++0x [basic.types]p9:
// Scalar types, trivial class types, arrays of such types, and
// cv-qualified versions of these types are collectively called trivial
// types.
// As an extension, Clang treats vector types as Scalar types.
if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
return true;
if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
// C++0x [class]p5:
// A trivial class is a class that has a trivial default constructor
if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
// and is trivially copyable.
if (!ClassDecl->isTriviallyCopyable()) return false;
}
return true;
}
// No other types can match.
return false;
}
bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
if ((*this)->isArrayType())
return Context.getBaseElementType(*this).isTrivialType(Context);
if (Context.getLangOpts().ObjCAutoRefCount) {
switch (getObjCLifetime()) {
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Autoreleasing:
return false;
case Qualifiers::OCL_None:
if ((*this)->isObjCLifetimeType())
return false;
break;
}
}
// C++0x [basic.types]p9
// Scalar types, trivially copyable class types, arrays of such types, and
// cv-qualified versions of these types are collectively called trivial
// types.
QualType CanonicalType = getCanonicalType();
if (CanonicalType->isDependentType())
return false;
// Return false for incomplete types after skipping any incomplete array types
// which are expressly allowed by the standard and thus our API.
if (CanonicalType->isIncompleteType())
return false;
// As an extension, Clang treats vector types as Scalar types.
if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
return true;
if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
if (!ClassDecl->isTriviallyCopyable()) return false;
}
return true;
}
// No other types can match.
return false;
}
bool Type::isLiteralType() const {
if (isDependentType())
return false;
// C++0x [basic.types]p10:
// A type is a literal type if it is:
// [...]
// -- an array of literal type.
// Extension: variable arrays cannot be literal types, since they're
// runtime-sized.
if (isVariableArrayType())
return false;
const Type *BaseTy = getBaseElementTypeUnsafe();
assert(BaseTy && "NULL element type");
// Return false for incomplete types after skipping any incomplete array
// types; those are expressly allowed by the standard and thus our API.
if (BaseTy->isIncompleteType())
return false;
// C++0x [basic.types]p10:
// A type is a literal type if it is:
// -- a scalar type; or
// As an extension, Clang treats vector types and complex types as
// literal types.
if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
BaseTy->isAnyComplexType())
return true;
// -- a reference type; or
if (BaseTy->isReferenceType())
return true;
// -- a class type that has all of the following properties:
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
// -- a trivial destructor,
// -- every constructor call and full-expression in the
// brace-or-equal-initializers for non-static data members (if any)
// is a constant expression,
// -- it is an aggregate type or has at least one constexpr
// constructor or constructor template that is not a copy or move
// constructor, and
// -- all non-static data members and base classes of literal types
//
// We resolve DR1361 by ignoring the second bullet.
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl()))
return ClassDecl->isLiteral();
return true;
}
return false;
}
bool Type::isStandardLayoutType() const {
if (isDependentType())
return false;
// C++0x [basic.types]p9:
// Scalar types, standard-layout class types, arrays of such types, and
// cv-qualified versions of these types are collectively called
// standard-layout types.
const Type *BaseTy = getBaseElementTypeUnsafe();
assert(BaseTy && "NULL element type");
// Return false for incomplete types after skipping any incomplete array
// types which are expressly allowed by the standard and thus our API.
if (BaseTy->isIncompleteType())
return false;
// As an extension, Clang treats vector types as Scalar types.
if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl()))
if (!ClassDecl->isStandardLayout())
return false;
// Default to 'true' for non-C++ class types.
// FIXME: This is a bit dubious, but plain C structs should trivially meet
// all the requirements of standard layout classes.
return true;
}
// No other types can match.
return false;
}
// This is effectively the intersection of isTrivialType and
// isStandardLayoutType. We implement it directly to avoid redundant
// conversions from a type to a CXXRecordDecl.
bool QualType::isCXX11PODType(ASTContext &Context) const {
const Type *ty = getTypePtr();
if (ty->isDependentType())
return false;
if (Context.getLangOpts().ObjCAutoRefCount) {
switch (getObjCLifetime()) {
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Autoreleasing:
return false;
case Qualifiers::OCL_None:
if (ty->isObjCLifetimeType())
return false;
break;
}
}
// C++11 [basic.types]p9:
// Scalar types, POD classes, arrays of such types, and cv-qualified
// versions of these types are collectively called trivial types.
