blob: 27ac3818675b4ffabf60a21b2e7c53a0a75f80e8 [file] [log] [blame]
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Implements semantic analysis for C++ expressions.
///
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "TypeLocBuilder.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
using namespace sema;
ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
IdentifierInfo &II,
SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
ParsedType ObjectTypePtr,
bool EnteringContext) {
// Determine where to perform name lookup.
// FIXME: This area of the standard is very messy, and the current
// wording is rather unclear about which scopes we search for the
// destructor name; see core issues 399 and 555. Issue 399 in
// particular shows where the current description of destructor name
// lookup is completely out of line with existing practice, e.g.,
// this appears to be ill-formed:
//
// namespace N {
// template <typename T> struct S {
// ~S();
// };
// }
//
// void f(N::S<int>* s) {
// s->N::S<int>::~S();
// }
//
// See also PR6358 and PR6359.
// For this reason, we're currently only doing the C++03 version of this
// code; the C++0x version has to wait until we get a proper spec.
QualType SearchType;
DeclContext *LookupCtx = 0;
bool isDependent = false;
bool LookInScope = false;
// If we have an object type, it's because we are in a
// pseudo-destructor-expression or a member access expression, and
// we know what type we're looking for.
if (ObjectTypePtr)
SearchType = GetTypeFromParser(ObjectTypePtr);
if (SS.isSet()) {
NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
bool AlreadySearched = false;
bool LookAtPrefix = true;
// C++ [basic.lookup.qual]p6:
// If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
// the type-names are looked up as types in the scope designated by the
// nested-name-specifier. In a qualified-id of the form:
//
// ::[opt] nested-name-specifier ~ class-name
//
// where the nested-name-specifier designates a namespace scope, and in
// a qualified-id of the form:
//
// ::opt nested-name-specifier class-name :: ~ class-name
//
// the class-names are looked up as types in the scope designated by
// the nested-name-specifier.
//
// Here, we check the first case (completely) and determine whether the
// code below is permitted to look at the prefix of the
// nested-name-specifier.
DeclContext *DC = computeDeclContext(SS, EnteringContext);
if (DC && DC->isFileContext()) {
AlreadySearched = true;
LookupCtx = DC;
isDependent = false;
} else if (DC && isa<CXXRecordDecl>(DC))
LookAtPrefix = false;
// The second case from the C++03 rules quoted further above.
NestedNameSpecifier *Prefix = 0;
if (AlreadySearched) {
// Nothing left to do.
} else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
CXXScopeSpec PrefixSS;
PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
isDependent = isDependentScopeSpecifier(PrefixSS);
} else if (ObjectTypePtr) {
LookupCtx = computeDeclContext(SearchType);
isDependent = SearchType->isDependentType();
} else {
LookupCtx = computeDeclContext(SS, EnteringContext);
isDependent = LookupCtx && LookupCtx->isDependentContext();
}
LookInScope = false;
} else if (ObjectTypePtr) {
// C++ [basic.lookup.classref]p3:
// If the unqualified-id is ~type-name, the type-name is looked up
// in the context of the entire postfix-expression. If the type T
// of the object expression is of a class type C, the type-name is
// also looked up in the scope of class C. At least one of the
// lookups shall find a name that refers to (possibly
// cv-qualified) T.
LookupCtx = computeDeclContext(SearchType);
isDependent = SearchType->isDependentType();
assert((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type");
LookInScope = true;
} else {
// Perform lookup into the current scope (only).
LookInScope = true;
}
TypeDecl *NonMatchingTypeDecl = 0;
LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
for (unsigned Step = 0; Step != 2; ++Step) {
// Look for the name first in the computed lookup context (if we
// have one) and, if that fails to find a match, in the scope (if
// we're allowed to look there).
Found.clear();
if (Step == 0 && LookupCtx)
LookupQualifiedName(Found, LookupCtx);
else if (Step == 1 && LookInScope && S)
LookupName(Found, S);
else
continue;
// FIXME: Should we be suppressing ambiguities here?
if (Found.isAmbiguous())
return ParsedType();
if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
QualType T = Context.getTypeDeclType(Type);
if (SearchType.isNull() || SearchType->isDependentType() ||
Context.hasSameUnqualifiedType(T, SearchType)) {
// We found our type!
return ParsedType::make(T);
}
if (!SearchType.isNull())
NonMatchingTypeDecl = Type;
}
// If the name that we found is a class template name, and it is
// the same name as the template name in the last part of the
// nested-name-specifier (if present) or the object type, then
// this is the destructor for that class.
// FIXME: This is a workaround until we get real drafting for core
// issue 399, for which there isn't even an obvious direction.
if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
QualType MemberOfType;
if (SS.isSet()) {
if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
// Figure out the type of the context, if it has one.
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
MemberOfType = Context.getTypeDeclType(Record);
}
}
if (MemberOfType.isNull())
MemberOfType = SearchType;
if (MemberOfType.isNull())
continue;
// We're referring into a class template specialization. If the
// class template we found is the same as the template being
// specialized, we found what we are looking for.
if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
Template->getCanonicalDecl())
return ParsedType::make(MemberOfType);
}
continue;
}
// We're referring to an unresolved class template
// specialization. Determine whether we class template we found
// is the same as the template being specialized or, if we don't
// know which template is being specialized, that it at least
// has the same name.
if (const TemplateSpecializationType *SpecType
= MemberOfType->getAs<TemplateSpecializationType>()) {
TemplateName SpecName = SpecType->getTemplateName();
// The class template we found is the same template being
// specialized.
if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
return ParsedType::make(MemberOfType);
continue;
}
// The class template we found has the same name as the
// (dependent) template name being specialized.
if (DependentTemplateName *DepTemplate
= SpecName.getAsDependentTemplateName()) {
if (DepTemplate->isIdentifier() &&
DepTemplate->getIdentifier() == Template->getIdentifier())
return ParsedType::make(MemberOfType);
continue;
}
}
}
}
if (isDependent) {
// We didn't find our type, but that's okay: it's dependent
// anyway.
// FIXME: What if we have no nested-name-specifier?
QualType T = CheckTypenameType(ETK_None, SourceLocation(),
SS.getWithLocInContext(Context),
II, NameLoc);
return ParsedType::make(T);
}
if (NonMatchingTypeDecl) {
QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
<< T << SearchType;
Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
<< T;
} else if (ObjectTypePtr)
Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
<< &II;
else
Diag(NameLoc, diag::err_destructor_class_name);
return ParsedType();
}
ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
return ParsedType();
assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
&& "only get destructor types from declspecs");
QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
QualType SearchType = GetTypeFromParser(ObjectType);
if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
return ParsedType::make(T);
}
Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
<< T << SearchType;
return ParsedType();
}
/// \brief Build a C++ typeid expression with a type operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
// C++ [expr.typeid]p4:
// The top-level cv-qualifiers of the lvalue expression or the type-id
// that is the operand of typeid are always ignored.
// If the type of the type-id is a class type or a reference to a class
// type, the class shall be completely-defined.
Qualifiers Quals;
QualType T
= Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
Quals);
if (T->getAs<RecordType>() &&
RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
return ExprError();
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
Operand,
SourceRange(TypeidLoc, RParenLoc)));
}
/// \brief Build a C++ typeid expression with an expression operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *E,
SourceLocation RParenLoc) {
if (E && !E->isTypeDependent()) {
if (E->getType()->isPlaceholderType()) {
ExprResult result = CheckPlaceholderExpr(E);
if (result.isInvalid()) return ExprError();
E = result.take();
}
QualType T = E->getType();
if (const RecordType *RecordT = T->getAs<RecordType>()) {
CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
// C++ [expr.typeid]p3:
// [...] If the type of the expression is a class type, the class
// shall be completely-defined.
if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
return ExprError();
// C++ [expr.typeid]p3:
// When typeid is applied to an expression other than an glvalue of a
// polymorphic class type [...] [the] expression is an unevaluated
// operand. [...]
if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
// The subexpression is potentially evaluated; switch the context
// and recheck the subexpression.
ExprResult Result = TranformToPotentiallyEvaluated(E);
if (Result.isInvalid()) return ExprError();
E = Result.take();
// We require a vtable to query the type at run time.
