blob: 628ade15932c011febcc61c9964a55c2bb433ad4 [file] [log] [blame]
#===- cindex.py - Python Indexing Library Bindings -----------*- python -*--===#
#
# The LLVM Compiler Infrastructure
#
# This file is distributed under the University of Illinois Open Source
# License. See LICENSE.TXT for details.
#
#===------------------------------------------------------------------------===#
r"""
Clang Indexing Library Bindings
===============================
This module provides an interface to the Clang indexing library. It is a
low-level interface to the indexing library which attempts to match the Clang
API directly while also being "pythonic". Notable differences from the C API
are:
* string results are returned as Python strings, not CXString objects.
* null cursors are translated to None.
* access to child cursors is done via iteration, not visitation.
The major indexing objects are:
Index
The top-level object which manages some global library state.
TranslationUnit
High-level object encapsulating the AST for a single translation unit. These
can be loaded from .ast files or parsed on the fly.
Cursor
Generic object for representing a node in the AST.
SourceRange, SourceLocation, and File
Objects representing information about the input source.
Most object information is exposed using properties, when the underlying API
call is efficient.
"""
# TODO
# ====
#
# o API support for invalid translation units. Currently we can't even get the
# diagnostics on failure because they refer to locations in an object that
# will have been invalidated.
#
# o fix memory management issues (currently client must hold on to index and
# translation unit, or risk crashes).
#
# o expose code completion APIs.
#
# o cleanup ctypes wrapping, would be nice to separate the ctypes details more
# clearly, and hide from the external interface (i.e., help(cindex)).
#
# o implement additional SourceLocation, SourceRange, and File methods.
from ctypes import *
import collections
import clang.enumerations
def get_cindex_library():
# FIXME: It's probably not the case that the library is actually found in
# this location. We need a better system of identifying and loading the
# CIndex library. It could be on path or elsewhere, or versioned, etc.
import platform
name = platform.system()
if name == 'Darwin':
return cdll.LoadLibrary('libclang.dylib')
elif name == 'Windows':
return cdll.LoadLibrary('libclang.dll')
else:
return cdll.LoadLibrary('libclang.so')
# ctypes doesn't implicitly convert c_void_p to the appropriate wrapper
# object. This is a problem, because it means that from_parameter will see an
# integer and pass the wrong value on platforms where int != void*. Work around
# this by marshalling object arguments as void**.
c_object_p = POINTER(c_void_p)
lib = get_cindex_library()
callbacks = {}
### Exception Classes ###
class TranslationUnitLoadError(Exception):
"""Represents an error that occurred when loading a TranslationUnit.
This is raised in the case where a TranslationUnit could not be
instantiated due to failure in the libclang library.
FIXME: Make libclang expose additional error information in this scenario.
"""
pass
class TranslationUnitSaveError(Exception):
"""Represents an error that occurred when saving a TranslationUnit.
Each error has associated with it an enumerated value, accessible under
e.save_error. Consumers can compare the value with one of the ERROR_
constants in this class.
"""
# Indicates that an unknown error occurred. This typically indicates that
# I/O failed during save.
ERROR_UNKNOWN = 1
# Indicates that errors during translation prevented saving. The errors
# should be available via the TranslationUnit's diagnostics.
ERROR_TRANSLATION_ERRORS = 2
# Indicates that the translation unit was somehow invalid.
ERROR_INVALID_TU = 3
def __init__(self, enumeration, message):
assert isinstance(enumeration, int)
if enumeration < 1 or enumeration > 3:
raise Exception("Encountered undefined TranslationUnit save error "
"constant: %d. Please file a bug to have this "
"value supported." % enumeration)
self.save_error = enumeration
Exception.__init__(self, 'Error %d: %s' % (enumeration, message))
### Structures and Utility Classes ###
class CachedProperty(object):
"""Decorator that lazy-loads the value of a property.
The first time the property is accessed, the original property function is
executed. The value it returns is set as the new value of that instance's
property, replacing the original method.
"""
def __init__(self, wrapped):
self.wrapped = wrapped
try:
self.__doc__ = wrapped.__doc__
except:
pass
def __get__(self, instance, instance_type=None):
if instance is None:
return self
value = self.wrapped(instance)
setattr(instance, self.wrapped.__name__, value)
return value
class _CXString(Structure):
"""Helper for transforming CXString results."""
_fields_ = [("spelling", c_char_p), ("free", c_int)]
def __del__(self):
lib.clang_disposeString(self)
@staticmethod
def from_result(res, fn, args):
assert isinstance(res, _CXString)
return lib.clang_getCString(res)
class SourceLocation(Structure):
"""
A SourceLocation represents a particular location within a source file.
"""
_fields_ = [("ptr_data", c_void_p * 2), ("int_data", c_uint)]
_data = None
def _get_instantiation(self):
if self._data is None:
f, l, c, o = c_object_p(), c_uint(), c_uint(), c_uint()
lib.clang_getInstantiationLocation(self, byref(f), byref(l),
byref(c), byref(o))
if f:
f = File(f)
else:
f = None
self._data = (f, int(l.value), int(c.value), int(o.value))
return self._data
@staticmethod
def from_position(tu, file, line, column):
"""
Retrieve the source location associated with a given file/line/column in
a particular translation unit.