const Type *BaseTy = ty->getBaseElementTypeUnsafe();
assert(BaseTy && "NULL element type");
// Return false for incomplete types after skipping any incomplete array
// types which are expressly allowed by the standard and thus our API.
if (BaseTy->isIncompleteType())
return false;
// As an extension, Clang treats vector types as Scalar types.
if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
if (const CXXRecordDecl *ClassDecl =
dyn_cast<CXXRecordDecl>(RT->getDecl())) {
// C++11 [class]p10:
// A POD struct is a non-union class that is both a trivial class [...]
if (!ClassDecl->isTrivial()) return false;
// C++11 [class]p10:
// A POD struct is a non-union class that is both a trivial class and
// a standard-layout class [...]
if (!ClassDecl->isStandardLayout()) return false;
// C++11 [class]p10:
// A POD struct is a non-union class that is both a trivial class and
// a standard-layout class, and has no non-static data members of type
// non-POD struct, non-POD union (or array of such types). [...]
//
// We don't directly query the recursive aspect as the requiremets for
// both standard-layout classes and trivial classes apply recursively
// already.
}
return true;
}
// No other types can match.
return false;
}
bool Type::isPromotableIntegerType() const {
if (const BuiltinType *BT = getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Bool:
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
case BuiltinType::Char16:
case BuiltinType::Char32:
return true;
default:
return false;
}
// Enumerated types are promotable to their compatible integer types
// (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
if (const EnumType *ET = getAs<EnumType>()){
if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
|| ET->getDecl()->isScoped())
return false;
return true;
}
return false;
}
bool Type::isSpecifierType() const {
// Note that this intentionally does not use the canonical type.
switch (getTypeClass()) {
case Builtin:
case Record:
case Enum:
case Typedef:
case Complex:
case TypeOfExpr:
case TypeOf:
case TemplateTypeParm:
case SubstTemplateTypeParm:
case TemplateSpecialization:
case Elaborated:
case DependentName:
case DependentTemplateSpecialization:
case ObjCInterface:
case ObjCObject:
case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
return true;
default:
return false;
}
}
ElaboratedTypeKeyword
TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
switch (TypeSpec) {
default: return ETK_None;
case TST_typename: return ETK_Typename;
case TST_class: return ETK_Class;
case TST_struct: return ETK_Struct;
case TST_interface: return ETK_Interface;
case TST_union: return ETK_Union;
case TST_enum: return ETK_Enum;
}
}
TagTypeKind
TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
switch(TypeSpec) {
case TST_class: return TTK_Class;
case TST_struct: return TTK_Struct;
case TST_interface: return TTK_Interface;
case TST_union: return TTK_Union;
case TST_enum: return TTK_Enum;
}
llvm_unreachable("Type specifier is not a tag type kind.");
}
ElaboratedTypeKeyword
TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
switch (Kind) {
case TTK_Class: return ETK_Class;
case TTK_Struct: return ETK_Struct;
case TTK_Interface: return ETK_Interface;
case TTK_Union: return ETK_Union;
case TTK_Enum: return ETK_Enum;
}
llvm_unreachable("Unknown tag type kind.");
}
TagTypeKind
TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
case ETK_Class: return TTK_Class;
case ETK_Struct: return TTK_Struct;
case ETK_Interface: return TTK_Interface;
case ETK_Union: return TTK_Union;
case ETK_Enum: return TTK_Enum;
case ETK_None: // Fall through.
