blob: 9723a43c91ccbc6d22dc9919bd6ca119211ab177 [file] [log] [blame]
//===--- DeclSpec.h - Parsed declaration specifiers -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file defines the classes used to store parsed information about
/// declaration-specifiers and declarators.
///
/// \verbatim
/// static const int volatile x, *y, *(*(*z)[10])(const void *x);
/// ------------------------- - -- ---------------------------
/// declaration-specifiers \ | /
/// declarators
/// \endverbatim
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_DECLSPEC_H
#define LLVM_CLANG_SEMA_DECLSPEC_H
#include "clang/Sema/AttributeList.h"
#include "clang/Sema/Ownership.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/Lex/Token.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
namespace clang {
class ASTContext;
class TypeLoc;
class LangOptions;
class DiagnosticsEngine;
class IdentifierInfo;
class NamespaceAliasDecl;
class NamespaceDecl;
class NestedNameSpecifier;
class NestedNameSpecifierLoc;
class ObjCDeclSpec;
class Preprocessor;
class Sema;
class Declarator;
struct TemplateIdAnnotation;
/// \brief Represents a C++ nested-name-specifier or a global scope specifier.
///
/// These can be in 3 states:
/// 1) Not present, identified by isEmpty()
/// 2) Present, identified by isNotEmpty()
/// 2.a) Valid, idenified by isValid()
/// 2.b) Invalid, identified by isInvalid().
///
/// isSet() is deprecated because it mostly corresponded to "valid" but was
/// often used as if it meant "present".
///
/// The actual scope is described by getScopeRep().
class CXXScopeSpec {
SourceRange Range;
NestedNameSpecifierLocBuilder Builder;
public:
const SourceRange &getRange() const { return Range; }
void setRange(const SourceRange &R) { Range = R; }
void setBeginLoc(SourceLocation Loc) { Range.setBegin(Loc); }
void setEndLoc(SourceLocation Loc) { Range.setEnd(Loc); }
SourceLocation getBeginLoc() const { return Range.getBegin(); }
SourceLocation getEndLoc() const { return Range.getEnd(); }
/// \brief Retrieve the representation of the nested-name-specifier.
NestedNameSpecifier *getScopeRep() const {
return Builder.getRepresentation();
}
/// \brief Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'type::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param TemplateKWLoc The location of the 'template' keyword, if present.
///
/// \param TL The TypeLoc that describes the type preceding the '::'.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, SourceLocation TemplateKWLoc, TypeLoc TL,
SourceLocation ColonColonLoc);
/// \brief Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'identifier::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Identifier The identifier.
///
/// \param IdentifierLoc The location of the identifier.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, IdentifierInfo *Identifier,
SourceLocation IdentifierLoc, SourceLocation ColonColonLoc);
/// \brief Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'namespace::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Namespace The namespace.
///
/// \param NamespaceLoc The location of the namespace name.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, NamespaceDecl *Namespace,
SourceLocation NamespaceLoc, SourceLocation ColonColonLoc);
/// \brief Extend the current nested-name-specifier by another
/// nested-name-specifier component of the form 'namespace-alias::'.
///
/// \param Context The AST context in which this nested-name-specifier
/// resides.
///
/// \param Alias The namespace alias.
///
/// \param AliasLoc The location of the namespace alias
/// name.
///
/// \param ColonColonLoc The location of the trailing '::'.
void Extend(ASTContext &Context, NamespaceAliasDecl *Alias,
SourceLocation AliasLoc, SourceLocation ColonColonLoc);
/// \brief Turn this (empty) nested-name-specifier into the global
/// nested-name-specifier '::'.
void MakeGlobal(ASTContext &Context, SourceLocation ColonColonLoc);
/// \brief Make a new nested-name-specifier from incomplete source-location
/// information.
///
/// FIXME: This routine should be used very, very rarely, in cases where we
/// need to synthesize a nested-name-specifier. Most code should instead use
/// \c Adopt() with a proper \c NestedNameSpecifierLoc.
void MakeTrivial(ASTContext &Context, NestedNameSpecifier *Qualifier,
SourceRange R);
/// \brief Adopt an existing nested-name-specifier (with source-range
/// information).
void Adopt(NestedNameSpecifierLoc Other);
/// \brief Retrieve a nested-name-specifier with location information, copied
/// into the given AST context.
///
/// \param Context The context into which this nested-name-specifier will be
/// copied.
NestedNameSpecifierLoc getWithLocInContext(ASTContext &Context) const;
/// \brief Retrieve the location of the name in the last qualifier
/// in this nested name specifier.
///
/// For example, the location of \c bar
/// in
/// \verbatim
/// \::foo::bar<0>::
/// ^~~
/// \endverbatim
SourceLocation getLastQualifierNameLoc() const;
/// No scope specifier.
bool isEmpty() const { return !Range.isValid(); }
/// A scope specifier is present, but may be valid or invalid.
bool isNotEmpty() const { return !isEmpty(); }
/// An error occurred during parsing of the scope specifier.
bool isInvalid() const { return isNotEmpty() && getScopeRep() == 0; }
/// A scope specifier is present, and it refers to a real scope.
bool isValid() const { return isNotEmpty() && getScopeRep() != 0; }
/// \brief Indicate that this nested-name-specifier is invalid.
void SetInvalid(SourceRange R) {
assert(R.isValid() && "Must have a valid source range");
if (Range.getBegin().isInvalid())
Range.setBegin(R.getBegin());
Range.setEnd(R.getEnd());
Builder.Clear();
}
/// Deprecated. Some call sites intend isNotEmpty() while others intend
/// isValid().
bool isSet() const { return getScopeRep() != 0; }
void clear() {
Range = SourceRange();
Builder.Clear();
}
/// \brief Retrieve the data associated with the source-location information.
char *location_data() const { return Builder.getBuffer().first; }
/// \brief Retrieve the size of the data associated with source-location
/// information.
unsigned location_size() const { return Builder.getBuffer().second; }
};
/// \brief Captures information about "declaration specifiers".
///
/// "Declaration specifiers" encompasses storage-class-specifiers,
/// type-specifiers, type-qualifiers, and function-specifiers.
class DeclSpec {
public:
/// \brief storage-class-specifier
/// \note The order of these enumerators is important for diagnostics.
enum SCS {
SCS_unspecified = 0,
SCS_typedef,
SCS_extern,
SCS_static,
SCS_auto,
SCS_register,
SCS_private_extern,
SCS_mutable
};
// Import type specifier width enumeration and constants.
typedef TypeSpecifierWidth TSW;
static const TSW TSW_unspecified = clang::TSW_unspecified;
static const TSW TSW_short = clang::TSW_short;
static const TSW TSW_long = clang::TSW_long;
static const TSW TSW_longlong = clang::TSW_longlong;
enum TSC {
TSC_unspecified,
TSC_imaginary,
TSC_complex
};
// Import type specifier sign enumeration and constants.
typedef TypeSpecifierSign TSS;
static const TSS TSS_unspecified = clang::TSS_unspecified;
static const TSS TSS_signed = clang::TSS_signed;
static const TSS TSS_unsigned = clang::TSS_unsigned;
// Import type specifier type enumeration and constants.
typedef TypeSpecifierType TST;
static const TST TST_unspecified = clang::TST_unspecified;
static const TST TST_void = clang::TST_void;
static const TST TST_char = clang::TST_char;
static const TST TST_wchar = clang::TST_wchar;
static const TST TST_char16 = clang::TST_char16;
static const TST TST_char32 = clang::TST_char32;
static const TST TST_int = clang::TST_int;
static const TST TST_int128 = clang::TST_int128;
static const TST TST_half = clang::TST_half;
static const TST TST_float = clang::TST_float;
static const TST TST_double = clang::TST_double;
static const TST TST_bool = clang::TST_bool;
static const TST TST_decimal32 = clang::TST_decimal32;
static const TST TST_decimal64 = clang::TST_decimal64;
static const TST TST_decimal128 = clang::TST_decimal128;
static const TST TST_enum = clang::TST_enum;
static const TST TST_union = clang::TST_union;
static const TST TST_struct = clang::TST_struct;
static const TST TST_interface = clang::TST_interface;
static const TST TST_class = clang::TST_class;
static const TST TST_typename = clang::TST_typename;
static const TST TST_typeofType = clang::TST_typeofType;
static const TST TST_typeofExpr = clang::TST_typeofExpr;
static const TST TST_decltype = clang::TST_decltype;
static const TST TST_underlyingType = clang::TST_underlyingType;
static const TST TST_auto = clang::TST_auto;
static const TST TST_unknown_anytype = clang::TST_unknown_anytype;
static const TST TST_atomic = clang::TST_atomic;
static const TST TST_error = clang::TST_error;
// type-qualifiers
enum TQ { // NOTE: These flags must be kept in sync with Qualifiers::TQ.