"""
return lib.clang_getLocation(tu, file, line, column)
@staticmethod
def from_offset(tu, file, offset):
"""Retrieve a SourceLocation from a given character offset.
tu -- TranslationUnit file belongs to
file -- File instance to obtain offset from
offset -- Integer character offset within file
"""
return lib.clang_getLocationForOffset(tu, file, offset)
@property
def file(self):
"""Get the file represented by this source location."""
return self._get_instantiation()[0]
@property
def line(self):
"""Get the line represented by this source location."""
return self._get_instantiation()[1]
@property
def column(self):
"""Get the column represented by this source location."""
return self._get_instantiation()[2]
@property
def offset(self):
"""Get the file offset represented by this source location."""
return self._get_instantiation()[3]
def __eq__(self, other):
return lib.clang_equalLocations(self, other)
def __ne__(self, other):
return not self.__eq__(other)
def __repr__(self):
if self.file:
filename = self.file.name
else:
filename = None
return "<SourceLocation file %r, line %r, column %r>" % (
filename, self.line, self.column)
class SourceRange(Structure):
"""
A SourceRange describes a range of source locations within the source
code.
"""
_fields_ = [
("ptr_data", c_void_p * 2),
("begin_int_data", c_uint),
("end_int_data", c_uint)]
# FIXME: Eliminate this and make normal constructor? Requires hiding ctypes
# object.
@staticmethod
def from_locations(start, end):
return lib.clang_getRange(start, end)
@property
def start(self):
"""
Return a SourceLocation representing the first character within a
source range.
"""
return lib.clang_getRangeStart(self)
@property
def end(self):
"""
Return a SourceLocation representing the last character within a
source range.
"""
return lib.clang_getRangeEnd(self)
def __eq__(self, other):
return lib.clang_equalRanges(self, other)
def __ne__(self, other):
return not self.__eq__(other)
def __repr__(self):
return "<SourceRange start %r, end %r>" % (self.start, self.end)
class Diagnostic(object):
"""
A Diagnostic is a single instance of a Clang diagnostic. It includes the
diagnostic severity, the message, the location the diagnostic occurred, as
well as additional source ranges and associated fix-it hints.
"""
Ignored = 0
Note = 1
Warning = 2
Error = 3
Fatal = 4
def __init__(self, ptr):
self.ptr = ptr
def __del__(self):
lib.clang_disposeDiagnostic(self)
@property
def severity(self):
return lib.clang_getDiagnosticSeverity(self)
@property
def location(self):
return lib.clang_getDiagnosticLocation(self)
@property
def spelling(self):
return lib.clang_getDiagnosticSpelling(self)
@property
def ranges(self):
class RangeIterator:
def __init__(self, diag):
self.diag = diag
def __len__(self):
return int(lib.clang_getDiagnosticNumRanges(self.diag))
def __getitem__(self, key):
if (key >= len(self)):
raise IndexError
return lib.clang_getDiagnosticRange(self.diag, key)
return RangeIterator(self)
@property
def fixits(self):
class FixItIterator:
def __init__(self, diag):
self.diag = diag
def __len__(self):
return int(lib.clang_getDiagnosticNumFixIts(self.diag))
def __getitem__(self, key):
range = SourceRange()
value = lib.clang_getDiagnosticFixIt(self.diag, key,
byref(range))
if len(value) == 0:
raise IndexError
return FixIt(range, value)
return FixItIterator(self)
@property
def category_number(self):
"""The category number for this diagnostic."""
return lib.clang_getDiagnosticCategory(self)
@property
def category_name(self):
"""The string name of the category for this diagnostic."""
return lib.clang_getDiagnosticCategoryName(self.category_number)
@property
def option(self):
"""The command-line option that enables this diagnostic."""
return lib.clang_getDiagnosticOption(self, None)
@property
def disable_option(self):
"""The command-line option that disables this diagnostic."""
disable = _CXString()
lib.clang_getDiagnosticOption(self, byref(disable))
return lib.clang_getCString(disable)
def __repr__(self):
return "<Diagnostic severity %r, location %r, spelling %r>" % (
self.severity, self.location, self.spelling)
def from_param(self):
return self.ptr
class FixIt(object):
"""
A FixIt represents a transformation to be applied to the source to
"fix-it". The fix-it shouldbe applied by replacing the given source range
with the given value.
"""
def __init__(self, range, value):
self.range = range
self.value = value
def __repr__(self):
return "<FixIt range %r, value %r>" % (self.range, self.value)
class TokenGroup(object):
"""Helper class to facilitate token management.
Tokens are allocated from libclang in chunks. They must be disposed of as a
collective group.
One purpose of this class is for instances to represent groups of allocated
tokens. Each token in a group contains a reference back to an instance of
this class. When all tokens from a group are garbage collected, it allows
this class to be garbage collected. When this class is garbage collected,
it calls the libclang destructor which invalidates all tokens in the group.
You should not instantiate this class outside of this module.
"""
def __init__(self, tu, memory, count):
self._tu = tu
self._memory = memory
self._count = count
def __del__(self):
lib.clang_disposeTokens(self._tu, self._memory, self._count)
@staticmethod
def get_tokens(tu, extent):
"""Helper method to return all tokens in an extent.
This functionality is needed multiple places in this module. We define
it here because it seems like a logical place.
"""
tokens_memory = POINTER(Token)()
tokens_count = c_uint()
lib.clang_tokenize(tu, extent, byref(tokens_memory),
byref(tokens_count))
count = int(tokens_count.value)
# If we get no tokens, no memory was allocated. Be sure not to return
# anything and potentially call a destructor on nothing.
if count < 1:
return
tokens_array = cast(tokens_memory, POINTER(Token * count)).contents
token_group = TokenGroup(tu, tokens_memory, tokens_count)
for i in xrange(0, count):
token = Token()
token.int_data = tokens_array[i].int_data
token.ptr_data = tokens_array[i].ptr_data
token._tu = tu
token._group = token_group
yield token
class TokenKind(object):
"""Describes a specific type of a Token."""
_value_map = {} # int -> TokenKind
def __init__(self, value, name):
"""Create a new TokenKind instance from a numeric value and a name."""
self.value = value
self.name = name
def __repr__(self):
return 'TokenKind.%s' % (self.name,)
@staticmethod
def from_value(value):
"""Obtain a registered TokenKind instance from its value."""
result = TokenKind._value_map.get(value, None)
if result is None:
raise ValueError('Unknown TokenKind: %d' % value)
return result
@staticmethod
def register(value, name):
"""Register a new TokenKind enumeration.