MarkVTableUsed(TypeidLoc, RecordD);
}
}
// C++ [expr.typeid]p4:
// [...] If the type of the type-id is a reference to a possibly
// cv-qualified type, the result of the typeid expression refers to a
// std::type_info object representing the cv-unqualified referenced
// type.
Qualifiers Quals;
QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
if (!Context.hasSameType(T, UnqualT)) {
T = UnqualT;
E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
}
}
return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
E,
SourceRange(TypeidLoc, RParenLoc)));
}
/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
ExprResult
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
// Find the std::type_info type.
if (!getStdNamespace())
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
if (!CXXTypeInfoDecl) {
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
LookupQualifiedName(R, getStdNamespace());
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
// Microsoft's typeinfo doesn't have type_info in std but in the global
// namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
LookupQualifiedName(R, Context.getTranslationUnitDecl());
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
}
if (!CXXTypeInfoDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
}
if (!getLangOpts().RTTI) {
return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
}
QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
if (isType) {
// The operand is a type; handle it as such.
TypeSourceInfo *TInfo = 0;
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
&TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
}
// The operand is an expression.
return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}
/// Retrieve the UuidAttr associated with QT.
static UuidAttr *GetUuidAttrOfType(QualType QT) {
// Optionally remove one level of pointer, reference or array indirection.
const Type *Ty = QT.getTypePtr();;
if (QT->isPointerType() || QT->isReferenceType())
Ty = QT->getPointeeType().getTypePtr();
else if (QT->isArrayType())
Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
// Loop all record redeclaration looking for an uuid attribute.
CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
E = RD->redecls_end(); I != E; ++I) {
if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
return Uuid;
}
return 0;
}
/// \brief Build a Microsoft __uuidof expression with a type operand.
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
TypeSourceInfo *Operand,
SourceLocation RParenLoc) {
if (!Operand->getType()->isDependentType()) {
if (!GetUuidAttrOfType(Operand->getType()))
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
}
// FIXME: add __uuidof semantic analysis for type operand.
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
Operand,
SourceRange(TypeidLoc, RParenLoc)));
}
/// \brief Build a Microsoft __uuidof expression with an expression operand.
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
SourceLocation TypeidLoc,
Expr *E,
SourceLocation RParenLoc) {
if (!E->getType()->isDependentType()) {
if (!GetUuidAttrOfType(E->getType()) &&
!E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
}
// FIXME: add __uuidof semantic analysis for type operand.
return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
E,
SourceRange(TypeidLoc, RParenLoc)));
}
/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
ExprResult
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
// If MSVCGuidDecl has not been cached, do the lookup.
if (!MSVCGuidDecl) {
IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
LookupQualifiedName(R, Context.getTranslationUnitDecl());
MSVCGuidDecl = R.getAsSingle<RecordDecl>();
if (!MSVCGuidDecl)
return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
}
QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
if (isType) {
// The operand is a type; handle it as such.
TypeSourceInfo *TInfo = 0;
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
&TInfo);
if (T.isNull())
return ExprError();
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
}
// The operand is an expression.
return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
"Unknown C++ Boolean value!");
return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
Context.BoolTy, OpLoc));
}
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
}
/// ActOnCXXThrow - Parse throw expressions.
ExprResult
Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
bool IsThrownVarInScope = false;
if (Ex) {
// C++0x [class.copymove]p31:
// When certain criteria are met, an implementation is allowed to omit the
// copy/move construction of a class object [...]
//
// - in a throw-expression, when the operand is the name of a
// non-volatile automatic object (other than a function or catch-
// clause parameter) whose scope does not extend beyond the end of the
// innermost enclosing try-block (if there is one), the copy/move
// operation from the operand to the exception object (15.1) can be
// omitted by constructing the automatic object directly into the
// exception object
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
for( ; S; S = S->getParent()) {
if (S->isDeclScope(Var)) {
IsThrownVarInScope = true;
break;
}
if (S->getFlags() &
(Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
Scope::TryScope))
break;
}
}
}
}
return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
}
ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
bool IsThrownVarInScope) {
// Don't report an error if 'throw' is used in system headers.
if (!getLangOpts().CXXExceptions &&
!getSourceManager().isInSystemHeader(OpLoc))
Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
if (Ex && !Ex->isTypeDependent()) {
ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
if (ExRes.isInvalid())
return ExprError();
Ex = ExRes.take();
}
return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
IsThrownVarInScope));
}
/// CheckCXXThrowOperand - Validate the operand of a throw.
ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
bool IsThrownVarInScope) {
// C++ [except.throw]p3:
// A throw-expression initializes a temporary object, called the exception
// object, the type of which is determined by removing any top-level
// cv-qualifiers from the static type of the operand of throw and adjusting
// the type from "array of T" or "function returning T" to "pointer to T"
// or "pointer to function returning T", [...]
if (E->getType().hasQualifiers())
E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
E->getValueKind()).take();
ExprResult Res = DefaultFunctionArrayConversion(E);
if (Res.isInvalid())
return ExprError();
E = Res.take();
// If the type of the exception would be an incomplete type or a pointer
// to an incomplete type other than (cv) void the program is ill-formed.
QualType Ty = E->getType();
bool isPointer = false;
if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
Ty = Ptr->getPointeeType();
isPointer = true;
}
if (!isPointer || !Ty->isVoidType()) {
if (RequireCompleteType(ThrowLoc, Ty,
isPointer? diag::err_throw_incomplete_ptr
: diag::err_throw_incomplete,
E->getSourceRange()))
return ExprError();
if (RequireNonAbstractType(ThrowLoc, E->getType(),
diag::err_throw_abstract_type, E))
return ExprError();
}
// Initialize the exception result. This implicitly weeds out
// abstract types or types with inaccessible copy constructors.
// C++0x [class.copymove]p31:
// When certain criteria are met, an implementation is allowed to omit the
// copy/move construction of a class object [...]
//
// - in a throw-expression, when the operand is the name of a
// non-volatile automatic object (other than a function or catch-clause
// parameter) whose scope does not extend beyond the end of the
// innermost enclosing try-block (if there is one), the copy/move
// operation from the operand to the exception object (15.1) can be
// omitted by constructing the automatic object directly into the
// exception object
const VarDecl *NRVOVariable = 0;
if (IsThrownVarInScope)
NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
InitializedEntity Entity =
InitializedEntity::InitializeException(ThrowLoc, E->getType(),
/*NRVO=*/NRVOVariable != 0);
Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
QualType(), E,
IsThrownVarInScope);
if (Res.isInvalid())
return ExprError();
E = Res.take();
// If the exception has class type, we need additional handling.
const RecordType *RecordTy = Ty->getAs<RecordType>();
if (!RecordTy)
return Owned(E);
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
// If we are throwing a polymorphic class type or pointer thereof,
// exception handling will make use of the vtable.
MarkVTableUsed(ThrowLoc, RD);
// If a pointer is thrown, the referenced object will not be destroyed.
if (isPointer)
return Owned(E);
// If the class has a destructor, we must be able to call it.
if (RD->hasIrrelevantDestructor())
return Owned(E);
CXXDestructorDecl *Destructor = LookupDestructor(RD);
if (!Destructor)
return Owned(E);
MarkFunctionReferenced(E->getExprLoc(), Destructor);
CheckDestructorAccess(E->getExprLoc(), Destructor,
PDiag(diag::err_access_dtor_exception) << Ty);
DiagnoseUseOfDecl(Destructor, E->getExprLoc());
return Owned(E);
}
QualType Sema::getCurrentThisType() {
DeclContext *DC = getFunctionLevelDeclContext();
QualType ThisTy = CXXThisTypeOverride;
if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
if (method && method->isInstance())
ThisTy = method->getThisType(Context);
}
return ThisTy;
}
Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
Decl *ContextDecl,
unsigned CXXThisTypeQuals,
bool Enabled)
: S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
{
if (!Enabled || !ContextDecl)
return;
CXXRecordDecl *Record = 0;
if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
Record = Template->getTemplatedDecl();
else
Record = cast<CXXRecordDecl>(ContextDecl);
S.CXXThisTypeOverride
= S.Context.getPointerType(
S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
this->Enabled = true;
}
Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
if (Enabled) {
S.CXXThisTypeOverride = OldCXXThisTypeOverride;
}
}
void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
// We don't need to capture this in an unevaluated context.
if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
return;
// Otherwise, check that we can capture 'this'.
unsigned NumClosures = 0;
for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
if (CapturingScopeInfo *CSI =
dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
if (CSI->CXXThisCaptureIndex != 0) {
// 'this' is already being captured; there isn't anything more to do.
break;
}
if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
Explicit) {
// This closure can capture 'this'; continue looking upwards.