TQ_unspecified = 0,
TQ_const = 1,
TQ_restrict = 2,
TQ_volatile = 4
};
/// ParsedSpecifiers - Flags to query which specifiers were applied. This is
/// returned by getParsedSpecifiers.
enum ParsedSpecifiers {
PQ_None = 0,
PQ_StorageClassSpecifier = 1,
PQ_TypeSpecifier = 2,
PQ_TypeQualifier = 4,
PQ_FunctionSpecifier = 8
};
private:
// storage-class-specifier
/*SCS*/unsigned StorageClassSpec : 3;
unsigned SCS_thread_specified : 1;
unsigned SCS_extern_in_linkage_spec : 1;
// type-specifier
/*TSW*/unsigned TypeSpecWidth : 2;
/*TSC*/unsigned TypeSpecComplex : 2;
/*TSS*/unsigned TypeSpecSign : 2;
/*TST*/unsigned TypeSpecType : 5;
unsigned TypeAltiVecVector : 1;
unsigned TypeAltiVecPixel : 1;
unsigned TypeAltiVecBool : 1;
unsigned TypeSpecOwned : 1;
// type-qualifiers
unsigned TypeQualifiers : 3; // Bitwise OR of TQ.
// function-specifier
unsigned FS_inline_specified : 1;
unsigned FS_virtual_specified : 1;
unsigned FS_explicit_specified : 1;
// friend-specifier
unsigned Friend_specified : 1;
// constexpr-specifier
unsigned Constexpr_specified : 1;
/*SCS*/unsigned StorageClassSpecAsWritten : 3;
union {
UnionParsedType TypeRep;
Decl *DeclRep;
Expr *ExprRep;
};
// attributes.
ParsedAttributes Attrs;
// Scope specifier for the type spec, if applicable.
CXXScopeSpec TypeScope;
// List of protocol qualifiers for objective-c classes. Used for
// protocol-qualified interfaces "NString<foo>" and protocol-qualified id
// "id<foo>".
Decl * const *ProtocolQualifiers;
unsigned NumProtocolQualifiers;
SourceLocation ProtocolLAngleLoc;
SourceLocation *ProtocolLocs;
// SourceLocation info. These are null if the item wasn't specified or if
// the setting was synthesized.
SourceRange Range;
SourceLocation StorageClassSpecLoc, SCS_threadLoc;
SourceLocation TSWLoc, TSCLoc, TSSLoc, TSTLoc, AltiVecLoc;
/// TSTNameLoc - If TypeSpecType is any of class, enum, struct, union,
/// typename, then this is the location of the named type (if present);
/// otherwise, it is the same as TSTLoc. Hence, the pair TSTLoc and
/// TSTNameLoc provides source range info for tag types.
SourceLocation TSTNameLoc;
SourceRange TypeofParensRange;
SourceLocation TQ_constLoc, TQ_restrictLoc, TQ_volatileLoc;
SourceLocation FS_inlineLoc, FS_virtualLoc, FS_explicitLoc;
SourceLocation FriendLoc, ModulePrivateLoc, ConstexprLoc;
WrittenBuiltinSpecs writtenBS;
void SaveWrittenBuiltinSpecs();
void SaveStorageSpecifierAsWritten();
ObjCDeclSpec *ObjCQualifiers;
static bool isTypeRep(TST T) {
return (T == TST_typename || T == TST_typeofType ||
T == TST_underlyingType || T == TST_atomic);
}
static bool isExprRep(TST T) {
return (T == TST_typeofExpr || T == TST_decltype);
}
static bool isDeclRep(TST T) {
return (T == TST_enum || T == TST_struct ||
T == TST_interface || T == TST_union ||
T == TST_class);
}
DeclSpec(const DeclSpec&); // DO NOT IMPLEMENT
void operator=(const DeclSpec&); // DO NOT IMPLEMENT
public:
DeclSpec(AttributeFactory &attrFactory)
: StorageClassSpec(SCS_unspecified),
SCS_thread_specified(false),
SCS_extern_in_linkage_spec(false),
TypeSpecWidth(TSW_unspecified),
TypeSpecComplex(TSC_unspecified),
TypeSpecSign(TSS_unspecified),
TypeSpecType(TST_unspecified),
TypeAltiVecVector(false),
TypeAltiVecPixel(false),
TypeAltiVecBool(false),
TypeSpecOwned(false),
TypeQualifiers(TQ_unspecified),
FS_inline_specified(false),
FS_virtual_specified(false),
FS_explicit_specified(false),
Friend_specified(false),
Constexpr_specified(false),
StorageClassSpecAsWritten(SCS_unspecified),
Attrs(attrFactory),
ProtocolQualifiers(0),
NumProtocolQualifiers(0),
ProtocolLocs(0),
writtenBS(),
ObjCQualifiers(0) {
}
~DeclSpec() {
delete [] ProtocolQualifiers;
delete [] ProtocolLocs;
}
// storage-class-specifier
SCS getStorageClassSpec() const { return (SCS)StorageClassSpec; }
bool isThreadSpecified() const { return SCS_thread_specified; }
bool isExternInLinkageSpec() const { return SCS_extern_in_linkage_spec; }
void setExternInLinkageSpec(bool Value) {
SCS_extern_in_linkage_spec = Value;
}
SourceLocation getStorageClassSpecLoc() const { return StorageClassSpecLoc; }
SourceLocation getThreadSpecLoc() const { return SCS_threadLoc; }
void ClearStorageClassSpecs() {
StorageClassSpec = DeclSpec::SCS_unspecified;
SCS_thread_specified = false;
SCS_extern_in_linkage_spec = false;
StorageClassSpecLoc = SourceLocation();
SCS_threadLoc = SourceLocation();
}
// type-specifier
TSW getTypeSpecWidth() const { return (TSW)TypeSpecWidth; }
TSC getTypeSpecComplex() const { return (TSC)TypeSpecComplex; }
TSS getTypeSpecSign() const { return (TSS)TypeSpecSign; }
TST getTypeSpecType() const { return (TST)TypeSpecType; }
bool isTypeAltiVecVector() const { return TypeAltiVecVector; }
bool isTypeAltiVecPixel() const { return TypeAltiVecPixel; }
bool isTypeAltiVecBool() const { return TypeAltiVecBool; }
bool isTypeSpecOwned() const { return TypeSpecOwned; }
ParsedType getRepAsType() const {
assert(isTypeRep((TST) TypeSpecType) && "DeclSpec does not store a type");
return TypeRep;
}
Decl *getRepAsDecl() const {
assert(isDeclRep((TST) TypeSpecType) && "DeclSpec does not store a decl");
return DeclRep;
}
Expr *getRepAsExpr() const {
assert(isExprRep((TST) TypeSpecType) && "DeclSpec does not store an expr");
return ExprRep;
}
CXXScopeSpec &getTypeSpecScope() { return TypeScope; }
const CXXScopeSpec &getTypeSpecScope() const { return TypeScope; }
const SourceRange &getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
SourceLocation getTypeSpecWidthLoc() const { return TSWLoc; }
SourceLocation getTypeSpecComplexLoc() const { return TSCLoc; }
SourceLocation getTypeSpecSignLoc() const { return TSSLoc; }
SourceLocation getTypeSpecTypeLoc() const { return TSTLoc; }
SourceLocation getAltiVecLoc() const { return AltiVecLoc; }
SourceLocation getTypeSpecTypeNameLoc() const {
assert(isDeclRep((TST) TypeSpecType) || TypeSpecType == TST_typename);
return TSTNameLoc;
}
SourceRange getTypeofParensRange() const { return TypeofParensRange; }
void setTypeofParensRange(SourceRange range) { TypeofParensRange = range; }
/// \brief Turn a type-specifier-type into a string like "_Bool" or "union".
static const char *getSpecifierName(DeclSpec::TST T);
static const char *getSpecifierName(DeclSpec::TQ Q);
static const char *getSpecifierName(DeclSpec::TSS S);
static const char *getSpecifierName(DeclSpec::TSC C);
static const char *getSpecifierName(DeclSpec::TSW W);
static const char *getSpecifierName(DeclSpec::SCS S);
// type-qualifiers
/// getTypeQualifiers - Return a set of TQs.