case ETK_Typename:
llvm_unreachable("Elaborated type keyword is not a tag type kind.");
}
llvm_unreachable("Unknown elaborated type keyword.");
}
bool
TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
case ETK_None:
case ETK_Typename:
return false;
case ETK_Class:
case ETK_Struct:
case ETK_Interface:
case ETK_Union:
case ETK_Enum:
return true;
}
llvm_unreachable("Unknown elaborated type keyword.");
}
const char*
TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
switch (Keyword) {
case ETK_None: return "";
case ETK_Typename: return "typename";
case ETK_Class: return "class";
case ETK_Struct: return "struct";
case ETK_Interface: return "__interface";
case ETK_Union: return "union";
case ETK_Enum: return "enum";
}
llvm_unreachable("Unknown elaborated type keyword.");
}
DependentTemplateSpecializationType::DependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS, const IdentifierInfo *Name,
unsigned NumArgs, const TemplateArgument *Args,
QualType Canon)
: TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
/*VariablyModified=*/false,
NNS && NNS->containsUnexpandedParameterPack()),
NNS(NNS), Name(Name), NumArgs(NumArgs) {
assert((!NNS || NNS->isDependent()) &&
"DependentTemplateSpecializatonType requires dependent qualifier");
for (unsigned I = 0; I != NumArgs; ++I) {
if (Args[I].containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
}
}
void
DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context,
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *Qualifier,
const IdentifierInfo *Name,
unsigned NumArgs,
const TemplateArgument *Args) {
ID.AddInteger(Keyword);
ID.AddPointer(Qualifier);
ID.AddPointer(Name);
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
Args[Idx].Profile(ID, Context);
}
bool Type::isElaboratedTypeSpecifier() const {
ElaboratedTypeKeyword Keyword;
if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
Keyword = Elab->getKeyword();
else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
Keyword = DepName->getKeyword();
else if (const DependentTemplateSpecializationType *DepTST =
dyn_cast<DependentTemplateSpecializationType>(this))
Keyword = DepTST->getKeyword();
else
return false;
return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
}
const char *Type::getTypeClassName() const {
switch (TypeBits.TC) {
#define ABSTRACT_TYPE(Derived, Base)
#define TYPE(Derived, Base) case Derived: return #Derived;
#include "clang/AST/TypeNodes.def"
}
llvm_unreachable("Invalid type class.");
}
StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
switch (getKind()) {
case Void: return "void";
case Bool: return Policy.Bool ? "bool" : "_Bool";
case Char_S: return "char";
case Char_U: return "char";
case SChar: return "signed char";
case Short: return "short";
case Int: return "int";
case Long: return "long";
case LongLong: return "long long";
case Int128: return "__int128";
case UChar: return "unsigned char";
case UShort: return "unsigned short";
case UInt: return "unsigned int";
case ULong: return "unsigned long";
case ULongLong: return "unsigned long long";
case UInt128: return "unsigned __int128";
case Half: return "half";
case Float: return "float";
case Double: return "double";
case LongDouble: return "long double";
case WChar_S:
case WChar_U: return "wchar_t";
case Char16: return "char16_t";
case Char32: return "char32_t";
case NullPtr: return "nullptr_t";
case Overload: return "<overloaded function type>";
case BoundMember: return "<bound member function type>";
case PseudoObject: return "<pseudo-object type>";
case Dependent: return "<dependent type>";
case UnknownAny: return "<unknown type>";
case ARCUnbridgedCast: return "<ARC unbridged cast type>";
case BuiltinFn: return "<builtin fn type>";
case ObjCId: return "id";
case ObjCClass: return "Class";
case ObjCSel: return "SEL";
}
llvm_unreachable("Invalid builtin type.");
}
QualType QualType::getNonLValueExprType(ASTContext &Context) const {
if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
return RefType->getPointeeType();
// C++0x [basic.lval]:
// Class prvalues can have cv-qualified types; non-class prvalues always
// have cv-unqualified types.
//
// See also C99 6.3.2.1p2.
if (!Context.getLangOpts().CPlusPlus ||
(!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
return getUnqualifiedType();
return *this;
}
StringRef FunctionType::getNameForCallConv(CallingConv CC) {
switch (CC) {
case CC_Default:
llvm_unreachable("no name for default cc");
case CC_C: return "cdecl";
case CC_X86StdCall: return "stdcall";
case CC_X86FastCall: return "fastcall";
case CC_X86ThisCall: return "thiscall";
case CC_X86Pascal: return "pascal";
case CC_AAPCS: return "aapcs";
case CC_AAPCS_VFP: return "aapcs-vfp";
}
llvm_unreachable("Invalid calling convention.");
}
FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
unsigned numArgs, QualType canonical,
const ExtProtoInfo &epi)
: FunctionType(FunctionProto, result, epi.TypeQuals, epi.RefQualifier,
canonical,
result->isDependentType(),
result->isInstantiationDependentType(),
result->isVariablyModifiedType(),
result->containsUnexpandedParameterPack(),
epi.ExtInfo),
NumArgs(numArgs), NumExceptions(epi.NumExceptions),
ExceptionSpecType(epi.ExceptionSpecType),
HasAnyConsumedArgs(epi.ConsumedArguments != 0),
Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn)
{
// Fill in the trailing argument array.