This should only be called at module load time by code within this
package.
"""
if value in TokenKind._value_map:
raise ValueError('TokenKind already registered: %d' % value)
kind = TokenKind(value, name)
TokenKind._value_map[value] = kind
setattr(TokenKind, name, kind)
### Cursor Kinds ###
class CursorKind(object):
"""
A CursorKind describes the kind of entity that a cursor points to.
"""
# The unique kind objects, indexed by id.
_kinds = []
_name_map = None
def __init__(self, value):
if value >= len(CursorKind._kinds):
CursorKind._kinds += [None] * (value - len(CursorKind._kinds) + 1)
if CursorKind._kinds[value] is not None:
raise ValueError,'CursorKind already loaded'
self.value = value
CursorKind._kinds[value] = self
CursorKind._name_map = None
def from_param(self):
return self.value
@property
def name(self):
"""Get the enumeration name of this cursor kind."""
if self._name_map is None:
self._name_map = {}
for key,value in CursorKind.__dict__.items():
if isinstance(value,CursorKind):
self._name_map[value] = key
return self._name_map[self]
@staticmethod
def from_id(id):
if id >= len(CursorKind._kinds) or CursorKind._kinds[id] is None:
raise ValueError,'Unknown cursor kind'
return CursorKind._kinds[id]
@staticmethod
def get_all_kinds():
"""Return all CursorKind enumeration instances."""
return filter(None, CursorKind._kinds)
def is_declaration(self):
"""Test if this is a declaration kind."""
return lib.clang_isDeclaration(self)
def is_reference(self):
"""Test if this is a reference kind."""
return lib.clang_isReference(self)
def is_expression(self):
"""Test if this is an expression kind."""
return lib.clang_isExpression(self)
def is_statement(self):
"""Test if this is a statement kind."""
return lib.clang_isStatement(self)
def is_attribute(self):
"""Test if this is an attribute kind."""
return lib.clang_isAttribute(self)
def is_invalid(self):
"""Test if this is an invalid kind."""
return lib.clang_isInvalid(self)
def is_translation_unit(self):
"""Test if this is a translation unit kind."""
return lib.clang_isTranslationUnit(self)
def is_preprocessing(self):
"""Test if this is a preprocessing kind."""
return lib.clang_isPreprocessing(self)
def is_unexposed(self):
"""Test if this is an unexposed kind."""
return lib.clang_isUnexposed(self)
def __repr__(self):
return 'CursorKind.%s' % (self.name,)
# FIXME: Is there a nicer way to expose this enumeration? We could potentially
# represent the nested structure, or even build a class hierarchy. The main
# things we want for sure are (a) simple external access to kinds, (b) a place
# to hang a description and name, (c) easy to keep in sync with Index.h.
###
# Declaration Kinds
# A declaration whose specific kind is not exposed via this interface.
#
# Unexposed declarations have the same operations as any other kind of
# declaration; one can extract their location information, spelling, find their
# definitions, etc. However, the specific kind of the declaration is not
# reported.
CursorKind.UNEXPOSED_DECL = CursorKind(1)
# A C or C++ struct.
CursorKind.STRUCT_DECL = CursorKind(2)
# A C or C++ union.
CursorKind.UNION_DECL = CursorKind(3)
# A C++ class.
CursorKind.CLASS_DECL = CursorKind(4)
# An enumeration.
CursorKind.ENUM_DECL = CursorKind(5)
# A field (in C) or non-static data member (in C++) in a struct, union, or C++
# class.
CursorKind.FIELD_DECL = CursorKind(6)
# An enumerator constant.
CursorKind.ENUM_CONSTANT_DECL = CursorKind(7)
# A function.
CursorKind.FUNCTION_DECL = CursorKind(8)
# A variable.
CursorKind.VAR_DECL = CursorKind(9)
# A function or method parameter.
CursorKind.PARM_DECL = CursorKind(10)
# An Objective-C @interface.
CursorKind.OBJC_INTERFACE_DECL = CursorKind(11)
# An Objective-C @interface for a category.
CursorKind.OBJC_CATEGORY_DECL = CursorKind(12)
# An Objective-C @protocol declaration.
CursorKind.OBJC_PROTOCOL_DECL = CursorKind(13)
# An Objective-C @property declaration.
CursorKind.OBJC_PROPERTY_DECL = CursorKind(14)
# An Objective-C instance variable.
CursorKind.OBJC_IVAR_DECL = CursorKind(15)
# An Objective-C instance method.
CursorKind.OBJC_INSTANCE_METHOD_DECL = CursorKind(16)
# An Objective-C class method.
CursorKind.OBJC_CLASS_METHOD_DECL = CursorKind(17)
# An Objective-C @implementation.
CursorKind.OBJC_IMPLEMENTATION_DECL = CursorKind(18)
# An Objective-C @implementation for a category.
CursorKind.OBJC_CATEGORY_IMPL_DECL = CursorKind(19)
# A typedef.
CursorKind.TYPEDEF_DECL = CursorKind(20)
# A C++ class method.
CursorKind.CXX_METHOD = CursorKind(21)
# A C++ namespace.
CursorKind.NAMESPACE = CursorKind(22)
# A linkage specification, e.g. 'extern "C"'.
CursorKind.LINKAGE_SPEC = CursorKind(23)
# A C++ constructor.
CursorKind.CONSTRUCTOR = CursorKind(24)
# A C++ destructor.
CursorKind.DESTRUCTOR = CursorKind(25)