NumClosures++;
Explicit = false;
continue;
}
// This context can't implicitly capture 'this'; fail out.
Diag(Loc, diag::err_this_capture) << Explicit;
return;
}
break;
}
// Mark that we're implicitly capturing 'this' in all the scopes we skipped.
// FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
// contexts.
for (unsigned idx = FunctionScopes.size() - 1;
NumClosures; --idx, --NumClosures) {
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
Expr *ThisExpr = 0;
QualType ThisTy = getCurrentThisType();
if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
// For lambda expressions, build a field and an initializing expression.
CXXRecordDecl *Lambda = LSI->Lambda;
FieldDecl *Field
= FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
Context.getTrivialTypeSourceInfo(ThisTy, Loc),
0, false, ICIS_NoInit);
Field->setImplicit(true);
Field->setAccess(AS_private);
Lambda->addDecl(Field);
ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
}
bool isNested = NumClosures > 1;
CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
}
}
ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
/// is a non-lvalue expression whose value is the address of the object for
/// which the function is called.
QualType ThisTy = getCurrentThisType();
if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
CheckCXXThisCapture(Loc);
return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
}
bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
// If we're outside the body of a member function, then we'll have a specified
// type for 'this'.
if (CXXThisTypeOverride.isNull())
return false;
// Determine whether we're looking into a class that's currently being
// defined.
CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
return Class && Class->isBeingDefined();
}
ExprResult
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
SourceLocation LParenLoc,
MultiExprArg exprs,
SourceLocation RParenLoc) {
if (!TypeRep)
return ExprError();
TypeSourceInfo *TInfo;
QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
}
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
SourceLocation LParenLoc,
MultiExprArg exprs,
SourceLocation RParenLoc) {
QualType Ty = TInfo->getType();
unsigned NumExprs = exprs.size();
Expr **Exprs = (Expr**)exprs.get();
SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
if (Ty->isDependentType() ||
CallExpr::hasAnyTypeDependentArguments(
llvm::makeArrayRef(Exprs, NumExprs))) {
exprs.release();
return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
LParenLoc,
Exprs, NumExprs,
RParenLoc));
}
bool ListInitialization = LParenLoc.isInvalid();
assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
&& "List initialization must have initializer list as expression.");
SourceRange FullRange = SourceRange(TyBeginLoc,
ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
// C++ [expr.type.conv]p1:
// If the expression list is a single expression, the type conversion
// expression is equivalent (in definedness, and if defined in meaning) to the
// corresponding cast expression.
if (NumExprs == 1 && !ListInitialization) {
Expr *Arg = Exprs[0];
exprs.release();
return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
}
QualType ElemTy = Ty;
if (Ty->isArrayType()) {
if (!ListInitialization)
return ExprError(Diag(TyBeginLoc,
diag::err_value_init_for_array_type) << FullRange);
ElemTy = Context.getBaseElementType(Ty);
}
if (!Ty->isVoidType() &&
RequireCompleteType(TyBeginLoc, ElemTy,
diag::err_invalid_incomplete_type_use, FullRange))
return ExprError();
if (RequireNonAbstractType(TyBeginLoc, Ty,
diag::err_allocation_of_abstract_type))
return ExprError();
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
InitializationKind Kind
= NumExprs ? ListInitialization
? InitializationKind::CreateDirectList(TyBeginLoc)
: InitializationKind::CreateDirect(TyBeginLoc,
LParenLoc, RParenLoc)
: InitializationKind::CreateValue(TyBeginLoc,
LParenLoc, RParenLoc);
InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
if (!Result.isInvalid() && ListInitialization &&
isa<InitListExpr>(Result.get())) {
// If the list-initialization doesn't involve a constructor call, we'll get
// the initializer-list (with corrected type) back, but that's not what we
// want, since it will be treated as an initializer list in further
// processing. Explicitly insert a cast here.
InitListExpr *List = cast<InitListExpr>(Result.take());
Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
Expr::getValueKindForType(TInfo->getType()),
TInfo, TyBeginLoc, CK_NoOp,
List, /*Path=*/0, RParenLoc));
}
// FIXME: Improve AST representation?
return move(Result);
}
/// doesUsualArrayDeleteWantSize - Answers whether the usual
/// operator delete[] for the given type has a size_t parameter.
static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
QualType allocType) {
const RecordType *record =
allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
if (!record) return false;
// Try to find an operator delete[] in class scope.
DeclarationName deleteName =
S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
S.LookupQualifiedName(ops, record->getDecl());
// We're just doing this for information.
ops.suppressDiagnostics();
// Very likely: there's no operator delete[].
if (ops.empty()) return false;
// If it's ambiguous, it should be illegal to call operator delete[]
// on this thing, so it doesn't matter if we allocate extra space or not.
if (ops.isAmbiguous()) return false;
LookupResult::Filter filter = ops.makeFilter();
while (filter.hasNext()) {
NamedDecl *del = filter.next()->getUnderlyingDecl();
// C++0x [basic.stc.dynamic.deallocation]p2:
// A template instance is never a usual deallocation function,
// regardless of its signature.
if (isa<FunctionTemplateDecl>(del)) {
filter.erase();
continue;
}
// C++0x [basic.stc.dynamic.deallocation]p2:
// If class T does not declare [an operator delete[] with one
// parameter] but does declare a member deallocation function
// named operator delete[] with exactly two parameters, the
// second of which has type std::size_t, then this function
// is a usual deallocation function.
if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
filter.erase();
continue;
}
}
filter.done();
if (!ops.isSingleResult()) return false;
const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
return (del->getNumParams() == 2);
}
/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
///
/// E.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
///
/// \param StartLoc The first location of the expression.
/// \param UseGlobal True if 'new' was prefixed with '::'.
/// \param PlacementLParen Opening paren of the placement arguments.
/// \param PlacementArgs Placement new arguments.
/// \param PlacementRParen Closing paren of the placement arguments.
/// \param TypeIdParens If the type is in parens, the source range.
/// \param D The type to be allocated, as well as array dimensions.
/// \param Initializer The initializing expression or initializer-list, or null
/// if there is none.
ExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
SourceLocation PlacementRParen, SourceRange TypeIdParens,
Declarator &D, Expr *Initializer) {
bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
Expr *ArraySize = 0;
// If the specified type is an array, unwrap it and save the expression.
if (D.getNumTypeObjects() > 0 &&
D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
DeclaratorChunk &Chunk = D.getTypeObject(0);
if (TypeContainsAuto)
return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
<< D.getSourceRange());
if (Chunk.Arr.hasStatic)
return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
<< D.getSourceRange());
if (!Chunk.Arr.NumElts)
return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
<< D.getSourceRange());
ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
D.DropFirstTypeObject();
}
// Every dimension shall be of constant size.
if (ArraySize) {
for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
break;
DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
if (Expr *NumElts = (Expr *)Array.NumElts) {
if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
Array.NumElts
= VerifyIntegerConstantExpression(NumElts, 0,
diag::err_new_array_nonconst)
.take();
if (!Array.NumElts)
return ExprError();
}
}
}
}
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
QualType AllocType = TInfo->getType();
if (D.isInvalidType())
return ExprError();
SourceRange DirectInitRange;
if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
DirectInitRange = List->getSourceRange();
return BuildCXXNew(StartLoc, UseGlobal,
PlacementLParen,
move(PlacementArgs),
PlacementRParen,
TypeIdParens,
AllocType,
TInfo,
ArraySize,
DirectInitRange,
Initializer,
TypeContainsAuto);
}
static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
Expr *Init) {
if (!Init)
return true;
if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
return PLE->getNumExprs() == 0;
if (isa<ImplicitValueInitExpr>(Init))
return true;
else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
return !CCE->isListInitialization() &&
CCE->getConstructor()->isDefaultConstructor();
else if (Style == CXXNewExpr::ListInit) {
assert(isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.");
return true;
}
return false;
}
ExprResult
Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
SourceRange TypeIdParens,
QualType AllocType,
TypeSourceInfo *AllocTypeInfo,
Expr *ArraySize,
SourceRange DirectInitRange,
Expr *Initializer,
bool TypeMayContainAuto) {
SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
CXXNewExpr::InitializationStyle initStyle;
if (DirectInitRange.isValid()) {
assert(Initializer && "Have parens but no initializer.");
initStyle = CXXNewExpr::CallInit;
} else if (Initializer && isa<InitListExpr>(Initializer))
initStyle = CXXNewExpr::ListInit;
else {
// In template instantiation, the initializer could be a CXXDefaultArgExpr
// unwrapped from a CXXConstructExpr that was implicitly built. There is no
// particularly sane way we can handle this (especially since it can even
// occur for array new), so we throw the initializer away and have it be
// rebuilt.