QualType *argSlot = reinterpret_cast<QualType*>(this+1);
for (unsigned i = 0; i != numArgs; ++i) {
if (args[i]->isDependentType())
setDependent();
else if (args[i]->isInstantiationDependentType())
setInstantiationDependent();
if (args[i]->containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
argSlot[i] = args[i];
}
if (getExceptionSpecType() == EST_Dynamic) {
// Fill in the exception array.
QualType *exnSlot = argSlot + numArgs;
for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
if (epi.Exceptions[i]->isDependentType())
setDependent();
else if (epi.Exceptions[i]->isInstantiationDependentType())
setInstantiationDependent();
if (epi.Exceptions[i]->containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
exnSlot[i] = epi.Exceptions[i];
}
} else if (getExceptionSpecType() == EST_ComputedNoexcept) {
// Store the noexcept expression and context.
Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
*noexSlot = epi.NoexceptExpr;
if (epi.NoexceptExpr) {
if (epi.NoexceptExpr->isValueDependent()
|| epi.NoexceptExpr->isTypeDependent())
setDependent();
else if (epi.NoexceptExpr->isInstantiationDependent())
setInstantiationDependent();
}
} else if (getExceptionSpecType() == EST_Uninstantiated) {
// Store the function decl from which we will resolve our
// exception specification.
FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
slot[0] = epi.ExceptionSpecDecl;
slot[1] = epi.ExceptionSpecTemplate;
// This exception specification doesn't make the type dependent, because
// it's not instantiated as part of instantiating the type.
} else if (getExceptionSpecType() == EST_Unevaluated) {
// Store the function decl from which we will resolve our
// exception specification.
FunctionDecl **slot = reinterpret_cast<FunctionDecl**>(argSlot + numArgs);
slot[0] = epi.ExceptionSpecDecl;
}
if (epi.ConsumedArguments) {
bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
for (unsigned i = 0; i != numArgs; ++i)
consumedArgs[i] = epi.ConsumedArguments[i];
}
}
FunctionProtoType::NoexceptResult
FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
ExceptionSpecificationType est = getExceptionSpecType();
if (est == EST_BasicNoexcept)
return NR_Nothrow;
if (est != EST_ComputedNoexcept)
return NR_NoNoexcept;
Expr *noexceptExpr = getNoexceptExpr();
if (!noexceptExpr)
return NR_BadNoexcept;
if (noexceptExpr->isValueDependent())
return NR_Dependent;
llvm::APSInt value;
bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
/*evaluated*/false);
(void)isICE;
assert(isICE && "AST should not contain bad noexcept expressions.");
return value.getBoolValue() ? NR_Nothrow : NR_Throw;
}
bool FunctionProtoType::isTemplateVariadic() const {
for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
return true;
return false;
}
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
const QualType *ArgTys, unsigned NumArgs,
const ExtProtoInfo &epi,
const ASTContext &Context) {
// We have to be careful not to get ambiguous profile encodings.
// Note that valid type pointers are never ambiguous with anything else.
//
// The encoding grammar begins:
// type type* bool int bool
// If that final bool is true, then there is a section for the EH spec:
// bool type*
// This is followed by an optional "consumed argument" section of the
// same length as the first type sequence:
// bool*
// Finally, we have the ext info and trailing return type flag:
// int bool
//
// There is no ambiguity between the consumed arguments and an empty EH
// spec because of the leading 'bool' which unambiguously indicates
// whether the following bool is the EH spec or part of the arguments.
ID.AddPointer(Result.getAsOpaquePtr());
for (unsigned i = 0; i != NumArgs; ++i)
ID.AddPointer(ArgTys[i].getAsOpaquePtr());
// This method is relatively performance sensitive, so as a performance
// shortcut, use one AddInteger call instead of four for the next four
// fields.