# A C++ conversion function.
CursorKind.CONVERSION_FUNCTION = CursorKind(26)
# A C++ template type parameter
CursorKind.TEMPLATE_TYPE_PARAMETER = CursorKind(27)
# A C++ non-type template paramater.
CursorKind.TEMPLATE_NON_TYPE_PARAMETER = CursorKind(28)
# A C++ template template parameter.
CursorKind.TEMPLATE_TEMPLATE_PARAMTER = CursorKind(29)
# A C++ function template.
CursorKind.FUNCTION_TEMPLATE = CursorKind(30)
# A C++ class template.
CursorKind.CLASS_TEMPLATE = CursorKind(31)
# A C++ class template partial specialization.
CursorKind.CLASS_TEMPLATE_PARTIAL_SPECIALIZATION = CursorKind(32)
# A C++ namespace alias declaration.
CursorKind.NAMESPACE_ALIAS = CursorKind(33)
# A C++ using directive
CursorKind.USING_DIRECTIVE = CursorKind(34)
# A C++ using declaration
CursorKind.USING_DECLARATION = CursorKind(35)
# A Type alias decl.
CursorKind.TYPE_ALIAS_DECL = CursorKind(36)
# A Objective-C synthesize decl
CursorKind.OBJC_SYNTHESIZE_DECL = CursorKind(37)
# A Objective-C dynamic decl
CursorKind.OBJC_DYNAMIC_DECL = CursorKind(38)
# A C++ access specifier decl.
CursorKind.CXX_ACCESS_SPEC_DECL = CursorKind(39)
###
# Reference Kinds
CursorKind.OBJC_SUPER_CLASS_REF = CursorKind(40)
CursorKind.OBJC_PROTOCOL_REF = CursorKind(41)
CursorKind.OBJC_CLASS_REF = CursorKind(42)
# A reference to a type declaration.
#
# A type reference occurs anywhere where a type is named but not
# declared. For example, given:
# typedef unsigned size_type;
# size_type size;
#
# The typedef is a declaration of size_type (CXCursor_TypedefDecl),
# while the type of the variable "size" is referenced. The cursor
# referenced by the type of size is the typedef for size_type.
CursorKind.TYPE_REF = CursorKind(43)
CursorKind.CXX_BASE_SPECIFIER = CursorKind(44)
# A reference to a class template, function template, template
# template parameter, or class template partial specialization.
CursorKind.TEMPLATE_REF = CursorKind(45)
# A reference to a namespace or namepsace alias.
CursorKind.NAMESPACE_REF = CursorKind(46)
# A reference to a member of a struct, union, or class that occurs in
# some non-expression context, e.g., a designated initializer.
CursorKind.MEMBER_REF = CursorKind(47)
# A reference to a labeled statement.
CursorKind.LABEL_REF = CursorKind(48)
# A reference toa a set of overloaded functions or function templates
# that has not yet been resolved to a specific function or function template.
CursorKind.OVERLOADED_DECL_REF = CursorKind(49)
###
# Invalid/Error Kinds
CursorKind.INVALID_FILE = CursorKind(70)
CursorKind.NO_DECL_FOUND = CursorKind(71)
CursorKind.NOT_IMPLEMENTED = CursorKind(72)
CursorKind.INVALID_CODE = CursorKind(73)
###
# Expression Kinds
# An expression whose specific kind is not exposed via this interface.
#
# Unexposed expressions have the same operations as any other kind of
# expression; one can extract their location information, spelling, children,
# etc. However, the specific kind of the expression is not reported.
CursorKind.UNEXPOSED_EXPR = CursorKind(100)
# An expression that refers to some value declaration, such as a function,
# varible, or enumerator.
CursorKind.DECL_REF_EXPR = CursorKind(101)
# An expression that refers to a member of a struct, union, class, Objective-C
# class, etc.
CursorKind.MEMBER_REF_EXPR = CursorKind(102)
# An expression that calls a function.
CursorKind.CALL_EXPR = CursorKind(103)
# An expression that sends a message to an Objective-C object or class.
CursorKind.OBJC_MESSAGE_EXPR = CursorKind(104)
# An expression that represents a block literal.
CursorKind.BLOCK_EXPR = CursorKind(105)
# An integer literal.
CursorKind.INTEGER_LITERAL = CursorKind(106)
# A floating point number literal.
CursorKind.FLOATING_LITERAL = CursorKind(107)
# An imaginary number literal.
CursorKind.IMAGINARY_LITERAL = CursorKind(108)
# A string literal.
CursorKind.STRING_LITERAL = CursorKind(109)
# A character literal.
CursorKind.CHARACTER_LITERAL = CursorKind(110)
# A parenthesized expression, e.g. "(1)".
#
# This AST node is only formed if full location information is requested.
CursorKind.PAREN_EXPR = CursorKind(111)
# This represents the unary-expression's (except sizeof and
# alignof).
CursorKind.UNARY_OPERATOR = CursorKind(112)
# [C99 6.5.2.1] Array Subscripting.
CursorKind.ARRAY_SUBSCRIPT_EXPR = CursorKind(113)
# A builtin binary operation expression such as "x + y" or
# "x <= y".
CursorKind.BINARY_OPERATOR = CursorKind(114)
# Compound assignment such as "+=".
CursorKind.COMPOUND_ASSIGNMENT_OPERATOR = CursorKind(115)
# The ?: ternary operator.
CursorKind.CONDITIONAL_OPERATOR = CursorKind(116)
# An explicit cast in C (C99 6.5.4) or a C-style cast in C++
# (C++ [expr.cast]), which uses the syntax (Type)expr.
#
# For example: (int)f.
CursorKind.CSTYLE_CAST_EXPR = CursorKind(117)
# [C99 6.5.2.5]
CursorKind.COMPOUND_LITERAL_EXPR = CursorKind(118)