if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
Initializer = 0;
assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
isa<CXXConstructExpr>(Initializer)) &&
"Initializer expression that cannot have been implicitly created.");
initStyle = CXXNewExpr::NoInit;
}
Expr **Inits = &Initializer;
unsigned NumInits = Initializer ? 1 : 0;
if (initStyle == CXXNewExpr::CallInit) {
if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
Inits = List->getExprs();
NumInits = List->getNumExprs();
} else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
if (!isa<CXXTemporaryObjectExpr>(CCE)) {
// Can happen in template instantiation. Since this is just an implicit
// construction, we just take it apart and rebuild it.
Inits = CCE->getArgs();
NumInits = CCE->getNumArgs();
}
}
}
// C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
<< AllocType << TypeRange);
if (initStyle == CXXNewExpr::ListInit)
return ExprError(Diag(Inits[0]->getLocStart(),
diag::err_auto_new_requires_parens)
<< AllocType << TypeRange);
if (NumInits > 1) {
Expr *FirstBad = Inits[1];
return ExprError(Diag(FirstBad->getLocStart(),
diag::err_auto_new_ctor_multiple_expressions)
<< AllocType << TypeRange);
}
Expr *Deduce = Inits[0];
TypeSourceInfo *DeducedType = 0;
if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) ==
DAR_Failed)
return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
<< AllocType << Deduce->getType()
<< TypeRange << Deduce->getSourceRange());
if (!DeducedType)
return ExprError();
AllocTypeInfo = DeducedType;
AllocType = AllocTypeInfo->getType();
}
// Per C++0x [expr.new]p5, the type being constructed may be a
// typedef of an array type.
if (!ArraySize) {
if (const ConstantArrayType *Array
= Context.getAsConstantArrayType(AllocType)) {
ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
Context.getSizeType(),
TypeRange.getEnd());
AllocType = Array->getElementType();
}
}
if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
return ExprError();
if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
diag::warn_dangling_std_initializer_list)
<< /*at end of FE*/0 << Inits[0]->getSourceRange();
}
// In ARC, infer 'retaining' for the allocated
if (getLangOpts().ObjCAutoRefCount &&
AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
AllocType->isObjCLifetimeType()) {
AllocType = Context.getLifetimeQualifiedType(AllocType,
AllocType->getObjCARCImplicitLifetime());
}
QualType ResultType = Context.getPointerType(AllocType);
// C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
// integral or enumeration type with a non-negative value."
// C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
// enumeration type, or a class type for which a single non-explicit
// conversion function to integral or unscoped enumeration type exists.
if (ArraySize && !ArraySize->isTypeDependent()) {
class SizeConvertDiagnoser : public ICEConvertDiagnoser {
Expr *ArraySize;
public:
SizeConvertDiagnoser(Expr *ArraySize)
: ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) {
return S.Diag(Loc, diag::err_array_size_not_integral)
<< S.getLangOpts().CPlusPlus0x << T;
}
virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
QualType T) {
return S.Diag(Loc, diag::err_array_size_incomplete_type)
<< T << ArraySize->getSourceRange();
}
virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
SourceLocation Loc,
QualType T,
QualType ConvTy) {
return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
}
virtual DiagnosticBuilder noteExplicitConv(Sema &S,
CXXConversionDecl *Conv,
QualType ConvTy) {
return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
QualType T) {
return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
}
virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
QualType ConvTy) {
return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
QualType T,
QualType ConvTy) {
return S.Diag(Loc,
S.getLangOpts().CPlusPlus0x
? diag::warn_cxx98_compat_array_size_conversion
: diag::ext_array_size_conversion)
<< T << ConvTy->isEnumeralType() << ConvTy;
}
} SizeDiagnoser(ArraySize);
ExprResult ConvertedSize
= ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
/*AllowScopedEnumerations*/ false);
if (ConvertedSize.isInvalid())
return ExprError();
ArraySize = ConvertedSize.take();
QualType SizeType = ArraySize->getType();
if (!SizeType->isIntegralOrUnscopedEnumerationType())
return ExprError();
// C++98 [expr.new]p7:
// The expression in a direct-new-declarator shall have integral type
// with a non-negative value.
//
// Let's see if this is a constant < 0. If so, we reject it out of
// hand. Otherwise, if it's not a constant, we must have an unparenthesized
// array type.
//
// Note: such a construct has well-defined semantics in C++11: it throws
// std::bad_array_new_length.
if (!ArraySize->isValueDependent()) {
llvm::APSInt Value;
// We've already performed any required implicit conversion to integer or
// unscoped enumeration type.
if (ArraySize->isIntegerConstantExpr(Value, Context)) {
if (Value < llvm::APSInt(
llvm::APInt::getNullValue(Value.getBitWidth()),
Value.isUnsigned())) {
if (getLangOpts().CPlusPlus0x)
Diag(ArraySize->getLocStart(),
diag::warn_typecheck_negative_array_new_size)
<< ArraySize->getSourceRange();
else
return ExprError(Diag(ArraySize->getLocStart(),
diag::err_typecheck_negative_array_size)
<< ArraySize->getSourceRange());
} else if (!AllocType->isDependentType()) {
unsigned ActiveSizeBits =
ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
if (getLangOpts().CPlusPlus0x)
Diag(ArraySize->getLocStart(),
diag::warn_array_new_too_large)
<< Value.toString(10)
<< ArraySize->getSourceRange();
else
return ExprError(Diag(ArraySize->getLocStart(),
diag::err_array_too_large)
<< Value.toString(10)
<< ArraySize->getSourceRange());
}
}
} else if (TypeIdParens.isValid()) {
// Can't have dynamic array size when the type-id is in parentheses.
Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
<< ArraySize->getSourceRange()
<< FixItHint::CreateRemoval(TypeIdParens.getBegin())
<< FixItHint::CreateRemoval(TypeIdParens.getEnd());
TypeIdParens = SourceRange();
}
}
// ARC: warn about ABI issues.
if (getLangOpts().ObjCAutoRefCount) {
QualType BaseAllocType = Context.getBaseElementType(AllocType);
if (BaseAllocType.hasStrongOrWeakObjCLifetime())
Diag(StartLoc, diag::warn_err_new_delete_object_array)
<< 0 << BaseAllocType;
}
// Note that we do *not* convert the argument in any way. It can
// be signed, larger than size_t, whatever.
}
FunctionDecl *OperatorNew = 0;
FunctionDecl *OperatorDelete = 0;
Expr **PlaceArgs = (Expr**)PlacementArgs.get();
unsigned NumPlaceArgs = PlacementArgs.size();
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(
llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
FindAllocationFunctions(StartLoc,
SourceRange(PlacementLParen, PlacementRParen),
UseGlobal, AllocType, ArraySize, PlaceArgs,
NumPlaceArgs, OperatorNew, OperatorDelete))
return ExprError();
// If this is an array allocation, compute whether the usual array
// deallocation function for the type has a size_t parameter.
bool UsualArrayDeleteWantsSize = false;
if (ArraySize && !AllocType->isDependentType())
UsualArrayDeleteWantsSize
= doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
SmallVector<Expr *, 8> AllPlaceArgs;
if (OperatorNew) {
// Add default arguments, if any.
const FunctionProtoType *Proto =
OperatorNew->getType()->getAs<FunctionProtoType>();
VariadicCallType CallType =
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
Proto, 1, PlaceArgs, NumPlaceArgs,
AllPlaceArgs, CallType))
return ExprError();
NumPlaceArgs = AllPlaceArgs.size();
if (NumPlaceArgs > 0)
PlaceArgs = &AllPlaceArgs[0];
DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
PlaceArgs, NumPlaceArgs);
// FIXME: Missing call to CheckFunctionCall or equivalent
}
// Warn if the type is over-aligned and is being allocated by global operator
// new.
if (NumPlaceArgs == 0 && OperatorNew &&
(OperatorNew->isImplicit() ||
getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
if (Align > SuitableAlign)
Diag(StartLoc, diag::warn_overaligned_type)
<< AllocType
<< unsigned(Align / Context.getCharWidth())
<< unsigned(SuitableAlign / Context.getCharWidth());
}
}
QualType InitType = AllocType;
// Array 'new' can't have any initializers except empty parentheses.