unsigned getTypeQualifiers() const { return TypeQualifiers; }
SourceLocation getConstSpecLoc() const { return TQ_constLoc; }
SourceLocation getRestrictSpecLoc() const { return TQ_restrictLoc; }
SourceLocation getVolatileSpecLoc() const { return TQ_volatileLoc; }
/// \brief Clear out all of the type qualifiers.
void ClearTypeQualifiers() {
TypeQualifiers = 0;
TQ_constLoc = SourceLocation();
TQ_restrictLoc = SourceLocation();
TQ_volatileLoc = SourceLocation();
}
// function-specifier
bool isInlineSpecified() const { return FS_inline_specified; }
SourceLocation getInlineSpecLoc() const { return FS_inlineLoc; }
bool isVirtualSpecified() const { return FS_virtual_specified; }
SourceLocation getVirtualSpecLoc() const { return FS_virtualLoc; }
bool isExplicitSpecified() const { return FS_explicit_specified; }
SourceLocation getExplicitSpecLoc() const { return FS_explicitLoc; }
void ClearFunctionSpecs() {
FS_inline_specified = false;
FS_inlineLoc = SourceLocation();
FS_virtual_specified = false;
FS_virtualLoc = SourceLocation();
FS_explicit_specified = false;
FS_explicitLoc = SourceLocation();
}
/// \brief Return true if any type-specifier has been found.
bool hasTypeSpecifier() const {
return getTypeSpecType() != DeclSpec::TST_unspecified ||
getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
getTypeSpecComplex() != DeclSpec::TSC_unspecified ||
getTypeSpecSign() != DeclSpec::TSS_unspecified;
}
/// \brief Return a bitmask of which flavors of specifiers this
/// DeclSpec includes.
unsigned getParsedSpecifiers() const;
SCS getStorageClassSpecAsWritten() const {
return (SCS)StorageClassSpecAsWritten;
}
/// isEmpty - Return true if this declaration specifier is completely empty:
/// no tokens were parsed in the production of it.
bool isEmpty() const {
return getParsedSpecifiers() == DeclSpec::PQ_None;
}
void SetRangeStart(SourceLocation Loc) { Range.setBegin(Loc); }
void SetRangeEnd(SourceLocation Loc) { Range.setEnd(Loc); }
/// These methods set the specified attribute of the DeclSpec and
/// return false if there was no error. If an error occurs (for
/// example, if we tried to set "auto" on a spec with "extern"
/// already set), they return true and set PrevSpec and DiagID
/// such that
/// Diag(Loc, DiagID) << PrevSpec;
/// will yield a useful result.
///
/// TODO: use a more general approach that still allows these
/// diagnostics to be ignored when desired.
bool SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID);
bool SetStorageClassSpecThread(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetTypeSpecWidth(TSW W, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetTypeSpecComplex(TSC C, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetTypeSpecSign(TSS S, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, ParsedType Rep);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, Decl *Rep, bool Owned);
bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
SourceLocation TagNameLoc, const char *&PrevSpec,
unsigned &DiagID, ParsedType Rep);
bool SetTypeSpecType(TST T, SourceLocation TagKwLoc,
SourceLocation TagNameLoc, const char *&PrevSpec,
unsigned &DiagID, Decl *Rep, bool Owned);
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, Expr *Rep);
bool SetTypeAltiVecVector(bool isAltiVecVector, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID);
bool SetTypeAltiVecPixel(bool isAltiVecPixel, SourceLocation Loc,
const char *&PrevSpec, unsigned &DiagID);
bool SetTypeSpecError();
void UpdateDeclRep(Decl *Rep) {
assert(isDeclRep((TST) TypeSpecType));
DeclRep = Rep;
}
void UpdateTypeRep(ParsedType Rep) {
assert(isTypeRep((TST) TypeSpecType));
TypeRep = Rep;
}
void UpdateExprRep(Expr *Rep) {
assert(isExprRep((TST) TypeSpecType));
ExprRep = Rep;
}
bool SetTypeQual(TQ T, SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID, const LangOptions &Lang,
bool IsTypeSpec);
bool SetFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetFunctionSpecVirtual(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetFunctionSpecExplicit(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetFriendSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool setModulePrivateSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool SetConstexprSpec(SourceLocation Loc, const char *&PrevSpec,
unsigned &DiagID);
bool isFriendSpecified() const { return Friend_specified; }
SourceLocation getFriendSpecLoc() const { return FriendLoc; }
bool isModulePrivateSpecified() const { return ModulePrivateLoc.isValid(); }
SourceLocation getModulePrivateSpecLoc() const { return ModulePrivateLoc; }
bool isConstexprSpecified() const { return Constexpr_specified; }
SourceLocation getConstexprSpecLoc() const { return ConstexprLoc; }
void ClearConstexprSpec() {
Constexpr_specified = false;
ConstexprLoc = SourceLocation();
}
AttributePool &getAttributePool() const {
return Attrs.getPool();
}
/// \brief Concatenates two attribute lists.
///
/// The GCC attribute syntax allows for the following:
///
/// \code
/// short __attribute__(( unused, deprecated ))
/// int __attribute__(( may_alias, aligned(16) )) var;
/// \endcode
///
/// This declares 4 attributes using 2 lists. The following syntax is
/// also allowed and equivalent to the previous declaration.
///
/// \code
/// short __attribute__((unused)) __attribute__((deprecated))
/// int __attribute__((may_alias)) __attribute__((aligned(16))) var;
/// \endcode
///
void addAttributes(AttributeList *AL) {
Attrs.addAll(AL);
}
void setAttributes(AttributeList *AL) {
Attrs.set(AL);
}
bool hasAttributes() const { return !Attrs.empty(); }
ParsedAttributes &getAttributes() { return Attrs; }
const ParsedAttributes &getAttributes() const { return Attrs; }
/// \brief Return the current attribute list and remove them from
/// the DeclSpec so that it doesn't own them.
ParsedAttributes takeAttributes() {
// The non-const "copy" constructor clears the operand automatically.
return Attrs;
}
void takeAttributesFrom(ParsedAttributes &attrs) {
Attrs.takeAllFrom(attrs);
}
typedef Decl * const *ProtocolQualifierListTy;
ProtocolQualifierListTy getProtocolQualifiers() const {
return ProtocolQualifiers;
}
SourceLocation *getProtocolLocs() const { return ProtocolLocs; }
unsigned getNumProtocolQualifiers() const {
return NumProtocolQualifiers;
}
SourceLocation getProtocolLAngleLoc() const { return ProtocolLAngleLoc; }
void setProtocolQualifiers(Decl * const *Protos, unsigned NP,
SourceLocation *ProtoLocs,
SourceLocation LAngleLoc);
/// Finish - This does final analysis of the declspec, issuing diagnostics for
/// things like "_Imaginary" (lacking an FP type). After calling this method,
/// DeclSpec is guaranteed self-consistent, even if an error occurred.
void Finish(DiagnosticsEngine &D, Preprocessor &PP);
const WrittenBuiltinSpecs& getWrittenBuiltinSpecs() const {
return writtenBS;
}
ObjCDeclSpec *getObjCQualifiers() const { return ObjCQualifiers; }
void setObjCQualifiers(ObjCDeclSpec *quals) { ObjCQualifiers = quals; }
/// \brief Checks if this DeclSpec can stand alone, without a Declarator.
///
/// Only tag declspecs can stand alone.
bool isMissingDeclaratorOk();
};
/// \brief Captures information about "declaration specifiers" specific to
/// Objective-C.
class ObjCDeclSpec {
public:
/// ObjCDeclQualifier - Qualifier used on types in method
/// declarations. Not all combinations are sensible. Parameters
/// can be one of { in, out, inout } with one of { bycopy, byref }.
/// Returns can either be { oneway } or not.