assert(!(unsigned(epi.Variadic) & ~1) &&
!(unsigned(epi.TypeQuals) & ~255) &&
!(unsigned(epi.RefQualifier) & ~3) &&
!(unsigned(epi.ExceptionSpecType) & ~7) &&
"Values larger than expected.");
ID.AddInteger(unsigned(epi.Variadic) +
(epi.TypeQuals << 1) +
(epi.RefQualifier << 9) +
(epi.ExceptionSpecType << 11));
if (epi.ExceptionSpecType == EST_Dynamic) {
for (unsigned i = 0; i != epi.NumExceptions; ++i)
ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
} else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
epi.NoexceptExpr->Profile(ID, Context, false);
} else if (epi.ExceptionSpecType == EST_Uninstantiated ||
epi.ExceptionSpecType == EST_Unevaluated) {
ID.AddPointer(epi.ExceptionSpecDecl->getCanonicalDecl());
}
if (epi.ConsumedArguments) {
for (unsigned i = 0; i != NumArgs; ++i)
ID.AddBoolean(epi.ConsumedArguments[i]);
}
epi.ExtInfo.Profile(ID);
ID.AddBoolean(epi.HasTrailingReturn);
}
void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Ctx) {
Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
Ctx);
}
QualType TypedefType::desugar() const {
return getDecl()->getUnderlyingType();
}
TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
: Type(TypeOfExpr, can, E->isTypeDependent(),
E->isInstantiationDependent(),
E->getType()->isVariablyModifiedType(),
E->containsUnexpandedParameterPack()),
TOExpr(E) {
}
bool TypeOfExprType::isSugared() const {
return !TOExpr->isTypeDependent();
}
QualType TypeOfExprType::desugar() const {
if (isSugared())
return getUnderlyingExpr()->getType();
return QualType(this, 0);
}
void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context, Expr *E) {
E->Profile(ID, Context, true);
}
DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
// C++11 [temp.type]p2: "If an expression e involves a template parameter,
// decltype(e) denotes a unique dependent type." Hence a decltype type is
// type-dependent even if its expression is only instantiation-dependent.
: Type(Decltype, can, E->isInstantiationDependent(),
E->isInstantiationDependent(),
E->getType()->isVariablyModifiedType(),
E->containsUnexpandedParameterPack()),
E(E),
UnderlyingType(underlyingType) {
}
bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
QualType DecltypeType::desugar() const {
if (isSugared())
return getUnderlyingType();
return QualType(this, 0);
}
DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
: DecltypeType(E, Context.DependentTy), Context(Context) { }
void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &Context, Expr *E) {
E->Profile(ID, Context, true);
}
TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
: Type(TC, can, D->isDependentType(),
/*InstantiationDependent=*/D->isDependentType(),
/*VariablyModified=*/false,
/*ContainsUnexpandedParameterPack=*/false),
decl(const_cast<TagDecl*>(D)) {}
static TagDecl *getInterestingTagDecl(TagDecl *decl) {
for (TagDecl::redecl_iterator I = decl->redecls_begin(),
E = decl->redecls_end();
I != E; ++I) {
if (I->isCompleteDefinition() || I->isBeingDefined())
return *I;
}
// If there's no definition (not even in progress), return what we have.
return decl;
}
UnaryTransformType::UnaryTransformType(QualType BaseType,
QualType UnderlyingType,
UTTKind UKind,
QualType CanonicalType)
: Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
UnderlyingType->isInstantiationDependentType(),
UnderlyingType->isVariablyModifiedType(),
BaseType->containsUnexpandedParameterPack())
, BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
{}
TagDecl *TagType::getDecl() const {
return getInterestingTagDecl(decl);
}
bool TagType::isBeingDefined() const {
return getDecl()->isBeingDefined();
}
CXXRecordDecl *InjectedClassNameType::getDecl() const {
return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
}
IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
}
SubstTemplateTypeParmPackType::
SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
QualType Canon,
const TemplateArgument &ArgPack)
: Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
Replaced(Param),
Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
{
}
TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
return TemplateArgument(Arguments, NumArguments);
}
void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getReplacedParameter(), getArgumentPack());
}
void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
const TemplateTypeParmType *Replaced,
const TemplateArgument &ArgPack) {
ID.AddPointer(Replaced);
ID.AddInteger(ArgPack.pack_size());
for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
PEnd = ArgPack.pack_end();
P != PEnd; ++P)
ID.AddPointer(P->getAsType().getAsOpaquePtr());
}
bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
bool &InstantiationDependent) {
return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