// Initializer lists are also allowed, in C++11. Rely on the parser for the
// dialect distinction.
if (ResultType->isArrayType() || ArraySize) {
if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
SourceRange InitRange(Inits[0]->getLocStart(),
Inits[NumInits - 1]->getLocEnd());
Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
return ExprError();
}
if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
// We do the initialization typechecking against the array type
// corresponding to the number of initializers + 1 (to also check
// default-initialization).
unsigned NumElements = ILE->getNumInits() + 1;
InitType = Context.getConstantArrayType(AllocType,
llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
ArrayType::Normal, 0);
}
}
if (!AllocType->isDependentType() &&
!Expr::hasAnyTypeDependentArguments(
llvm::makeArrayRef(Inits, NumInits))) {
// C++11 [expr.new]p15:
// A new-expression that creates an object of type T initializes that
// object as follows:
InitializationKind Kind
// - If the new-initializer is omitted, the object is default-
// initialized (8.5); if no initialization is performed,
// the object has indeterminate value
= initStyle == CXXNewExpr::NoInit
? InitializationKind::CreateDefault(TypeRange.getBegin())
// - Otherwise, the new-initializer is interpreted according to the
// initialization rules of 8.5 for direct-initialization.
: initStyle == CXXNewExpr::ListInit
? InitializationKind::CreateDirectList(TypeRange.getBegin())
: InitializationKind::CreateDirect(TypeRange.getBegin(),
DirectInitRange.getBegin(),
DirectInitRange.getEnd());
InitializedEntity Entity
= InitializedEntity::InitializeNew(StartLoc, InitType);
InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
MultiExprArg(Inits, NumInits));
if (FullInit.isInvalid())
return ExprError();
// FullInit is our initializer; strip off CXXBindTemporaryExprs, because
// we don't want the initialized object to be destructed.
if (CXXBindTemporaryExpr *Binder =
dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
FullInit = Owned(Binder->getSubExpr());
Initializer = FullInit.take();
}
// Mark the new and delete operators as referenced.
if (OperatorNew)
MarkFunctionReferenced(StartLoc, OperatorNew);
if (OperatorDelete)
MarkFunctionReferenced(StartLoc, OperatorDelete);
// C++0x [expr.new]p17:
// If the new expression creates an array of objects of class type,
// access and ambiguity control are done for the destructor.
QualType BaseAllocType = Context.getBaseElementType(AllocType);
if (ArraySize && !BaseAllocType->isDependentType()) {
if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
if (CXXDestructorDecl *dtor = LookupDestructor(
cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
MarkFunctionReferenced(StartLoc, dtor);
CheckDestructorAccess(StartLoc, dtor,
PDiag(diag::err_access_dtor)
<< BaseAllocType);
DiagnoseUseOfDecl(dtor, StartLoc);
}
}
}
PlacementArgs.release();
return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
OperatorDelete,
UsualArrayDeleteWantsSize,
PlaceArgs, NumPlaceArgs, TypeIdParens,
ArraySize, initStyle, Initializer,
ResultType, AllocTypeInfo,
StartLoc, DirectInitRange));
}
/// \brief Checks that a type is suitable as the allocated type
/// in a new-expression.
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R) {
// C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
// abstract class type or array thereof.
if (AllocType->isFunctionType())
return Diag(Loc, diag::err_bad_new_type)
<< AllocType << 0 << R;
else if (AllocType->isReferenceType())
return Diag(Loc, diag::err_bad_new_type)
<< AllocType << 1 << R;
else if (!AllocType->isDependentType() &&
RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
return true;
else if (RequireNonAbstractType(Loc, AllocType,
diag::err_allocation_of_abstract_type))
return true;
else if (AllocType->isVariablyModifiedType())
return Diag(Loc, diag::err_variably_modified_new_type)
<< AllocType;
else if (unsigned AddressSpace = AllocType.getAddressSpace())
return Diag(Loc, diag::err_address_space_qualified_new)
<< AllocType.getUnqualifiedType() << AddressSpace;
else if (getLangOpts().ObjCAutoRefCount) {
if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
QualType BaseAllocType = Context.getBaseElementType(AT);
if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
BaseAllocType->isObjCLifetimeType())
return Diag(Loc, diag::err_arc_new_array_without_ownership)
<< BaseAllocType;
}
}
return false;
}
/// \brief Determine whether the given function is a non-placement
/// deallocation function.
static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
if (FD->isInvalidDecl())
return false;
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
return Method->isUsualDeallocationFunction();
return ((FD->getOverloadedOperator() == OO_Delete ||
FD->getOverloadedOperator() == OO_Array_Delete) &&
FD->getNumParams() == 1);
}
/// FindAllocationFunctions - Finds the overloads of operator new and delete
/// that are appropriate for the allocation.
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
bool UseGlobal, QualType AllocType,
bool IsArray, Expr **PlaceArgs,
unsigned NumPlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete) {
// --- Choosing an allocation function ---
// C++ 5.3.4p8 - 14 & 18
// 1) If UseGlobal is true, only look in the global scope. Else, also look
// in the scope of the allocated class.
// 2) If an array size is given, look for operator new[], else look for
// operator new.
// 3) The first argument is always size_t. Append the arguments from the
// placement form.
SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
// We don't care about the actual value of this argument.
// FIXME: Should the Sema create the expression and embed it in the syntax
// tree? Or should the consumer just recalculate the value?
IntegerLiteral Size(Context, llvm::APInt::getNullValue(
Context.getTargetInfo().getPointerWidth(0)),
Context.getSizeType(),
SourceLocation());
AllocArgs[0] = &Size;
std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
// C++ [expr.new]p8:
// If the allocated type is a non-array type, the allocation
// function's name is operator new and the deallocation function's
// name is operator delete. If the allocated type is an array
// type, the allocation function's name is operator new[] and the
// deallocation function's name is operator delete[].
DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
IsArray ? OO_Array_New : OO_New);
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
IsArray ? OO_Array_Delete : OO_Delete);
QualType AllocElemType = Context.getBaseElementType(AllocType);
if (AllocElemType->isRecordType() && !UseGlobal) {
CXXRecordDecl *Record
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
AllocArgs.size(), Record, /*AllowMissing=*/true,
OperatorNew))
return true;
}
if (!OperatorNew) {
// Didn't find a member overload. Look for a global one.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
OperatorNew))
return true;
}
// We don't need an operator delete if we're running under
// -fno-exceptions.
if (!getLangOpts().Exceptions) {
OperatorDelete = 0;
return false;
}
// FindAllocationOverload can change the passed in arguments, so we need to
// copy them back.
if (NumPlaceArgs > 0)
std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
// C++ [expr.new]p19:
//
// If the new-expression begins with a unary :: operator, the
// deallocation function's name is looked up in the global
// scope. Otherwise, if the allocated type is a class type T or an
// array thereof, the deallocation function's name is looked up in
// the scope of T. If this lookup fails to find the name, or if
// the allocated type is not a class type or array thereof, the
// deallocation function's name is looked up in the global scope.
LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
if (AllocElemType->isRecordType() && !UseGlobal) {
CXXRecordDecl *RD
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
LookupQualifiedName(FoundDelete, RD);
}
if (FoundDelete.isAmbiguous())
return true; // FIXME: clean up expressions?
if (FoundDelete.empty()) {
DeclareGlobalNewDelete();
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
}
FoundDelete.suppressDiagnostics();
SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
// Whether we're looking for a placement operator delete is dictated
// by whether we selected a placement operator new, not by whether
// we had explicit placement arguments. This matters for things like
// struct A { void *operator new(size_t, int = 0); ... };
// A *a = new A()
bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
if (isPlacementNew) {
// C++ [expr.new]p20:
// A declaration of a placement deallocation function matches the
// declaration of a placement allocation function if it has the
// same number of parameters and, after parameter transformations
// (8.3.5), all parameter types except the first are
// identical. [...]