///
/// This should be kept in sync with Decl::ObjCDeclQualifier.
enum ObjCDeclQualifier {
DQ_None = 0x0,
DQ_In = 0x1,
DQ_Inout = 0x2,
DQ_Out = 0x4,
DQ_Bycopy = 0x8,
DQ_Byref = 0x10,
DQ_Oneway = 0x20
};
/// PropertyAttributeKind - list of property attributes.
enum ObjCPropertyAttributeKind {
DQ_PR_noattr = 0x0,
DQ_PR_readonly = 0x01,
DQ_PR_getter = 0x02,
DQ_PR_assign = 0x04,
DQ_PR_readwrite = 0x08,
DQ_PR_retain = 0x10,
DQ_PR_copy = 0x20,
DQ_PR_nonatomic = 0x40,
DQ_PR_setter = 0x80,
DQ_PR_atomic = 0x100,
DQ_PR_weak = 0x200,
DQ_PR_strong = 0x400,
DQ_PR_unsafe_unretained = 0x800
};
ObjCDeclSpec()
: objcDeclQualifier(DQ_None), PropertyAttributes(DQ_PR_noattr),
GetterName(0), SetterName(0) { }
ObjCDeclQualifier getObjCDeclQualifier() const { return objcDeclQualifier; }
void setObjCDeclQualifier(ObjCDeclQualifier DQVal) {
objcDeclQualifier = (ObjCDeclQualifier) (objcDeclQualifier | DQVal);
}
ObjCPropertyAttributeKind getPropertyAttributes() const {
return ObjCPropertyAttributeKind(PropertyAttributes);
}
void setPropertyAttributes(ObjCPropertyAttributeKind PRVal) {
PropertyAttributes =
(ObjCPropertyAttributeKind)(PropertyAttributes | PRVal);
}
const IdentifierInfo *getGetterName() const { return GetterName; }
IdentifierInfo *getGetterName() { return GetterName; }
void setGetterName(IdentifierInfo *name) { GetterName = name; }
const IdentifierInfo *getSetterName() const { return SetterName; }
IdentifierInfo *getSetterName() { return SetterName; }
void setSetterName(IdentifierInfo *name) { SetterName = name; }
private:
// FIXME: These two are unrelated and mutially exclusive. So perhaps
// we can put them in a union to reflect their mutual exclusiveness
// (space saving is negligible).
ObjCDeclQualifier objcDeclQualifier : 6;
// NOTE: VC++ treats enums as signed, avoid using ObjCPropertyAttributeKind
unsigned PropertyAttributes : 12;
IdentifierInfo *GetterName; // getter name of NULL if no getter
IdentifierInfo *SetterName; // setter name of NULL if no setter
};
/// \brief Represents a C++ unqualified-id that has been parsed.
class UnqualifiedId {
private:
const UnqualifiedId &operator=(const UnqualifiedId &); // DO NOT IMPLEMENT
public:
/// \brief Describes the kind of unqualified-id parsed.
enum IdKind {
/// \brief An identifier.
IK_Identifier,
/// \brief An overloaded operator name, e.g., operator+.
IK_OperatorFunctionId,
/// \brief A conversion function name, e.g., operator int.
IK_ConversionFunctionId,
/// \brief A user-defined literal name, e.g., operator "" _i.
IK_LiteralOperatorId,
/// \brief A constructor name.
IK_ConstructorName,
/// \brief A constructor named via a template-id.
IK_ConstructorTemplateId,
/// \brief A destructor name.
IK_DestructorName,
/// \brief A template-id, e.g., f<int>.
IK_TemplateId,
/// \brief An implicit 'self' parameter
IK_ImplicitSelfParam
} Kind;
/// \brief Anonymous union that holds extra data associated with the
/// parsed unqualified-id.
union {
/// \brief When Kind == IK_Identifier, the parsed identifier, or when Kind
/// == IK_UserLiteralId, the identifier suffix.
IdentifierInfo *Identifier;
/// \brief When Kind == IK_OperatorFunctionId, the overloaded operator
/// that we parsed.
struct {
/// \brief The kind of overloaded operator.
OverloadedOperatorKind Operator;
/// \brief The source locations of the individual tokens that name
/// the operator, e.g., the "new", "[", and "]" tokens in
/// operator new [].
///
/// Different operators have different numbers of tokens in their name,
/// up to three. Any remaining source locations in this array will be
/// set to an invalid value for operators with fewer than three tokens.
unsigned SymbolLocations[3];
} OperatorFunctionId;
/// \brief When Kind == IK_ConversionFunctionId, the type that the
/// conversion function names.
UnionParsedType ConversionFunctionId;
/// \brief When Kind == IK_ConstructorName, the class-name of the type
/// whose constructor is being referenced.
UnionParsedType ConstructorName;
/// \brief When Kind == IK_DestructorName, the type referred to by the
/// class-name.
UnionParsedType DestructorName;
/// \brief When Kind == IK_TemplateId or IK_ConstructorTemplateId,
/// the template-id annotation that contains the template name and
/// template arguments.
TemplateIdAnnotation *TemplateId;
};
/// \brief The location of the first token that describes this unqualified-id,
/// which will be the location of the identifier, "operator" keyword,
/// tilde (for a destructor), or the template name of a template-id.
SourceLocation StartLocation;
/// \brief The location of the last token that describes this unqualified-id.
SourceLocation EndLocation;
UnqualifiedId() : Kind(IK_Identifier), Identifier(0) { }
/// \brief Do not use this copy constructor. It is temporary, and only
/// exists because we are holding FieldDeclarators in a SmallVector when we
/// don't actually need them.
///
/// FIXME: Kill this copy constructor.
UnqualifiedId(const UnqualifiedId &Other)
: Kind(IK_Identifier), Identifier(Other.Identifier),
StartLocation(Other.StartLocation), EndLocation(Other.EndLocation) {
assert(Other.Kind == IK_Identifier && "Cannot copy non-identifiers");
}
/// \brief Clear out this unqualified-id, setting it to default (invalid)
/// state.
void clear() {
Kind = IK_Identifier;
Identifier = 0;
StartLocation = SourceLocation();
EndLocation = SourceLocation();
}
/// \brief Determine whether this unqualified-id refers to a valid name.
bool isValid() const { return StartLocation.isValid(); }
/// \brief Determine whether this unqualified-id refers to an invalid name.
bool isInvalid() const { return !isValid(); }
/// \brief Determine what kind of name we have.
IdKind getKind() const { return Kind; }
void setKind(IdKind kind) { Kind = kind; }
/// \brief Specify that this unqualified-id was parsed as an identifier.
///
/// \param Id the parsed identifier.
/// \param IdLoc the location of the parsed identifier.
void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc) {
Kind = IK_Identifier;
Identifier = const_cast<IdentifierInfo *>(Id);
StartLocation = EndLocation = IdLoc;
}
/// \brief Specify that this unqualified-id was parsed as an
/// operator-function-id.
///
/// \param OperatorLoc the location of the 'operator' keyword.
///
/// \param Op the overloaded operator.
///
/// \param SymbolLocations the locations of the individual operator symbols
/// in the operator.
void setOperatorFunctionId(SourceLocation OperatorLoc,
OverloadedOperatorKind Op,
SourceLocation SymbolLocations[3]);
/// \brief Specify that this unqualified-id was parsed as a
/// conversion-function-id.
///
/// \param OperatorLoc the location of the 'operator' keyword.
///
/// \param Ty the type to which this conversion function is converting.
///
/// \param EndLoc the location of the last token that makes up the type name.
void setConversionFunctionId(SourceLocation OperatorLoc,
ParsedType Ty,
SourceLocation EndLoc) {
Kind = IK_ConversionFunctionId;
StartLocation = OperatorLoc;
EndLocation = EndLoc;
ConversionFunctionId = Ty;
}
/// \brief Specific that this unqualified-id was parsed as a
/// literal-operator-id.
///
/// \param Id the parsed identifier.
///
/// \param OpLoc the location of the 'operator' keyword.
///
/// \param IdLoc the location of the identifier.
void setLiteralOperatorId(const IdentifierInfo *Id, SourceLocation OpLoc,
SourceLocation IdLoc) {
Kind = IK_LiteralOperatorId;
Identifier = const_cast<IdentifierInfo *>(Id);
StartLocation = OpLoc;
EndLocation = IdLoc;
}
/// \brief Specify that this unqualified-id was parsed as a constructor name.
///
/// \param ClassType the class type referred to by the constructor name.
///
/// \param ClassNameLoc the location of the class name.
///
/// \param EndLoc the location of the last token that makes up the type name.
void setConstructorName(ParsedType ClassType,
SourceLocation ClassNameLoc,
SourceLocation EndLoc) {
Kind = IK_ConstructorName;
StartLocation = ClassNameLoc;
EndLocation = EndLoc;
ConstructorName = ClassType;
}
/// \brief Specify that this unqualified-id was parsed as a
/// template-id that names a constructor.
///
/// \param TemplateId the template-id annotation that describes the parsed
/// template-id. This UnqualifiedId instance will take ownership of the
/// \p TemplateId and will free it on destruction.
void setConstructorTemplateId(TemplateIdAnnotation *TemplateId);
/// \brief Specify that this unqualified-id was parsed as a destructor name.