InstantiationDependent);
}
bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
bool &InstantiationDependent) {
for (unsigned i = 0; i != N; ++i) {
if (Args[i].getArgument().isDependent()) {
InstantiationDependent = true;
return true;
}
if (Args[i].getArgument().isInstantiationDependent())
InstantiationDependent = true;
}
return false;
}
bool TemplateSpecializationType::
anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
bool &InstantiationDependent) {
for (unsigned i = 0; i != N; ++i) {
if (Args[i].isDependent()) {
InstantiationDependent = true;
return true;
}
if (Args[i].isInstantiationDependent())
InstantiationDependent = true;
}
return false;
}
TemplateSpecializationType::
TemplateSpecializationType(TemplateName T,
const TemplateArgument *Args, unsigned NumArgs,
QualType Canon, QualType AliasedType)
: Type(TemplateSpecialization,
Canon.isNull()? QualType(this, 0) : Canon,
Canon.isNull()? T.isDependent() : Canon->isDependentType(),
Canon.isNull()? T.isDependent()
: Canon->isInstantiationDependentType(),
false,
T.containsUnexpandedParameterPack()),
Template(T), NumArgs(NumArgs), TypeAlias(!AliasedType.isNull()) {
assert(!T.getAsDependentTemplateName() &&
"Use DependentTemplateSpecializationType for dependent template-name");
assert((T.getKind() == TemplateName::Template ||
T.getKind() == TemplateName::SubstTemplateTemplateParm ||
T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
"Unexpected template name for TemplateSpecializationType");
bool InstantiationDependent;
(void)InstantiationDependent;
assert((!Canon.isNull() ||
T.isDependent() ||
anyDependentTemplateArguments(Args, NumArgs,
InstantiationDependent)) &&
"No canonical type for non-dependent class template specialization");
TemplateArgument *TemplateArgs
= reinterpret_cast<TemplateArgument *>(this + 1);
for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
// Update dependent and variably-modified bits.
// If the canonical type exists and is non-dependent, the template
// specialization type can be non-dependent even if one of the type
// arguments is. Given:
// template<typename T> using U = int;
// U<T> is always non-dependent, irrespective of the type T.
// However, U<Ts> contains an unexpanded parameter pack, even though
// its expansion (and thus its desugared type) doesn't.
if (Canon.isNull() && Args[Arg].isDependent())
setDependent();
else if (Args[Arg].isInstantiationDependent())
setInstantiationDependent();
if (Args[Arg].getKind() == TemplateArgument::Type &&
Args[Arg].getAsType()->isVariablyModifiedType())
setVariablyModified();
if (Args[Arg].containsUnexpandedParameterPack())
setContainsUnexpandedParameterPack();
new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
}
// Store the aliased type if this is a type alias template specialization.
if (TypeAlias) {
TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
*reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
}
}
void
TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
TemplateName T,
const TemplateArgument *Args,
unsigned NumArgs,
const ASTContext &Context) {
T.Profile(ID);
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
Args[Idx].Profile(ID, Context);
}
QualType
QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
if (!hasNonFastQualifiers())
return QT.withFastQualifiers(getFastQualifiers());
return Context.getQualifiedType(QT, *this);
}
QualType
QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
if (!hasNonFastQualifiers())
return QualType(T, getFastQualifiers());
return Context.getQualifiedType(T, *this);
}
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
QualType BaseType,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols) {
ID.AddPointer(BaseType.getAsOpaquePtr());
for (unsigned i = 0; i != NumProtocols; i++)
ID.AddPointer(Protocols[i]);
}
void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
}
namespace {
/// \brief The cached properties of a type.
class CachedProperties {
NamedDecl::LinkageInfo LV;
bool local;
public:
CachedProperties(NamedDecl::LinkageInfo LV, bool local)
: LV(LV), local(local) {}
Linkage getLinkage() const { return LV.linkage(); }
Visibility getVisibility() const { return LV.visibility(); }
bool isVisibilityExplicit() const { return LV.visibilityExplicit(); }
bool hasLocalOrUnnamedType() const { return local; }
friend CachedProperties merge(CachedProperties L, CachedProperties R) {
NamedDecl::LinkageInfo MergedLV = L.LV;
MergedLV.merge(R.LV);
return CachedProperties(MergedLV,
L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
}
};
}
static CachedProperties computeCachedProperties(const Type *T);
namespace clang {
/// The type-property cache. This is templated so as to be
/// instantiated at an internal type to prevent unnecessary symbol
/// leakage.