//
// To perform this comparison, we compute the function type that
// the deallocation function should have, and use that type both
// for template argument deduction and for comparison purposes.
//
// FIXME: this comparison should ignore CC and the like.
QualType ExpectedFunctionType;
{
const FunctionProtoType *Proto
= OperatorNew->getType()->getAs<FunctionProtoType>();
SmallVector<QualType, 4> ArgTypes;
ArgTypes.push_back(Context.VoidPtrTy);
for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
ArgTypes.push_back(Proto->getArgType(I));
FunctionProtoType::ExtProtoInfo EPI;
EPI.Variadic = Proto->isVariadic();
ExpectedFunctionType
= Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
ArgTypes.size(), EPI);
}
for (LookupResult::iterator D = FoundDelete.begin(),
DEnd = FoundDelete.end();
D != DEnd; ++D) {
FunctionDecl *Fn = 0;
if (FunctionTemplateDecl *FnTmpl
= dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
// Perform template argument deduction to try to match the
// expected function type.
TemplateDeductionInfo Info(Context, StartLoc);
if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
continue;
} else
Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
Matches.push_back(std::make_pair(D.getPair(), Fn));
}
} else {
// C++ [expr.new]p20:
// [...] Any non-placement deallocation function matches a
// non-placement allocation function. [...]
for (LookupResult::iterator D = FoundDelete.begin(),
DEnd = FoundDelete.end();
D != DEnd; ++D) {
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
if (isNonPlacementDeallocationFunction(Fn))
Matches.push_back(std::make_pair(D.getPair(), Fn));
}
}
// C++ [expr.new]p20:
// [...] If the lookup finds a single matching deallocation
// function, that function will be called; otherwise, no
// deallocation function will be called.
if (Matches.size() == 1) {
OperatorDelete = Matches[0].second;
// C++0x [expr.new]p20:
// If the lookup finds the two-parameter form of a usual
// deallocation function (3.7.4.2) and that function, considered
// as a placement deallocation function, would have been
// selected as a match for the allocation function, the program
// is ill-formed.
if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
isNonPlacementDeallocationFunction(OperatorDelete)) {
Diag(StartLoc, diag::err_placement_new_non_placement_delete)
<< SourceRange(PlaceArgs[0]->getLocStart(),
PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
<< DeleteName;
} else {
CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
Matches[0].first);
}
}
return false;
}
/// FindAllocationOverload - Find an fitting overload for the allocation
/// function in the specified scope.
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
DeclarationName Name, Expr** Args,
unsigned NumArgs, DeclContext *Ctx,
bool AllowMissing, FunctionDecl *&Operator,
bool Diagnose) {
LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
LookupQualifiedName(R, Ctx);
if (R.empty()) {
if (AllowMissing || !Diagnose)
return false;
return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
<< Name << Range;
}
if (R.isAmbiguous())
return true;
R.suppressDiagnostics();
OverloadCandidateSet Candidates(StartLoc);
for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
Alloc != AllocEnd; ++Alloc) {
// Even member operator new/delete are implicitly treated as
// static, so don't use AddMemberCandidate.
NamedDecl *D = (*Alloc)->getUnderlyingDecl();
if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
/*ExplicitTemplateArgs=*/0,
llvm::makeArrayRef(Args, NumArgs),
Candidates,
/*SuppressUserConversions=*/false);
continue;
}
FunctionDecl *Fn = cast<FunctionDecl>(D);
AddOverloadCandidate(Fn, Alloc.getPair(),
llvm::makeArrayRef(Args, NumArgs), Candidates,
/*SuppressUserConversions=*/false);
}
// Do the resolution.
OverloadCandidateSet::iterator Best;
switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
case OR_Success: {
// Got one!
FunctionDecl *FnDecl = Best->Function;
MarkFunctionReferenced(StartLoc, FnDecl);
// The first argument is size_t, and the first parameter must be size_t,
// too. This is checked on declaration and can be assumed. (It can't be
// asserted on, though, since invalid decls are left in there.)
// Watch out for variadic allocator function.
unsigned NumArgsInFnDecl = FnDecl->getNumParams();
for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
FnDecl->getParamDecl(i));
if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
return true;
ExprResult Result
= PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
if (Result.isInvalid())
return true;
Args[i] = Result.takeAs<Expr>();
}
Operator = FnDecl;
if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
Best->FoundDecl, Diagnose) == AR_inaccessible)
return true;
return false;
}
case OR_No_Viable_Function:
if (Diagnose) {
Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
<< Name << Range;
Candidates.NoteCandidates(*this, OCD_AllCandidates,
llvm::makeArrayRef(Args, NumArgs));
}
return true;
case OR_Ambiguous:
if (Diagnose) {
Diag(StartLoc, diag::err_ovl_ambiguous_call)
<< Name << Range;
Candidates.NoteCandidates(*this, OCD_ViableCandidates,
llvm::makeArrayRef(Args, NumArgs));
}
return true;
case OR_Deleted: {
if (Diagnose) {
Diag(StartLoc, diag::err_ovl_deleted_call)
<< Best->Function->isDeleted()
<< Name
<< getDeletedOrUnavailableSuffix(Best->Function)
<< Range;
Candidates.NoteCandidates(*this, OCD_AllCandidates,
llvm::makeArrayRef(Args, NumArgs));
}
return true;
}
}
llvm_unreachable("Unreachable, bad result from BestViableFunction");
}
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
/// delete. These are:
/// @code
/// // C++03:
/// void* operator new(std::size_t) throw(std::bad_alloc);
/// void* operator new[](std::size_t) throw(std::bad_alloc);
/// void operator delete(void *) throw();
/// void operator delete[](void *) throw();
/// // C++0x:
/// void* operator new(std::size_t);
/// void* operator new[](std::size_t);
/// void operator delete(void *);
/// void operator delete[](void *);
/// @endcode
/// C++0x operator delete is implicitly noexcept.
/// Note that the placement and nothrow forms of new are *not* implicitly
/// declared. Their use requires including \<new\>.
void Sema::DeclareGlobalNewDelete() {
if (GlobalNewDeleteDeclared)
return;
// C++ [basic.std.dynamic]p2:
// [...] The following allocation and deallocation functions (18.4) are
// implicitly declared in global scope in each translation unit of a
// program
//
// C++03:
// void* operator new(std::size_t) throw(std::bad_alloc);
// void* operator new[](std::size_t) throw(std::bad_alloc);
// void operator delete(void*) throw();
// void operator delete[](void*) throw();
// C++0x:
// void* operator new(std::size_t);
// void* operator new[](std::size_t);
// void operator delete(void*);
// void operator delete[](void*);
//
// These implicit declarations introduce only the function names operator
// new, operator new[], operator delete, operator delete[].
//
// Here, we need to refer to std::bad_alloc, so we will implicitly declare
// "std" or "bad_alloc" as necessary to form the exception specification.
// However, we do not make these implicit declarations visible to name
// lookup.
// Note that the C++0x versions of operator delete are deallocation functions,
// and thus are implicitly noexcept.
if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
// The "std::bad_alloc" class has not yet been declared, so build it
// implicitly.
StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
getOrCreateStdNamespace(),
SourceLocation(), SourceLocation(),
&PP.getIdentifierTable().get("bad_alloc"),
0);
getStdBadAlloc()->setImplicit(true);
}
GlobalNewDeleteDeclared = true;
QualType VoidPtr = Context.getPointerType(Context.VoidTy);
QualType SizeT = Context.getSizeType();
bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_New),
VoidPtr, SizeT, AssumeSaneOperatorNew);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
VoidPtr, SizeT, AssumeSaneOperatorNew);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
Context.VoidTy, VoidPtr);
DeclareGlobalAllocationFunction(
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
Context.VoidTy, VoidPtr);
}
/// DeclareGlobalAllocationFunction - Declares a single implicit global
/// allocation function if it doesn't already exist.
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
QualType Return, QualType Argument,
bool AddMallocAttr) {
DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
// Check if this function is already declared.