///
/// \param TildeLoc the location of the '~' that introduces the destructor
/// name.
///
/// \param ClassType the name of the class referred to by the destructor name.
void setDestructorName(SourceLocation TildeLoc,
ParsedType ClassType,
SourceLocation EndLoc) {
Kind = IK_DestructorName;
StartLocation = TildeLoc;
EndLocation = EndLoc;
DestructorName = ClassType;
}
/// \brief Specify that this unqualified-id was parsed as a template-id.
///
/// \param TemplateId the template-id annotation that describes the parsed
/// template-id. This UnqualifiedId instance will take ownership of the
/// \p TemplateId and will free it on destruction.
void setTemplateId(TemplateIdAnnotation *TemplateId);
/// \brief Return the source range that covers this unqualified-id.
SourceRange getSourceRange() const LLVM_READONLY {
return SourceRange(StartLocation, EndLocation);
}
SourceLocation getLocStart() const LLVM_READONLY { return StartLocation; }
SourceLocation getLocEnd() const LLVM_READONLY { return EndLocation; }
};
/// \brief A set of tokens that has been cached for later parsing.
typedef SmallVector<Token, 4> CachedTokens;
/// \brief One instance of this struct is used for each type in a
/// declarator that is parsed.
///
/// This is intended to be a small value object.
struct DeclaratorChunk {
enum {
Pointer, Reference, Array, Function, BlockPointer, MemberPointer, Paren
} Kind;
/// Loc - The place where this type was defined.
SourceLocation Loc;
/// EndLoc - If valid, the place where this chunck ends.
SourceLocation EndLoc;
struct TypeInfoCommon {
AttributeList *AttrList;
};
struct PointerTypeInfo : TypeInfoCommon {
/// The type qualifiers: const/volatile/restrict.
unsigned TypeQuals : 3;
/// The location of the const-qualifier, if any.
unsigned ConstQualLoc;
/// The location of the volatile-qualifier, if any.
unsigned VolatileQualLoc;
/// The location of the restrict-qualifier, if any.
unsigned RestrictQualLoc;
void destroy() {
}
};
struct ReferenceTypeInfo : TypeInfoCommon {
/// The type qualifier: restrict. [GNU] C++ extension
bool HasRestrict : 1;
/// True if this is an lvalue reference, false if it's an rvalue reference.
bool LValueRef : 1;
void destroy() {
}
};
struct ArrayTypeInfo : TypeInfoCommon {
/// The type qualifiers for the array: const/volatile/restrict.
unsigned TypeQuals : 3;
/// True if this dimension included the 'static' keyword.
bool hasStatic : 1;
/// True if this dimension was [*]. In this case, NumElts is null.
bool isStar : 1;
/// This is the size of the array, or null if [] or [*] was specified.
/// Since the parser is multi-purpose, and we don't want to impose a root
/// expression class on all clients, NumElts is untyped.
Expr *NumElts;
void destroy() {}
};
/// ParamInfo - An array of paraminfo objects is allocated whenever a function
/// declarator is parsed. There are two interesting styles of arguments here:
/// K&R-style identifier lists and parameter type lists. K&R-style identifier
/// lists will have information about the identifier, but no type information.
/// Parameter type lists will have type info (if the actions module provides
/// it), but may have null identifier info: e.g. for 'void foo(int X, int)'.
struct ParamInfo {
IdentifierInfo *Ident;
SourceLocation IdentLoc;
Decl *Param;
/// DefaultArgTokens - When the parameter's default argument
/// cannot be parsed immediately (because it occurs within the
/// declaration of a member function), it will be stored here as a
/// sequence of tokens to be parsed once the class definition is
/// complete. Non-NULL indicates that there is a default argument.
CachedTokens *DefaultArgTokens;
ParamInfo() {}
ParamInfo(IdentifierInfo *ident, SourceLocation iloc,
Decl *param,
CachedTokens *DefArgTokens = 0)
: Ident(ident), IdentLoc(iloc), Param(param),
DefaultArgTokens(DefArgTokens) {}
};
struct TypeAndRange {
ParsedType Ty;
SourceRange Range;
};
struct FunctionTypeInfo : TypeInfoCommon {
/// hasPrototype - This is true if the function had at least one typed
/// argument. If the function is () or (a,b,c), then it has no prototype,
/// and is treated as a K&R-style function.
unsigned hasPrototype : 1;
/// isVariadic - If this function has a prototype, and if that
/// proto ends with ',...)', this is true. When true, EllipsisLoc
/// contains the location of the ellipsis.
unsigned isVariadic : 1;
/// Can this declaration be a constructor-style initializer?
unsigned isAmbiguous : 1;
/// \brief Whether the ref-qualifier (if any) is an lvalue reference.
/// Otherwise, it's an rvalue reference.
unsigned RefQualifierIsLValueRef : 1;
/// The type qualifiers: const/volatile/restrict.
/// The qualifier bitmask values are the same as in QualType.
unsigned TypeQuals : 3;
/// ExceptionSpecType - An ExceptionSpecificationType value.
unsigned ExceptionSpecType : 3;
/// DeleteArgInfo - If this is true, we need to delete[] ArgInfo.
unsigned DeleteArgInfo : 1;
/// HasTrailingReturnType - If this is true, a trailing return type was
/// specified.
unsigned HasTrailingReturnType : 1;
/// When isVariadic is true, the location of the ellipsis in the source.
unsigned EllipsisLoc;
/// NumArgs - This is the number of formal arguments provided for the
/// declarator.
unsigned NumArgs;
/// NumExceptions - This is the number of types in the dynamic-exception-
/// decl, if the function has one.
unsigned NumExceptions;
/// \brief The location of the ref-qualifier, if any.
///
/// If this is an invalid location, there is no ref-qualifier.
unsigned RefQualifierLoc;
/// \brief The location of the const-qualifier, if any.
///
/// If this is an invalid location, there is no const-qualifier.
unsigned ConstQualifierLoc;
/// \brief The location of the volatile-qualifier, if any.
///
/// If this is an invalid location, there is no volatile-qualifier.
unsigned VolatileQualifierLoc;
/// \brief The location of the 'mutable' qualifer in a lambda-declarator, if
/// any.
unsigned MutableLoc;
/// \brief The location of the keyword introducing the spec, if any.
unsigned ExceptionSpecLoc;
/// ArgInfo - This is a pointer to a new[]'d array of ParamInfo objects that
/// describe the arguments for this function declarator. This is null if
/// there are no arguments specified.
ParamInfo *ArgInfo;
union {
/// \brief Pointer to a new[]'d array of TypeAndRange objects that
/// contain the types in the function's dynamic exception specification
/// and their locations, if there is one.
TypeAndRange *Exceptions;
/// \brief Pointer to the expression in the noexcept-specifier of this
/// function, if it has one.
Expr *NoexceptExpr;
};
/// \brief If HasTrailingReturnType is true, this is the trailing return
/// type specified.
UnionParsedType TrailingReturnType;
/// \brief Reset the argument list to having zero arguments.
///
/// This is used in various places for error recovery.
void freeArgs() {
if (DeleteArgInfo) {
delete[] ArgInfo;
DeleteArgInfo = false;
}
NumArgs = 0;
}
void destroy() {
if (DeleteArgInfo)
delete[] ArgInfo;
if (getExceptionSpecType() == EST_Dynamic)
delete[] Exceptions;
}
/// isKNRPrototype - Return true if this is a K&R style identifier list,
/// like "void foo(a,b,c)". In a function definition, this will be followed
/// by the argument type definitions.
bool isKNRPrototype() const {
return !hasPrototype && NumArgs != 0;
}
SourceLocation getEllipsisLoc() const {
return SourceLocation::getFromRawEncoding(EllipsisLoc);
}
SourceLocation getExceptionSpecLoc() const {
return SourceLocation::getFromRawEncoding(ExceptionSpecLoc);
}
/// \brief Retrieve the location of the ref-qualifier, if any.
SourceLocation getRefQualifierLoc() const {
return SourceLocation::getFromRawEncoding(RefQualifierLoc);
}
/// \brief Retrieve the location of the ref-qualifier, if any.
SourceLocation getConstQualifierLoc() const {
return SourceLocation::getFromRawEncoding(ConstQualifierLoc);
}
/// \brief Retrieve the location of the ref-qualifier, if any.
SourceLocation getVolatileQualifierLoc() const {
return SourceLocation::getFromRawEncoding(VolatileQualifierLoc);
}
/// \brief Retrieve the location of the 'mutable' qualifier, if any.