# Describes an C or C++ initializer list.
CursorKind.INIT_LIST_EXPR = CursorKind(119)
# The GNU address of label extension, representing &&label.
CursorKind.ADDR_LABEL_EXPR = CursorKind(120)
# This is the GNU Statement Expression extension: ({int X=4; X;})
CursorKind.StmtExpr = CursorKind(121)
# Represents a C11 generic selection.
CursorKind.GENERIC_SELECTION_EXPR = CursorKind(122)
# Implements the GNU __null extension, which is a name for a null
# pointer constant that has integral type (e.g., int or long) and is the same
# size and alignment as a pointer.
#
# The __null extension is typically only used by system headers, which define
# NULL as __null in C++ rather than using 0 (which is an integer that may not
# match the size of a pointer).
CursorKind.GNU_NULL_EXPR = CursorKind(123)
# C++'s static_cast<> expression.
CursorKind.CXX_STATIC_CAST_EXPR = CursorKind(124)
# C++'s dynamic_cast<> expression.
CursorKind.CXX_DYNAMIC_CAST_EXPR = CursorKind(125)
# C++'s reinterpret_cast<> expression.
CursorKind.CXX_REINTERPRET_CAST_EXPR = CursorKind(126)
# C++'s const_cast<> expression.
CursorKind.CXX_CONST_CAST_EXPR = CursorKind(127)
# Represents an explicit C++ type conversion that uses "functional"
# notion (C++ [expr.type.conv]).
#
# Example:
# \code
# x = int(0.5);
# \endcode
CursorKind.CXX_FUNCTIONAL_CAST_EXPR = CursorKind(128)
# A C++ typeid expression (C++ [expr.typeid]).
CursorKind.CXX_TYPEID_EXPR = CursorKind(129)
# [C++ 2.13.5] C++ Boolean Literal.
CursorKind.CXX_BOOL_LITERAL_EXPR = CursorKind(130)
# [C++0x 2.14.7] C++ Pointer Literal.
CursorKind.CXX_NULL_PTR_LITERAL_EXPR = CursorKind(131)
# Represents the "this" expression in C++
CursorKind.CXX_THIS_EXPR = CursorKind(132)
# [C++ 15] C++ Throw Expression.
#
# This handles 'throw' and 'throw' assignment-expression. When
# assignment-expression isn't present, Op will be null.
CursorKind.CXX_THROW_EXPR = CursorKind(133)
# A new expression for memory allocation and constructor calls, e.g:
# "new CXXNewExpr(foo)".
CursorKind.CXX_NEW_EXPR = CursorKind(134)
# A delete expression for memory deallocation and destructor calls,
# e.g. "delete[] pArray".
CursorKind.CXX_DELETE_EXPR = CursorKind(135)
# Represents a unary expression.
CursorKind.CXX_UNARY_EXPR = CursorKind(136)
# ObjCStringLiteral, used for Objective-C string literals i.e. "foo".
CursorKind.OBJC_STRING_LITERAL = CursorKind(137)
# ObjCEncodeExpr, used for in Objective-C.
CursorKind.OBJC_ENCODE_EXPR = CursorKind(138)
# ObjCSelectorExpr used for in Objective-C.
CursorKind.OBJC_SELECTOR_EXPR = CursorKind(139)
# Objective-C's protocol expression.
CursorKind.OBJC_PROTOCOL_EXPR = CursorKind(140)
# An Objective-C "bridged" cast expression, which casts between
# Objective-C pointers and C pointers, transferring ownership in the process.
#
# \code
# NSString *str = (__bridge_transfer NSString *)CFCreateString();
# \endcode
CursorKind.OBJC_BRIDGE_CAST_EXPR = CursorKind(141)
# Represents a C++0x pack expansion that produces a sequence of
# expressions.
#
# A pack expansion expression contains a pattern (which itself is an
# expression) followed by an ellipsis. For example:
CursorKind.PACK_EXPANSION_EXPR = CursorKind(142)
# Represents an expression that computes the length of a parameter
# pack.
CursorKind.SIZE_OF_PACK_EXPR = CursorKind(143)
# A statement whose specific kind is not exposed via this interface.
#
# Unexposed statements have the same operations as any other kind of statement;
# one can extract their location information, spelling, children, etc. However,
# the specific kind of the statement is not reported.
CursorKind.UNEXPOSED_STMT = CursorKind(200)
# A labelled statement in a function.
CursorKind.LABEL_STMT = CursorKind(201)
# A compound statement
CursorKind.COMPOUND_STMT = CursorKind(202)
# A case statement.
CursorKind.CASE_STMT = CursorKind(203)
# A default statement.
CursorKind.DEFAULT_STMT = CursorKind(204)
# An if statement.
CursorKind.IF_STMT = CursorKind(205)
# A switch statement.
CursorKind.SWITCH_STMT = CursorKind(206)
# A while statement.
CursorKind.WHILE_STMT = CursorKind(207)
# A do statement.
CursorKind.DO_STMT = CursorKind(208)
# A for statement.
CursorKind.FOR_STMT = CursorKind(209)
# A goto statement.
CursorKind.GOTO_STMT = CursorKind(210)
# An indirect goto statement.
CursorKind.INDIRECT_GOTO_STMT = CursorKind(211)
# A continue statement.
CursorKind.CONTINUE_STMT = CursorKind(212)
# A break statement.
CursorKind.BREAK_STMT = CursorKind(213)
# A return statement.
CursorKind.RETURN_STMT = CursorKind(214)
# A GNU-style inline assembler statement.
CursorKind.ASM_STMT = CursorKind(215)
# Objective-C's overall @try-@catch-@finally statement.
CursorKind.OBJC_AT_TRY_STMT = CursorKind(216)
# Objective-C's @catch statement.
CursorKind.OBJC_AT_CATCH_STMT = CursorKind(217)