{
DeclContext::lookup_iterator Alloc, AllocEnd;
for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
Alloc != AllocEnd; ++Alloc) {
// Only look at non-template functions, as it is the predefined,
// non-templated allocation function we are trying to declare here.
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
QualType InitialParamType =
Context.getCanonicalType(
Func->getParamDecl(0)->getType().getUnqualifiedType());
// FIXME: Do we need to check for default arguments here?
if (Func->getNumParams() == 1 && InitialParamType == Argument) {
if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
return;
}
}
}
}
QualType BadAllocType;
bool HasBadAllocExceptionSpec
= (Name.getCXXOverloadedOperator() == OO_New ||
Name.getCXXOverloadedOperator() == OO_Array_New);
if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
assert(StdBadAlloc && "Must have std::bad_alloc declared");
BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
}
FunctionProtoType::ExtProtoInfo EPI;
if (HasBadAllocExceptionSpec) {
if (!getLangOpts().CPlusPlus0x) {
EPI.ExceptionSpecType = EST_Dynamic;
EPI.NumExceptions = 1;
EPI.Exceptions = &BadAllocType;
}
} else {
EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
EST_BasicNoexcept : EST_DynamicNone;
}
QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
FunctionDecl *Alloc =
FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
SourceLocation(), Name,
FnType, /*TInfo=*/0, SC_None,
SC_None, false, true);
Alloc->setImplicit();
if (AddMallocAttr)
Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
SourceLocation(), 0,
Argument, /*TInfo=*/0,
SC_None, SC_None, 0);
Alloc->setParams(Param);
// FIXME: Also add this declaration to the IdentifierResolver, but
// make sure it is at the end of the chain to coincide with the
// global scope.
Context.getTranslationUnitDecl()->addDecl(Alloc);
}
bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
DeclarationName Name,
FunctionDecl* &Operator, bool Diagnose) {
LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
// Try to find operator delete/operator delete[] in class scope.
LookupQualifiedName(Found, RD);
if (Found.isAmbiguous())
return true;
Found.suppressDiagnostics();
SmallVector<DeclAccessPair,4> Matches;
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
F != FEnd; ++F) {
NamedDecl *ND = (*F)->getUnderlyingDecl();
// Ignore template operator delete members from the check for a usual
// deallocation function.
if (isa<FunctionTemplateDecl>(ND))
continue;
if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
Matches.push_back(F.getPair());
}
// There's exactly one suitable operator; pick it.
if (Matches.size() == 1) {
Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
if (Operator->isDeleted()) {
if (Diagnose) {
Diag(StartLoc, diag::err_deleted_function_use);
NoteDeletedFunction(Operator);
}
return true;
}
if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
Matches[0], Diagnose) == AR_inaccessible)
return true;
return false;
// We found multiple suitable operators; complain about the ambiguity.
} else if (!Matches.empty()) {
if (Diagnose) {
Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
<< Name << RD;
for (SmallVectorImpl<DeclAccessPair>::iterator
F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
Diag((*F)->getUnderlyingDecl()->getLocation(),
diag::note_member_declared_here) << Name;
}
return true;
}
// We did find operator delete/operator delete[] declarations, but
// none of them were suitable.
if (!Found.empty()) {
if (Diagnose) {
Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
<< Name << RD;
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
F != FEnd; ++F)
Diag((*F)->getUnderlyingDecl()->getLocation(),
diag::note_member_declared_here) << Name;
}
return true;
}
// Look for a global declaration.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
Expr* DeallocArgs[1];
DeallocArgs[0] = &Null;
if (FindAllocationOverload(StartLoc, SourceRange(), Name,
DeallocArgs, 1, TUDecl, !Diagnose,
Operator, Diagnose))
return true;
assert(Operator && "Did not find a deallocation function!");
return false;
}
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
ExprResult
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
bool ArrayForm, Expr *ExE) {
// C++ [expr.delete]p1:
// The operand shall have a pointer type, or a class type having a single
// conversion function to a pointer type. The result has type void.
//
// DR599 amends "pointer type" to "pointer to object type" in both cases.
ExprResult Ex = Owned(ExE);
FunctionDecl *OperatorDelete = 0;
bool ArrayFormAsWritten = ArrayForm;
bool UsualArrayDeleteWantsSize = false;
if (!Ex.get()->isTypeDependent()) {
// Perform lvalue-to-rvalue cast, if needed.
Ex = DefaultLvalueConversion(Ex.take());
QualType Type = Ex.get()->getType();
if (const RecordType *Record = Type->getAs<RecordType>()) {
if (RequireCompleteType(StartLoc, Type,
diag::err_delete_incomplete_class_type))
return ExprError();
SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
for (UnresolvedSetImpl::iterator I = Conversions->begin(),
E = Conversions->end(); I != E; ++I) {
NamedDecl *D = I.getDecl();
if (isa<UsingShadowDecl>(D))
D = cast<UsingShadowDecl>(D)->getTargetDecl();
// Skip over templated conversion functions; they aren't considered.
if (isa<FunctionTemplateDecl>(D))
continue;
CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
QualType ConvType = Conv->getConversionType().getNonReferenceType();
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
ObjectPtrConversions.push_back(Conv);
}
if (ObjectPtrConversions.size() == 1) {
// We have a single conversion to a pointer-to-object type. Perform
// that conversion.
// TODO: don't redo the conversion calculation.
ExprResult Res =
PerformImplicitConversion(Ex.get(),
ObjectPtrConversions.front()->getConversionType(),
AA_Converting);
if (Res.isUsable()) {
Ex = move(Res);
Type = Ex.get()->getType();
}
}
else if (ObjectPtrConversions.size() > 1) {
Diag(StartLoc, diag::err_ambiguous_delete_operand)
<< Type << Ex.get()->getSourceRange();
for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
NoteOverloadCandidate(ObjectPtrConversions[i]);
return ExprError();
}
}
if (!Type->isPointerType())
return ExprError(Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex.get()->getSourceRange());
QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
QualType PointeeElem = Context.getBaseElementType(Pointee);
if (unsigned AddressSpace = Pointee.getAddressSpace())
return Diag(Ex.get()->getLocStart(),
diag::err_address_space_qualified_delete)
<< Pointee.getUnqualifiedType() << AddressSpace;
CXXRecordDecl *PointeeRD = 0;
if (Pointee->isVoidType() && !isSFINAEContext()) {
// The C++ standard bans deleting a pointer to a non-object type, which
// effectively bans deletion of "void*". However, most compilers support
// this, so we treat it as a warning unless we're in a SFINAE context.
Diag(StartLoc, diag::ext_delete_void_ptr_operand)
<< Type << Ex.get()->getSourceRange();
} else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
return ExprError(Diag(StartLoc, diag::err_delete_operand)
<< Type << Ex.get()->getSourceRange());
} else if (!Pointee->isDependentType()) {
if (!RequireCompleteType(StartLoc, Pointee,
diag::warn_delete_incomplete, Ex.get())) {
if (const RecordType *RT = PointeeElem->getAs<RecordType>())
PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
}
}
// C++ [expr.delete]p2:
// [Note: a pointer to a const type can be the operand of a
// delete-expression; it is not necessary to cast away the constness
// (5.2.11) of the pointer expression before it is used as the operand
// of the delete-expression. ]
if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
CK_BitCast, Ex.take(), 0, VK_RValue));
if (Pointee->isArrayType() && !ArrayForm) {
Diag(StartLoc, diag::warn_delete_array_type)
<< Type << Ex.get()->getSourceRange()
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
ArrayForm = true;
}
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
ArrayForm ? OO_Array_Delete : OO_Delete);
if (PointeeRD) {
if (!UseGlobal &&
FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
OperatorDelete))
return ExprError();
// If we're allocating an array of records, check whether the
// usual operator delete[] has a size_t parameter.
if (ArrayForm) {
// If the user specifically asked to use the global allocator,
// we'll need to do the lookup into the class.
if (UseGlobal)
UsualArrayDeleteWantsSize =
doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
// Otherwise, the usual operator delete[] should be the
// function we just found.
else if (isa<CXXMethodDecl>(OperatorDelete))
UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
}
if (!PointeeRD->hasIrrelevantDestructor())
if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
MarkFunctionReferenced(StartLoc,
const_cast<CXXDestructorDecl*>(Dtor));
DiagnoseUseOfDecl(Dtor, StartLoc);
}
// C++ [expr.delete]p3:
// In the first alternative (delete object), if the static type of the
// object to be deleted is different from its dynamic type, the static
// type shall be a base class of the dynamic type of the object to be
// deleted and the static type shall have a virtual destructor or the
// behavior is undefined.