SourceLocation getMutableLoc() const {
return SourceLocation::getFromRawEncoding(MutableLoc);
}
/// \brief Determine whether this function declaration contains a
/// ref-qualifier.
bool hasRefQualifier() const { return getRefQualifierLoc().isValid(); }
/// \brief Determine whether this lambda-declarator contains a 'mutable'
/// qualifier.
bool hasMutableQualifier() const { return getMutableLoc().isValid(); }
/// \brief Get the type of exception specification this function has.
ExceptionSpecificationType getExceptionSpecType() const {
return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
}
/// \brief Determine whether this function declarator had a
/// trailing-return-type.
bool hasTrailingReturnType() const { return HasTrailingReturnType; }
/// \brief Get the trailing-return-type for this function declarator.
ParsedType getTrailingReturnType() const { return TrailingReturnType; }
};
struct BlockPointerTypeInfo : TypeInfoCommon {
/// For now, sema will catch these as invalid.
/// The type qualifiers: const/volatile/restrict.
unsigned TypeQuals : 3;
void destroy() {
}
};
struct MemberPointerTypeInfo : TypeInfoCommon {
/// The type qualifiers: const/volatile/restrict.
unsigned TypeQuals : 3;
// CXXScopeSpec has a constructor, so it can't be a direct member.
// So we need some pointer-aligned storage and a bit of trickery.
union {
void *Aligner;
char Mem[sizeof(CXXScopeSpec)];
} ScopeMem;
CXXScopeSpec &Scope() {
return *reinterpret_cast<CXXScopeSpec*>(ScopeMem.Mem);
}
const CXXScopeSpec &Scope() const {
return *reinterpret_cast<const CXXScopeSpec*>(ScopeMem.Mem);
}
void destroy() {
Scope().~CXXScopeSpec();
}
};
union {
TypeInfoCommon Common;
PointerTypeInfo Ptr;
ReferenceTypeInfo Ref;
ArrayTypeInfo Arr;
FunctionTypeInfo Fun;
BlockPointerTypeInfo Cls;
MemberPointerTypeInfo Mem;
};
void destroy() {
switch (Kind) {
case DeclaratorChunk::Function: return Fun.destroy();
case DeclaratorChunk::Pointer: return Ptr.destroy();
case DeclaratorChunk::BlockPointer: return Cls.destroy();
case DeclaratorChunk::Reference: return Ref.destroy();
case DeclaratorChunk::Array: return Arr.destroy();
case DeclaratorChunk::MemberPointer: return Mem.destroy();
case DeclaratorChunk::Paren: return;
}
}
/// \brief If there are attributes applied to this declaratorchunk, return
/// them.
const AttributeList *getAttrs() const {
return Common.AttrList;
}
AttributeList *&getAttrListRef() {
return Common.AttrList;
}
/// \brief Return a DeclaratorChunk for a pointer.
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc,
SourceLocation ConstQualLoc,
SourceLocation VolatileQualLoc,
SourceLocation RestrictQualLoc) {
DeclaratorChunk I;
I.Kind = Pointer;
I.Loc = Loc;
I.Ptr.TypeQuals = TypeQuals;
I.Ptr.ConstQualLoc = ConstQualLoc.getRawEncoding();
I.Ptr.VolatileQualLoc = VolatileQualLoc.getRawEncoding();
I.Ptr.RestrictQualLoc = RestrictQualLoc.getRawEncoding();
I.Ptr.AttrList = 0;
return I;
}
/// \brief Return a DeclaratorChunk for a reference.
static DeclaratorChunk getReference(unsigned TypeQuals, SourceLocation Loc,
bool lvalue) {
DeclaratorChunk I;
I.Kind = Reference;
I.Loc = Loc;
I.Ref.HasRestrict = (TypeQuals & DeclSpec::TQ_restrict) != 0;
I.Ref.LValueRef = lvalue;
I.Ref.AttrList = 0;
return I;
}
/// \brief Return a DeclaratorChunk for an array.
static DeclaratorChunk getArray(unsigned TypeQuals,
bool isStatic, bool isStar, Expr *NumElts,
SourceLocation LBLoc, SourceLocation RBLoc) {
DeclaratorChunk I;
I.Kind = Array;
I.Loc = LBLoc;
I.EndLoc = RBLoc;
I.Arr.AttrList = 0;
I.Arr.TypeQuals = TypeQuals;
I.Arr.hasStatic = isStatic;
I.Arr.isStar = isStar;
I.Arr.NumElts = NumElts;
return I;
}
/// DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
/// "TheDeclarator" is the declarator that this will be added to.
static DeclaratorChunk getFunction(bool hasProto, bool isVariadic,
bool isAmbiguous,
SourceLocation EllipsisLoc,
ParamInfo *ArgInfo, unsigned NumArgs,
unsigned TypeQuals,
bool RefQualifierIsLvalueRef,
SourceLocation RefQualifierLoc,
SourceLocation ConstQualifierLoc,
SourceLocation VolatileQualifierLoc,
SourceLocation MutableLoc,
ExceptionSpecificationType ESpecType,
SourceLocation ESpecLoc,
ParsedType *Exceptions,
SourceRange *ExceptionRanges,
unsigned NumExceptions,
Expr *NoexceptExpr,
SourceLocation LocalRangeBegin,
SourceLocation LocalRangeEnd,
Declarator &TheDeclarator,
TypeResult TrailingReturnType =
TypeResult());
/// \brief Return a DeclaratorChunk for a block.
static DeclaratorChunk getBlockPointer(unsigned TypeQuals,
SourceLocation Loc) {
DeclaratorChunk I;
I.Kind = BlockPointer;
I.Loc = Loc;
I.Cls.TypeQuals = TypeQuals;
I.Cls.AttrList = 0;
return I;
}
static DeclaratorChunk getMemberPointer(const CXXScopeSpec &SS,
unsigned TypeQuals,
SourceLocation Loc) {
DeclaratorChunk I;
I.Kind = MemberPointer;
I.Loc = Loc;
I.Mem.TypeQuals = TypeQuals;
I.Mem.AttrList = 0;
new (I.Mem.ScopeMem.Mem) CXXScopeSpec(SS);
return I;
}
/// \brief Return a DeclaratorChunk for a paren.
static DeclaratorChunk getParen(SourceLocation LParenLoc,
SourceLocation RParenLoc) {
DeclaratorChunk I;
I.Kind = Paren;
I.Loc = LParenLoc;
I.EndLoc = RParenLoc;
I.Common.AttrList = 0;
return I;
}
};
/// \brief Described the kind of function definition (if any) provided for
/// a function.
enum FunctionDefinitionKind {
FDK_Declaration,
FDK_Definition,
FDK_Defaulted,
FDK_Deleted
};
/// \brief Information about one declarator, including the parsed type
/// information and the identifier.
///
/// When the declarator is fully formed, this is turned into the appropriate
/// Decl object.
///
/// Declarators come in two types: normal declarators and abstract declarators.
/// Abstract declarators are used when parsing types, and don't have an
/// identifier. Normal declarators do have ID's.
///
/// Instances of this class should be a transient object that lives on the
/// stack, not objects that are allocated in large quantities on the heap.
class Declarator {
public:
enum TheContext {
FileContext, // File scope declaration.
PrototypeContext, // Within a function prototype.
ObjCResultContext, // An ObjC method result type.
ObjCParameterContext,// An ObjC method parameter type.
KNRTypeListContext, // K&R type definition list for formals.
TypeNameContext, // Abstract declarator for types.
MemberContext, // Struct/Union field.
BlockContext, // Declaration within a block in a function.
ForContext, // Declaration within first part of a for loop.
ConditionContext, // Condition declaration in a C++ if/switch/while/for.
TemplateParamContext,// Within a template parameter list.
CXXNewContext, // C++ new-expression.
CXXCatchContext, // C++ catch exception-declaration
ObjCCatchContext, // Objective-C catch exception-declaration
BlockLiteralContext, // Block literal declarator.
LambdaExprContext, // Lambda-expression declarator.
TrailingReturnContext, // C++11 trailing-type-specifier.
TemplateTypeArgContext, // Template type argument.
AliasDeclContext, // C++11 alias-declaration.
AliasTemplateContext // C++11 alias-declaration template.
};
private:
const DeclSpec &DS;
CXXScopeSpec SS;
UnqualifiedId Name;
SourceRange Range;
/// \brief Where we are parsing this declarator.