template <class Private> class TypePropertyCache {
public:
static CachedProperties get(QualType T) {
return get(T.getTypePtr());
}
static CachedProperties get(const Type *T) {
ensure(T);
NamedDecl::LinkageInfo LV(T->TypeBits.getLinkage(),
T->TypeBits.getVisibility(),
T->TypeBits.isVisibilityExplicit());
return CachedProperties(LV, T->TypeBits.hasLocalOrUnnamedType());
}
static void ensure(const Type *T) {
// If the cache is valid, we're okay.
if (T->TypeBits.isCacheValid()) return;
// If this type is non-canonical, ask its canonical type for the
// relevant information.
if (!T->isCanonicalUnqualified()) {
const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
ensure(CT);
T->TypeBits.CacheValidAndVisibility =
CT->TypeBits.CacheValidAndVisibility;
T->TypeBits.CachedExplicitVisibility =
CT->TypeBits.CachedExplicitVisibility;
T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
return;
}
// Compute the cached properties and then set the cache.
CachedProperties Result = computeCachedProperties(T);
T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
T->TypeBits.CachedExplicitVisibility = Result.isVisibilityExplicit();
assert(T->TypeBits.isCacheValid() &&
T->TypeBits.getVisibility() == Result.getVisibility());
T->TypeBits.CachedLinkage = Result.getLinkage();
T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
}
};
}
// Instantiate the friend template at a private class. In a
// reasonable implementation, these symbols will be internal.
// It is terrible that this is the best way to accomplish this.
namespace { class Private {}; }
typedef TypePropertyCache<Private> Cache;
static CachedProperties computeCachedProperties(const Type *T) {
switch (T->getTypeClass()) {
#define TYPE(Class,Base)
#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("didn't expect a non-canonical type here");
#define TYPE(Class,Base)
#define DEPENDENT_TYPE(Class,Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
// Treat instantiation-dependent types as external.
assert(T->isInstantiationDependentType());
return CachedProperties(NamedDecl::LinkageInfo(), false);
case Type::Builtin:
// C++ [basic.link]p8:
// A type is said to have linkage if and only if:
// - it is a fundamental type (3.9.1); or
return CachedProperties(NamedDecl::LinkageInfo(), false);
case Type::Record:
case Type::Enum: {
const TagDecl *Tag = cast<TagType>(T)->getDecl();
// C++ [basic.link]p8:
// - it is a class or enumeration type that is named (or has a name
// for linkage purposes (7.1.3)) and the name has linkage; or
// - it is a specialization of a class template (14); or
NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
bool IsLocalOrUnnamed =
Tag->getDeclContext()->isFunctionOrMethod() ||
(!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
return CachedProperties(LV, IsLocalOrUnnamed);
}
// C++ [basic.link]p8:
// - it is a compound type (3.9.2) other than a class or enumeration,
// compounded exclusively from types that have linkage; or
case Type::Complex:
return Cache::get(cast<ComplexType>(T)->getElementType());
case Type::Pointer:
return Cache::get(cast<PointerType>(T)->getPointeeType());
case Type::BlockPointer:
return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
case Type::LValueReference:
case Type::RValueReference:
return Cache::get(cast<ReferenceType>(T)->getPointeeType());
case Type::MemberPointer: {
const MemberPointerType *MPT = cast<MemberPointerType>(T);
return merge(Cache::get(MPT->getClass()),
Cache::get(MPT->getPointeeType()));
}
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
return Cache::get(cast<ArrayType>(T)->getElementType());
case Type::Vector:
case Type::ExtVector:
return Cache::get(cast<VectorType>(T)->getElementType());
case Type::FunctionNoProto:
return Cache::get(cast<FunctionType>(T)->getResultType());
case Type::FunctionProto: {
const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
CachedProperties result = Cache::get(FPT->getResultType());
for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
ae = FPT->arg_type_end(); ai != ae; ++ai)
result = merge(result, Cache::get(*ai));
return result;
}
case Type::ObjCInterface: {
NamedDecl::LinkageInfo LV =
cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
return CachedProperties(LV, false);
}
case Type::ObjCObject:
return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
case Type::ObjCObjectPointer:
return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
case Type::Atomic:
return Cache::get(cast<AtomicType>(T)->getValueType());
}
llvm_unreachable("unhandled type class");
}
/// \brief Determine the linkage of this type.
Linkage Type::getLinkage() const {
Cache::ensure(this);
return TypeBits.getLinkage();
}
/// \brief Determine the linkage of this type.