# Objective-C's @finally statement.
CursorKind.OBJC_AT_FINALLY_STMT = CursorKind(218)
# Objective-C's @throw statement.
CursorKind.OBJC_AT_THROW_STMT = CursorKind(219)
# Objective-C's @synchronized statement.
CursorKind.OBJC_AT_SYNCHRONIZED_STMT = CursorKind(220)
# Objective-C's autorealease pool statement.
CursorKind.OBJC_AUTORELEASE_POOL_STMT = CursorKind(221)
# Objective-C's for collection statement.
CursorKind.OBJC_FOR_COLLECTION_STMT = CursorKind(222)
# C++'s catch statement.
CursorKind.CXX_CATCH_STMT = CursorKind(223)
# C++'s try statement.
CursorKind.CXX_TRY_STMT = CursorKind(224)
# C++'s for (* : *) statement.
CursorKind.CXX_FOR_RANGE_STMT = CursorKind(225)
# Windows Structured Exception Handling's try statement.
CursorKind.SEH_TRY_STMT = CursorKind(226)
# Windows Structured Exception Handling's except statement.
CursorKind.SEH_EXCEPT_STMT = CursorKind(227)
# Windows Structured Exception Handling's finally statement.
CursorKind.SEH_FINALLY_STMT = CursorKind(228)
# The null statement.
CursorKind.NULL_STMT = CursorKind(230)
# Adaptor class for mixing declarations with statements and expressions.
CursorKind.DECL_STMT = CursorKind(231)
###
# Other Kinds
# Cursor that represents the translation unit itself.
#
# The translation unit cursor exists primarily to act as the root cursor for
# traversing the contents of a translation unit.
CursorKind.TRANSLATION_UNIT = CursorKind(300)
###
# Attributes
# An attribute whoe specific kind is note exposed via this interface
CursorKind.UNEXPOSED_ATTR = CursorKind(400)
CursorKind.IB_ACTION_ATTR = CursorKind(401)
CursorKind.IB_OUTLET_ATTR = CursorKind(402)
CursorKind.IB_OUTLET_COLLECTION_ATTR = CursorKind(403)
CursorKind.CXX_FINAL_ATTR = CursorKind(404)
CursorKind.CXX_OVERRIDE_ATTR = CursorKind(405)
CursorKind.ANNOTATE_ATTR = CursorKind(406)
CursorKind.ASM_LABEL_ATTR = CursorKind(407)
###
# Preprocessing
CursorKind.PREPROCESSING_DIRECTIVE = CursorKind(500)
CursorKind.MACRO_DEFINITION = CursorKind(501)
CursorKind.MACRO_INSTANTIATION = CursorKind(502)
CursorKind.INCLUSION_DIRECTIVE = CursorKind(503)
### Cursors ###
class Cursor(Structure):
"""
The Cursor class represents a reference to an element within the AST. It
acts as a kind of iterator.
"""
_fields_ = [("_kind_id", c_int), ("xdata", c_int), ("data", c_void_p * 3)]
@staticmethod
def from_location(tu, location):
# We store a reference to the TU in the instance so the TU won't get
# collected before the cursor.
cursor = lib.clang_getCursor(tu, location)
cursor._tu = tu
return cursor
def __eq__(self, other):
return lib.clang_equalCursors(self, other)
def __ne__(self, other):
return not self.__eq__(other)
def is_definition(self):
"""
Returns true if the declaration pointed at by the cursor is also a
definition of that entity.
"""
return lib.clang_isCursorDefinition(self)
def is_static_method(self):
"""Returns True if the cursor refers to a C++ member function or member
function template that is declared 'static'.
"""
return lib.clang_CXXMethod_isStatic(self)
def get_definition(self):
"""
If the cursor is a reference to a declaration or a declaration of
some entity, return a cursor that points to the definition of that
entity.
"""
# TODO: Should probably check that this is either a reference or
# declaration prior to issuing the lookup.
return lib.clang_getCursorDefinition(self)
def get_usr(self):
"""Return the Unified Symbol Resultion (USR) for the entity referenced
by the given cursor (or None).
A Unified Symbol Resolution (USR) is a string that identifies a
particular entity (function, class, variable, etc.) within a
program. USRs can be compared across translation units to determine,
e.g., when references in one translation refer to an entity defined in
another translation unit."""
return lib.clang_getCursorUSR(self)
@property
def kind(self):
"""Return the kind of this cursor."""
return CursorKind.from_id(self._kind_id)
@property
def spelling(self):
"""Return the spelling of the entity pointed at by the cursor."""
if not self.kind.is_declaration():
# FIXME: clang_getCursorSpelling should be fixed to not assert on
# this, for consistency with clang_getCursorUSR.
return None
if not hasattr(self, '_spelling'):
self._spelling = lib.clang_getCursorSpelling(self)
return self._spelling
@property
def displayname(self):
"""
Return the display name for the entity referenced by this cursor.
The display name contains extra information that helps identify the cursor,
such as the parameters of a function or template or the arguments of a
class template specialization.
"""
if not hasattr(self, '_displayname'):
self._displayname = lib.clang_getCursorDisplayName(self)
return self._displayname
@property
def location(self):
"""
Return the source location (the starting character) of the entity
pointed at by the cursor.
"""
if not hasattr(self, '_loc'):
self._loc = lib.clang_getCursorLocation(self)
return self._loc
@property
def extent(self):
"""
Return the source range (the range of text) occupied by the entity
pointed at by the cursor.
"""
if not hasattr(self, '_extent'):
self._extent = lib.clang_getCursorExtent(self)
return self._extent
@property
def type(self):
"""
Retrieve the Type (if any) of the entity pointed at by the cursor.
"""
if not hasattr(self, '_type'):
self._type = lib.clang_getCursorType(self)
return self._type
@property
def canonical(self):
"""Return the canonical Cursor corresponding to this Cursor.