//
// Note: a final class cannot be derived from, no issue there
if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
CXXDestructorDecl *dtor = PointeeRD->getDestructor();
if (dtor && !dtor->isVirtual()) {
if (PointeeRD->isAbstract()) {
// If the class is abstract, we warn by default, because we're
// sure the code has undefined behavior.
Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
<< PointeeElem;
} else if (!ArrayForm) {
// Otherwise, if this is not an array delete, it's a bit suspect,
// but not necessarily wrong.
Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
}
}
}
} else if (getLangOpts().ObjCAutoRefCount &&
PointeeElem->isObjCLifetimeType() &&
(PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
ArrayForm) {
Diag(StartLoc, diag::warn_err_new_delete_object_array)
<< 1 << PointeeElem;
}
if (!OperatorDelete) {
// Look for a global declaration.
DeclareGlobalNewDelete();
DeclContext *TUDecl = Context.getTranslationUnitDecl();
Expr *Arg = Ex.get();
if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
&Arg, 1, TUDecl, /*AllowMissing=*/false,
OperatorDelete))
return ExprError();
}
MarkFunctionReferenced(StartLoc, OperatorDelete);
// Check access and ambiguity of operator delete and destructor.
if (PointeeRD) {
if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
PDiag(diag::err_access_dtor) << PointeeElem);
}
}
}
return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
ArrayFormAsWritten,
UsualArrayDeleteWantsSize,
OperatorDelete, Ex.take(), StartLoc));
}
/// \brief Check the use of the given variable as a C++ condition in an if,
/// while, do-while, or switch statement.
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
SourceLocation StmtLoc,
bool ConvertToBoolean) {
QualType T = ConditionVar->getType();
// C++ [stmt.select]p2:
// The declarator shall not specify a function or an array.
if (T->isFunctionType())
return ExprError(Diag(ConditionVar->getLocation(),
diag::err_invalid_use_of_function_type)
<< ConditionVar->getSourceRange());
else if (T->isArrayType())
return ExprError(Diag(ConditionVar->getLocation(),
diag::err_invalid_use_of_array_type)
<< ConditionVar->getSourceRange());
ExprResult Condition =
Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
SourceLocation(),
ConditionVar,
/*enclosing*/ false,
ConditionVar->getLocation(),
ConditionVar->getType().getNonReferenceType(),
VK_LValue));
MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
if (ConvertToBoolean) {
Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
if (Condition.isInvalid())
return ExprError();
}
return move(Condition);
}
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
// C++ 6.4p4:
// The value of a condition that is an initialized declaration in a statement
// other than a switch statement is the value of the declared variable
// implicitly converted to type bool. If that conversion is ill-formed, the
// program is ill-formed.
// The value of a condition that is an expression is the value of the
// expression, implicitly converted to bool.
//
return PerformContextuallyConvertToBool(CondExpr);
}
/// Helper function to determine whether this is the (deprecated) C++
/// conversion from a string literal to a pointer to non-const char or
/// non-const wchar_t (for narrow and wide string literals,
/// respectively).
bool
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
// Look inside the implicit cast, if it exists.
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
From = Cast->getSubExpr();
// A string literal (2.13.4) that is not a wide string literal can
// be converted to an rvalue of type "pointer to char"; a wide
// string literal can be converted to an rvalue of type "pointer
// to wchar_t" (C++ 4.2p2).
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
if (const BuiltinType *ToPointeeType
= ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
// This conversion is considered only when there is an
// explicit appropriate pointer target type (C++ 4.2p2).
if (!ToPtrType->getPointeeType().hasQualifiers()) {
switch (StrLit->getKind()) {
case StringLiteral::UTF8:
case StringLiteral::UTF16:
case StringLiteral::UTF32:
// We don't allow UTF literals to be implicitly converted
break;
case StringLiteral::Ascii:
return (ToPointeeType->getKind() == BuiltinType::Char_U ||
ToPointeeType->getKind() == BuiltinType::Char_S);
case StringLiteral::Wide:
return ToPointeeType->isWideCharType();
}
}
}
return false;
}
static ExprResult BuildCXXCastArgument(Sema &S,
SourceLocation CastLoc,
QualType Ty,
CastKind Kind,
CXXMethodDecl *Method,
DeclAccessPair FoundDecl,
bool HadMultipleCandidates,
Expr *From) {
switch (Kind) {
default: llvm_unreachable("Unhandled cast kind!");
case CK_ConstructorConversion: {
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
ASTOwningVector<Expr*> ConstructorArgs(S);
if (S.CompleteConstructorCall(Constructor,
MultiExprArg(&From, 1),
CastLoc, ConstructorArgs))
return ExprError();
S.CheckConstructorAccess(CastLoc, Constructor,
InitializedEntity::InitializeTemporary(Ty),
Constructor->getAccess());
ExprResult Result
= S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
move_arg(ConstructorArgs),
HadMultipleCandidates, /*ZeroInit*/ false,
CXXConstructExpr::CK_Complete, SourceRange());
if (Result.isInvalid())
return ExprError();
return S.MaybeBindToTemporary(Result.takeAs<Expr>());
}
case CK_UserDefinedConversion: {
assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
// Create an implicit call expr that calls it.
CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
HadMultipleCandidates);
if (Result.isInvalid())
return ExprError();
// Record usage of conversion in an implicit cast.
Result = S.Owned(ImplicitCastExpr::Create(S.Context,
Result.get()->getType(),
CK_UserDefinedConversion,
Result.get(), 0,
Result.get()->getValueKind()));
S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
return S.MaybeBindToTemporary(Result.get());
}
}
}
/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType using the pre-computed implicit
/// conversion sequence ICS. Returns the converted
/// expression. Action is the kind of conversion we're performing,
/// used in the error message.
ExprResult
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
const ImplicitConversionSequence &ICS,
AssignmentAction Action,
CheckedConversionKind CCK) {
switch (ICS.getKind()) {
case ImplicitConversionSequence::StandardConversion: {
ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
Action, CCK);
if (Res.isInvalid())
return ExprError();
From = Res.take();
break;
}
case ImplicitConversionSequence::UserDefinedConversion: {
FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
CastKind CastKind;
QualType BeforeToType;
assert(FD && "FIXME: aggregate initialization from init list");
if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
CastKind = CK_UserDefinedConversion;
// If the user-defined conversion is specified by a conversion function,
// the initial standard conversion sequence converts the source type to
// the implicit object parameter of the conversion function.
BeforeToType = Context.getTagDeclType(Conv->getParent());
} else {
const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
CastKind = CK_ConstructorConversion;
// Do no conversion if dealing with ... for the first conversion.
if (!ICS.UserDefined.EllipsisConversion) {
// If the user-defined conversion is specified by a constructor, the
// initial standard conversion sequence converts the source type to the
// type required by the argument of the constructor
BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
}
}
// Watch out for elipsis conversion.
if (!ICS.UserDefined.EllipsisConversion) {
ExprResult Res =
PerformImplicitConversion(From, BeforeToType,
ICS.UserDefined.Before, AA_Converting,
CCK);
if (Res.isInvalid())
return ExprError();
From = Res.take();
}
ExprResult CastArg
= BuildCXXCastArgument(*this,
From->getLocStart(),
ToType.getNonReferenceType(),
CastKind, cast<CXXMethodDecl>(FD),
ICS.UserDefined.FoundConversionFunction,
ICS.UserDefined.HadMultipleCandidates,
From);
if (CastArg.isInvalid())
return ExprError();
From = CastArg.take();
return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
AA_Converting, CCK);
}
case ImplicitConversionSequence::AmbiguousConversion:
ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
PDiag(diag::err_typecheck_ambiguous_condition)
<< From->getSourceRange());
return ExprError();
case ImplicitConversionSequence::EllipsisConversion:
llvm_unreachable("Cannot perform an ellipsis conversion");
case ImplicitConversionSequence::BadConversion:
return ExprError();