TheContext Context;
/// DeclTypeInfo - This holds each type that the declarator includes as it is
/// parsed. This is pushed from the identifier out, which means that element
/// #0 will be the most closely bound to the identifier, and
/// DeclTypeInfo.back() will be the least closely bound.
SmallVector<DeclaratorChunk, 8> DeclTypeInfo;
/// InvalidType - Set by Sema::GetTypeForDeclarator().
bool InvalidType : 1;
/// GroupingParens - Set by Parser::ParseParenDeclarator().
bool GroupingParens : 1;
/// FunctionDefinition - Is this Declarator for a function or member
/// definition and, if so, what kind?
///
/// Actually a FunctionDefinitionKind.
unsigned FunctionDefinition : 2;
/// \brief Is this Declarator a redeclaration?
bool Redeclaration : 1;
/// Attrs - Attributes.
ParsedAttributes Attrs;
/// \brief The asm label, if specified.
Expr *AsmLabel;
/// InlineParams - This is a local array used for the first function decl
/// chunk to avoid going to the heap for the common case when we have one
/// function chunk in the declarator.
DeclaratorChunk::ParamInfo InlineParams[16];
bool InlineParamsUsed;
/// \brief true if the declaration is preceded by \c __extension__.
bool Extension : 1;
/// \brief If this is the second or subsequent declarator in this declaration,
/// the location of the comma before this declarator.
SourceLocation CommaLoc;
/// \brief If provided, the source location of the ellipsis used to describe
/// this declarator as a parameter pack.
SourceLocation EllipsisLoc;
friend struct DeclaratorChunk;
public:
Declarator(const DeclSpec &ds, TheContext C)
: DS(ds), Range(ds.getSourceRange()), Context(C),
InvalidType(DS.getTypeSpecType() == DeclSpec::TST_error),
GroupingParens(false), FunctionDefinition(FDK_Declaration),
Redeclaration(false),
Attrs(ds.getAttributePool().getFactory()), AsmLabel(0),
InlineParamsUsed(false), Extension(false) {
}
~Declarator() {
clear();
}
/// getDeclSpec - Return the declaration-specifier that this declarator was
/// declared with.
const DeclSpec &getDeclSpec() const { return DS; }
/// getMutableDeclSpec - Return a non-const version of the DeclSpec. This
/// should be used with extreme care: declspecs can often be shared between
/// multiple declarators, so mutating the DeclSpec affects all of the
/// Declarators. This should only be done when the declspec is known to not
/// be shared or when in error recovery etc.
DeclSpec &getMutableDeclSpec() { return const_cast<DeclSpec &>(DS); }
AttributePool &getAttributePool() const {
return Attrs.getPool();
}
/// getCXXScopeSpec - Return the C++ scope specifier (global scope or
/// nested-name-specifier) that is part of the declarator-id.
const CXXScopeSpec &getCXXScopeSpec() const { return SS; }
CXXScopeSpec &getCXXScopeSpec() { return SS; }
/// \brief Retrieve the name specified by this declarator.
UnqualifiedId &getName() { return Name; }
TheContext getContext() const { return Context; }
bool isPrototypeContext() const {
return (Context == PrototypeContext ||
Context == ObjCParameterContext ||
Context == ObjCResultContext);
}
/// \brief Get the source range that spans this declarator.
const SourceRange &getSourceRange() const LLVM_READONLY { return Range; }
SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
void SetSourceRange(SourceRange R) { Range = R; }
/// SetRangeBegin - Set the start of the source range to Loc, unless it's
/// invalid.
void SetRangeBegin(SourceLocation Loc) {
if (!Loc.isInvalid())
Range.setBegin(Loc);
}
/// SetRangeEnd - Set the end of the source range to Loc, unless it's invalid.
void SetRangeEnd(SourceLocation Loc) {
if (!Loc.isInvalid())
Range.setEnd(Loc);
}
/// ExtendWithDeclSpec - Extend the declarator source range to include the
/// given declspec, unless its location is invalid. Adopts the range start if
/// the current range start is invalid.
void ExtendWithDeclSpec(const DeclSpec &DS) {
const SourceRange &SR = DS.getSourceRange();
if (Range.getBegin().isInvalid())
Range.setBegin(SR.getBegin());
if (!SR.getEnd().isInvalid())
Range.setEnd(SR.getEnd());
}
/// \brief Reset the contents of this Declarator.
void clear() {
SS.clear();
Name.clear();
Range = DS.getSourceRange();
for (unsigned i = 0, e = DeclTypeInfo.size(); i != e; ++i)
DeclTypeInfo[i].destroy();
DeclTypeInfo.clear();
Attrs.clear();
AsmLabel = 0;
InlineParamsUsed = false;
CommaLoc = SourceLocation();
EllipsisLoc = SourceLocation();
}
/// mayOmitIdentifier - Return true if the identifier is either optional or
/// not allowed. This is true for typenames, prototypes, and template
/// parameter lists.
bool mayOmitIdentifier() const {
switch (Context) {
case FileContext:
case KNRTypeListContext:
case MemberContext:
case BlockContext:
case ForContext:
case ConditionContext:
return false;
case TypeNameContext:
case AliasDeclContext:
case AliasTemplateContext:
case PrototypeContext:
case ObjCParameterContext:
case ObjCResultContext:
case TemplateParamContext:
case CXXNewContext:
case CXXCatchContext:
case ObjCCatchContext:
case BlockLiteralContext:
case LambdaExprContext:
case TemplateTypeArgContext:
case TrailingReturnContext:
return true;
}
llvm_unreachable("unknown context kind!");
}
/// mayHaveIdentifier - Return true if the identifier is either optional or
/// required. This is true for normal declarators and prototypes, but not
/// typenames.
bool mayHaveIdentifier() const {
switch (Context) {
case FileContext:
case KNRTypeListContext:
case MemberContext:
case BlockContext:
case ForContext:
case ConditionContext:
case PrototypeContext:
case TemplateParamContext:
case CXXCatchContext:
case ObjCCatchContext:
return true;
case TypeNameContext:
case CXXNewContext:
case AliasDeclContext:
case AliasTemplateContext:
case ObjCParameterContext:
case ObjCResultContext:
case BlockLiteralContext:
case LambdaExprContext:
case TemplateTypeArgContext:
case TrailingReturnContext:
return false;
}
llvm_unreachable("unknown context kind!");
}
/// mayBeFollowedByCXXDirectInit - Return true if the declarator can be
/// followed by a C++ direct initializer, e.g. "int x(1);".
bool mayBeFollowedByCXXDirectInit() const {
if (hasGroupingParens()) return false;
if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
return false;
if (getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern &&
Context != FileContext)
return false;
// Special names can't have direct initializers.
if (Name.getKind() != UnqualifiedId::IK_Identifier)
return false;
switch (Context) {
case FileContext:
case BlockContext:
case ForContext:
return true;
case ConditionContext:
// This may not be followed by a direct initializer, but it can't be a
// function declaration either, and we'd prefer to perform a tentative
// parse in order to produce the right diagnostic.
return true;
case KNRTypeListContext:
case MemberContext:
case PrototypeContext:
case ObjCParameterContext:
case ObjCResultContext:
case TemplateParamContext:
case CXXCatchContext:
case ObjCCatchContext:
case TypeNameContext:
case CXXNewContext:
case AliasDeclContext:
case AliasTemplateContext:
case BlockLiteralContext:
case LambdaExprContext:
case TemplateTypeArgContext:
case TrailingReturnContext:
return false;
}
llvm_unreachable("unknown context kind!");
}
/// isPastIdentifier - Return true if we have parsed beyond the point where
/// the
bool isPastIdentifier() const { return Name.isValid(); }
/// hasName - Whether this declarator has a name, which might be an
/// identifier (accessible via getIdentifier()) or some kind of
/// special C++ name (constructor, destructor, etc.).
bool hasName() const {
return Name.getKind() != UnqualifiedId::IK_Identifier || Name.Identifier;
}
IdentifierInfo *getIdentifier() const {
if (Name.getKind() == UnqualifiedId::IK_Identifier)
return Name.Identifier;
return 0;
}
SourceLocation getIdentifierLoc() const { return Name.StartLocation; }
/// \brief Set the name of this declarator to be the given identifier.
void SetIdentifier(IdentifierInfo *Id, SourceLocation IdLoc) {
Name.setIdentifier(Id, IdLoc);
}
/// AddTypeInfo - Add a chunk to this declarator. Also extend the range to
/// EndLoc, which should be the last token of the chunk.