The canonical cursor is the cursor which is representative for the
underlying entity. For example, if you have multiple forward
declarations for the same class, the canonical cursor for the forward
declarations will be identical.
"""
if not hasattr(self, '_canonical'):
self._canonical = lib.clang_getCanonicalCursor(self)
return self._canonical
@property
def result_type(self):
"""Retrieve the Type of the result for this Cursor."""
if not hasattr(self, '_result_type'):
self._result_type = lib.clang_getResultType(self.type)
return self._result_type
@property
def underlying_typedef_type(self):
"""Return the underlying type of a typedef declaration.
Returns a Type for the typedef this cursor is a declaration for. If
the current cursor is not a typedef, this raises.
"""
if not hasattr(self, '_underlying_type'):
assert self.kind.is_declaration()
self._underlying_type = lib.clang_getTypedefDeclUnderlyingType(self)
return self._underlying_type
@property
def enum_type(self):
"""Return the integer type of an enum declaration.
Returns a Type corresponding to an integer. If the cursor is not for an
enum, this raises.
"""
if not hasattr(self, '_enum_type'):
assert self.kind == CursorKind.ENUM_DECL
self._enum_type = lib.clang_getEnumDeclIntegerType(self)
return self._enum_type
@property
def enum_value(self):
"""Return the value of an enum constant."""
if not hasattr(self, '_enum_value'):
assert self.kind == CursorKind.ENUM_CONSTANT_DECL
# Figure out the underlying type of the enum to know if it
# is a signed or unsigned quantity.
underlying_type = self.type
if underlying_type.kind == TypeKind.ENUM:
underlying_type = underlying_type.get_declaration().enum_type
if underlying_type.kind in (TypeKind.CHAR_U,
TypeKind.UCHAR,
TypeKind.CHAR16,
TypeKind.CHAR32,
TypeKind.USHORT,
TypeKind.UINT,
TypeKind.ULONG,
TypeKind.ULONGLONG,
TypeKind.UINT128):
self._enum_value = lib.clang_getEnumConstantDeclUnsignedValue(self)
else:
self._enum_value = lib.clang_getEnumConstantDeclValue(self)
return self._enum_value
@property
def objc_type_encoding(self):
"""Return the Objective-C type encoding as a str."""
if not hasattr(self, '_objc_type_encoding'):
self._objc_type_encoding = lib.clang_getDeclObjCTypeEncoding(self)
return self._objc_type_encoding
@property
def hash(self):
"""Returns a hash of the cursor as an int."""
if not hasattr(self, '_hash'):
self._hash = lib.clang_hashCursor(self)
return self._hash
@property
def semantic_parent(self):
"""Return the semantic parent for this cursor."""
if not hasattr(self, '_semantic_parent'):
self._semantic_parent = lib.clang_getCursorSemanticParent(self)
return self._semantic_parent
@property
def lexical_parent(self):
"""Return the lexical parent for this cursor."""
if not hasattr(self, '_lexical_parent'):
self._lexical_parent = lib.clang_getCursorLexicalParent(self)
return self._lexical_parent
@property
def translation_unit(self):
"""Returns the TranslationUnit to which this Cursor belongs."""
# If this triggers an AttributeError, the instance was not properly
# created.
return self._tu
def get_children(self):
"""Return an iterator for accessing the children of this cursor."""
# FIXME: Expose iteration from CIndex, PR6125.
def visitor(child, parent, children):
# FIXME: Document this assertion in API.
# FIXME: There should just be an isNull method.
assert child != lib.clang_getNullCursor()
# Create reference to TU so it isn't GC'd before Cursor.
child._tu = self._tu
children.append(child)
return 1 # continue
children = []
lib.clang_visitChildren(self, callbacks['cursor_visit'](visitor),
children)
return iter(children)
def get_tokens(self):
"""Obtain Token instances formulating that compose this Cursor.
This is a generator for Token instances. It returns all tokens which
occupy the extent this cursor occupies.
"""
return TokenGroup.get_tokens(self._tu, self.extent)
@staticmethod
def from_result(res, fn, args):
assert isinstance(res, Cursor)
# FIXME: There should just be an isNull method.
if res == lib.clang_getNullCursor():
return None
# Store a reference to the TU in the Python object so it won't get GC'd
# before the Cursor.
tu = None
for arg in args:
if isinstance(arg, TranslationUnit):
tu = arg
break
if hasattr(arg, 'translation_unit'):
tu = arg.translation_unit
break
assert tu is not None
res._tu = tu
return res
@staticmethod
def from_cursor_result(res, fn, args):
assert isinstance(res, Cursor)
if res == lib.clang_getNullCursor():
return None
res._tu = args[0]._tu
return res
### Type Kinds ###
class TypeKind(object):
"""
Describes the kind of type.
"""
# The unique kind objects, indexed by id.
_kinds = []
_name_map = None
def __init__(self, value):
if value >= len(TypeKind._kinds):
TypeKind._kinds += [None] * (value - len(TypeKind._kinds) + 1)
if TypeKind._kinds[value] is not None:
raise ValueError,'TypeKind already loaded'
self.value = value
TypeKind._kinds[value] = self
TypeKind._name_map = None
def from_param(self):
return self.value
@property
def name(self):
"""Get the enumeration name of this cursor kind."""
if self._name_map is None:
self._name_map = {}
for key,value in TypeKind.__dict__.items():
if isinstance(value,TypeKind):
self._name_map[value] = key
return self._name_map[self]
@property
def spelling(self):
"""Retrieve the spelling of this TypeKind."""