Visibility Type::getVisibility() const {
Cache::ensure(this);
return TypeBits.getVisibility();
}
bool Type::isVisibilityExplicit() const {
Cache::ensure(this);
return TypeBits.isVisibilityExplicit();
}
bool Type::hasUnnamedOrLocalType() const {
Cache::ensure(this);
return TypeBits.hasLocalOrUnnamedType();
}
std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
Cache::ensure(this);
return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
}
void Type::ClearLinkageCache() {
TypeBits.CacheValidAndVisibility = 0;
if (QualType(this, 0) != CanonicalType)
CanonicalType->TypeBits.CacheValidAndVisibility = 0;
}
Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
if (isObjCARCImplicitlyUnretainedType())
return Qualifiers::OCL_ExplicitNone;
return Qualifiers::OCL_Strong;
}
bool Type::isObjCARCImplicitlyUnretainedType() const {
assert(isObjCLifetimeType() &&
"cannot query implicit lifetime for non-inferrable type");
const Type *canon = getCanonicalTypeInternal().getTypePtr();
// Walk down to the base type. We don't care about qualifiers for this.
while (const ArrayType *array = dyn_cast<ArrayType>(canon))
canon = array->getElementType().getTypePtr();
if (const ObjCObjectPointerType *opt
= dyn_cast<ObjCObjectPointerType>(canon)) {
// Class and Class<Protocol> don't require retension.
if (opt->getObjectType()->isObjCClass())
return true;
}
return false;
}
bool Type::isObjCNSObjectType() const {
if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
return false;
}
bool Type::isObjCRetainableType() const {
return isObjCObjectPointerType() ||
isBlockPointerType() ||
isObjCNSObjectType();
}
bool Type::isObjCIndirectLifetimeType() const {
if (isObjCLifetimeType())
return true;
if (const PointerType *OPT = getAs<PointerType>())
return OPT->getPointeeType()->isObjCIndirectLifetimeType();
if (const ReferenceType *Ref = getAs<ReferenceType>())
return Ref->getPointeeType()->isObjCIndirectLifetimeType();
if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
return false;
}
/// Returns true if objects of this type have lifetime semantics under
/// ARC.
bool Type::isObjCLifetimeType() const {
const Type *type = this;
while (const ArrayType *array = type->getAsArrayTypeUnsafe())
type = array->getElementType().getTypePtr();
return type->isObjCRetainableType();
}
/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
/// which is either an Objective-C object pointer type or an
bool Type::isObjCARCBridgableType() const {
return isObjCObjectPointerType() || isBlockPointerType();
}
/// \brief Determine whether the given type T is a "bridgeable" C type.
bool Type::isCARCBridgableType() const {
const PointerType *Pointer = getAs<PointerType>();
if (!Pointer)
return false;
QualType Pointee = Pointer->getPointeeType();
return Pointee->isVoidType() || Pointee->isRecordType();
}
bool Type::hasSizedVLAType() const {
if (!isVariablyModifiedType()) return false;
if (const PointerType *ptr = getAs<PointerType>())
return ptr->getPointeeType()->hasSizedVLAType();
if (const ReferenceType *ref = getAs<ReferenceType>())
return ref->getPointeeType()->hasSizedVLAType();
if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
if (isa<VariableArrayType>(arr) &&
cast<VariableArrayType>(arr)->getSizeExpr())
return true;
return arr->getElementType()->hasSizedVLAType();
}
return false;
}
QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
switch (type.getObjCLifetime()) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
break;
case Qualifiers::OCL_Strong:
return DK_objc_strong_lifetime;
case Qualifiers::OCL_Weak:
return DK_objc_weak_lifetime;
}
/// Currently, the only destruction kind we recognize is C++ objects
/// with non-trivial destructors.
const CXXRecordDecl *record =
type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
if (record && record->hasDefinition() && !record->hasTrivialDestructor())
return DK_cxx_destructor;
return DK_none;
}
bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
switch (getObjCLifetime()) {
case Qualifiers::OCL_None:
break;
case Qualifiers::OCL_ExplicitNone:
return true;
case Qualifiers::OCL_Autoreleasing:
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Weak:
return !Context.getLangOpts().ObjCAutoRefCount;
}
if (const CXXRecordDecl *Record
= getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
return Copying ? Record->hasTrivialCopyAssignment() :
Record->hasTrivialMoveAssignment();
return true;
}