void AddTypeInfo(const DeclaratorChunk &TI,
ParsedAttributes &attrs,
SourceLocation EndLoc) {
DeclTypeInfo.push_back(TI);
DeclTypeInfo.back().getAttrListRef() = attrs.getList();
getAttributePool().takeAllFrom(attrs.getPool());
if (!EndLoc.isInvalid())
SetRangeEnd(EndLoc);
}
/// \brief Add a new innermost chunk to this declarator.
void AddInnermostTypeInfo(const DeclaratorChunk &TI) {
DeclTypeInfo.insert(DeclTypeInfo.begin(), TI);
}
/// \brief Return the number of types applied to this declarator.
unsigned getNumTypeObjects() const { return DeclTypeInfo.size(); }
/// Return the specified TypeInfo from this declarator. TypeInfo #0 is
/// closest to the identifier.
const DeclaratorChunk &getTypeObject(unsigned i) const {
assert(i < DeclTypeInfo.size() && "Invalid type chunk");
return DeclTypeInfo[i];
}
DeclaratorChunk &getTypeObject(unsigned i) {
assert(i < DeclTypeInfo.size() && "Invalid type chunk");
return DeclTypeInfo[i];
}
void DropFirstTypeObject()
{
assert(!DeclTypeInfo.empty() && "No type chunks to drop.");
DeclTypeInfo.front().destroy();
DeclTypeInfo.erase(DeclTypeInfo.begin());
}
/// isArrayOfUnknownBound - This method returns true if the declarator
/// is a declarator for an array of unknown bound (looking through
/// parentheses).
bool isArrayOfUnknownBound() const {
for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
switch (DeclTypeInfo[i].Kind) {
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Function:
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
return false;
case DeclaratorChunk::Array:
return !DeclTypeInfo[i].Arr.NumElts;
}
llvm_unreachable("Invalid type chunk");
}
return false;
}
/// isFunctionDeclarator - This method returns true if the declarator
/// is a function declarator (looking through parentheses).
/// If true is returned, then the reference type parameter idx is
/// assigned with the index of the declaration chunk.
bool isFunctionDeclarator(unsigned& idx) const {
for (unsigned i = 0, i_end = DeclTypeInfo.size(); i < i_end; ++i) {
switch (DeclTypeInfo[i].Kind) {
case DeclaratorChunk::Function:
idx = i;
return true;
case DeclaratorChunk::Paren:
continue;
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Array:
case DeclaratorChunk::BlockPointer:
case DeclaratorChunk::MemberPointer:
return false;
}
llvm_unreachable("Invalid type chunk");
}
return false;
}
/// isFunctionDeclarator - Once this declarator is fully parsed and formed,
/// this method returns true if the identifier is a function declarator
/// (looking through parentheses).
bool isFunctionDeclarator() const {
unsigned index;
return isFunctionDeclarator(index);
}
/// getFunctionTypeInfo - Retrieves the function type info object
/// (looking through parentheses).
DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() {
assert(isFunctionDeclarator() && "Not a function declarator!");
unsigned index = 0;
isFunctionDeclarator(index);
return DeclTypeInfo[index].Fun;
}
/// getFunctionTypeInfo - Retrieves the function type info object
/// (looking through parentheses).
const DeclaratorChunk::FunctionTypeInfo &getFunctionTypeInfo() const {
return const_cast<Declarator*>(this)->getFunctionTypeInfo();
}
/// \brief Determine whether the declaration that will be produced from
/// this declaration will be a function.
///
/// A declaration can declare a function even if the declarator itself
/// isn't a function declarator, if the type specifier refers to a function
/// type. This routine checks for both cases.
bool isDeclarationOfFunction() const;
/// takeAttributes - Takes attributes from the given parsed-attributes
/// set and add them to this declarator.
///
/// These examples both add 3 attributes to "var":
/// short int var __attribute__((aligned(16),common,deprecated));
/// short int x, __attribute__((aligned(16)) var
/// __attribute__((common,deprecated));
///
/// Also extends the range of the declarator.
void takeAttributes(ParsedAttributes &attrs, SourceLocation lastLoc) {
Attrs.takeAllFrom(attrs);
if (!lastLoc.isInvalid())
SetRangeEnd(lastLoc);
}
const AttributeList *getAttributes() const { return Attrs.getList(); }
AttributeList *getAttributes() { return Attrs.getList(); }
AttributeList *&getAttrListRef() { return Attrs.getListRef(); }
/// hasAttributes - do we contain any attributes?
bool hasAttributes() const {
if (getAttributes() || getDeclSpec().hasAttributes()) return true;
for (unsigned i = 0, e = getNumTypeObjects(); i != e; ++i)
if (getTypeObject(i).getAttrs())
return true;
return false;
}
void setAsmLabel(Expr *E) { AsmLabel = E; }
Expr *getAsmLabel() const { return AsmLabel; }
void setExtension(bool Val = true) { Extension = Val; }
bool getExtension() const { return Extension; }
void setInvalidType(bool Val = true) { InvalidType = Val; }
bool isInvalidType() const {
return InvalidType || DS.getTypeSpecType() == DeclSpec::TST_error;
}
void setGroupingParens(bool flag) { GroupingParens = flag; }
bool hasGroupingParens() const { return GroupingParens; }
bool isFirstDeclarator() const { return !CommaLoc.isValid(); }
SourceLocation getCommaLoc() const { return CommaLoc; }
void setCommaLoc(SourceLocation CL) { CommaLoc = CL; }
bool hasEllipsis() const { return EllipsisLoc.isValid(); }
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
void setEllipsisLoc(SourceLocation EL) { EllipsisLoc = EL; }
void setFunctionDefinitionKind(FunctionDefinitionKind Val) {
FunctionDefinition = Val;
}
bool isFunctionDefinition() const {
return getFunctionDefinitionKind() != FDK_Declaration;
}
FunctionDefinitionKind getFunctionDefinitionKind() const {
return (FunctionDefinitionKind)FunctionDefinition;
}
void setRedeclaration(bool Val) { Redeclaration = Val; }
bool isRedeclaration() const { return Redeclaration; }
};
/// \brief This little struct is used to capture information about
/// structure field declarators, which is basically just a bitfield size.
struct FieldDeclarator {
Declarator D;
Expr *BitfieldSize;
explicit FieldDeclarator(const DeclSpec &DS)
: D(DS, Declarator::MemberContext), BitfieldSize(0) { }
};
/// \brief Represents a C++11 virt-specifier-seq.
class VirtSpecifiers {
public:
enum Specifier {
VS_None = 0,
VS_Override = 1,
VS_Final = 2
};
VirtSpecifiers() : Specifiers(0) { }
bool SetSpecifier(Specifier VS, SourceLocation Loc,
const char *&PrevSpec);
bool isOverrideSpecified() const { return Specifiers & VS_Override; }
SourceLocation getOverrideLoc() const { return VS_overrideLoc; }
bool isFinalSpecified() const { return Specifiers & VS_Final; }
SourceLocation getFinalLoc() const { return VS_finalLoc; }
void clear() { Specifiers = 0; }
static const char *getSpecifierName(Specifier VS);
SourceLocation getLastLocation() const { return LastLocation; }
private:
unsigned Specifiers;
SourceLocation VS_overrideLoc, VS_finalLoc;
SourceLocation LastLocation;
};
/// \brief An individual capture in a lambda introducer.
struct LambdaCapture {
LambdaCaptureKind Kind;
SourceLocation Loc;
IdentifierInfo* Id;
SourceLocation EllipsisLoc;
LambdaCapture(LambdaCaptureKind Kind, SourceLocation Loc,
IdentifierInfo* Id = 0,
SourceLocation EllipsisLoc = SourceLocation())
: Kind(Kind), Loc(Loc), Id(Id), EllipsisLoc(EllipsisLoc)
{}
};
/// \brief Represents a complete lambda introducer.
struct LambdaIntroducer {
SourceRange Range;
SourceLocation DefaultLoc;
LambdaCaptureDefault Default;
llvm::SmallVector<LambdaCapture, 4> Captures;
LambdaIntroducer()
: Default(LCD_None) {}
/// \brief Append a capture in a lambda introducer.
void addCapture(LambdaCaptureKind Kind,
SourceLocation Loc,
IdentifierInfo* Id = 0,
SourceLocation EllipsisLoc = SourceLocation()) {
Captures.push_back(LambdaCapture(Kind, Loc, Id, EllipsisLoc));
}
};
} // end namespace clang
#endif