return lib.clang_getTypeKindSpelling(self.value)
@staticmethod
def from_id(id):
if id >= len(TypeKind._kinds) or TypeKind._kinds[id] is None:
raise ValueError,'Unknown type kind %d' % id
return TypeKind._kinds[id]
def __repr__(self):
return 'TypeKind.%s' % (self.name,)
TypeKind.INVALID = TypeKind(0)
TypeKind.UNEXPOSED = TypeKind(1)
TypeKind.VOID = TypeKind(2)
TypeKind.BOOL = TypeKind(3)
TypeKind.CHAR_U = TypeKind(4)
TypeKind.UCHAR = TypeKind(5)
TypeKind.CHAR16 = TypeKind(6)
TypeKind.CHAR32 = TypeKind(7)
TypeKind.USHORT = TypeKind(8)
TypeKind.UINT = TypeKind(9)
TypeKind.ULONG = TypeKind(10)
TypeKind.ULONGLONG = TypeKind(11)
TypeKind.UINT128 = TypeKind(12)
TypeKind.CHAR_S = TypeKind(13)
TypeKind.SCHAR = TypeKind(14)
TypeKind.WCHAR = TypeKind(15)
TypeKind.SHORT = TypeKind(16)
TypeKind.INT = TypeKind(17)
TypeKind.LONG = TypeKind(18)
TypeKind.LONGLONG = TypeKind(19)
TypeKind.INT128 = TypeKind(20)
TypeKind.FLOAT = TypeKind(21)
TypeKind.DOUBLE = TypeKind(22)
TypeKind.LONGDOUBLE = TypeKind(23)
TypeKind.NULLPTR = TypeKind(24)
TypeKind.OVERLOAD = TypeKind(25)
TypeKind.DEPENDENT = TypeKind(26)
TypeKind.OBJCID = TypeKind(27)
TypeKind.OBJCCLASS = TypeKind(28)
TypeKind.OBJCSEL = TypeKind(29)
TypeKind.COMPLEX = TypeKind(100)
TypeKind.POINTER = TypeKind(101)
TypeKind.BLOCKPOINTER = TypeKind(102)
TypeKind.LVALUEREFERENCE = TypeKind(103)
TypeKind.RVALUEREFERENCE = TypeKind(104)
TypeKind.RECORD = TypeKind(105)
TypeKind.ENUM = TypeKind(106)
TypeKind.TYPEDEF = TypeKind(107)
TypeKind.OBJCINTERFACE = TypeKind(108)
TypeKind.OBJCOBJECTPOINTER = TypeKind(109)
TypeKind.FUNCTIONNOPROTO = TypeKind(110)
TypeKind.FUNCTIONPROTO = TypeKind(111)
TypeKind.CONSTANTARRAY = TypeKind(112)
TypeKind.VECTOR = TypeKind(113)
class Type(Structure):
"""
The type of an element in the abstract syntax tree.
"""
_fields_ = [("_kind_id", c_int), ("data", c_void_p * 2)]
@property
def kind(self):
"""Return the kind of this type."""
return TypeKind.from_id(self._kind_id)
def argument_types(self):
"""Retrieve a container for the non-variadic arguments for this type.
The returned object is iterable and indexable. Each item in the
container is a Type instance.
"""
class ArgumentsIterator(collections.Sequence):
def __init__(self, parent):
self.parent = parent
self.length = None
def __len__(self):
if self.length is None:
self.length = lib.clang_getNumArgTypes(self.parent)
return self.length
def __getitem__(self, key):
# FIXME Support slice objects.
if not isinstance(key, int):
raise TypeError("Must supply a non-negative int.")
if key < 0:
raise IndexError("Only non-negative indexes are accepted.")
if key >= len(self):
raise IndexError("Index greater than container length: "
"%d > %d" % ( key, len(self) ))
result = lib.clang_getArgType(self.parent, key)
if result.kind == TypeKind.INVALID:
raise IndexError("Argument could not be retrieved.")
return result
assert self.kind == TypeKind.FUNCTIONPROTO
return ArgumentsIterator(self)
@property
def element_type(self):
"""Retrieve the Type of elements within this Type.
If accessed on a type that is not an array, complex, or vector type, an
exception will be raised.
"""
result = lib.clang_getElementType(self)
if result.kind == TypeKind.INVALID:
raise Exception('Element type not available on this type.')
return result
@property
def element_count(self):
"""Retrieve the number of elements in this type.
Returns an int.
If the Type is not an array or vector, this raises.
"""
result = lib.clang_getNumElements(self)
if result < 0:
raise Exception('Type does not have elements.')
return result
@property
def translation_unit(self):
"""The TranslationUnit to which this Type is associated."""
# If this triggers an AttributeError, the instance was not properly
# instantiated.
return self._tu
@staticmethod
def from_result(res, fn, args):
assert isinstance(res, Type)
tu = None
for arg in args:
if hasattr(arg, 'translation_unit'):
tu = arg.translation_unit
break
assert tu is not None
res._tu = tu
return res
def get_canonical(self):
"""
Return the canonical type for a Type.
Clang's type system explicitly models typedefs and all the
ways a specific type can be represented. The canonical type
is the underlying type with all the "sugar" removed. For
example, if 'T' is a typedef for 'int', the canonical type for
'T' would be 'int'.
"""
return lib.clang_getCanonicalType(self)
def is_const_qualified(self):
"""Determine whether a Type has the "const" qualifier set.
This does not look through typedefs that may have added "const"
at a different level.
"""
return lib.clang_isConstQualifiedType(self)
def is_volatile_qualified(self):
"""Determine whether a Type has the "volatile" qualifier set.
This does not look through typedefs that may have added "volatile"
at a different level.
"""
return lib.clang_isVolatileQualifiedType(self)
def is_restrict_qualified(self):
"""Determine whether a Type has the "restrict" qualifier set.
This does not look through typedefs that may have added "restrict" at
a different level.
"""
return lib.clang_isRestrictQualifiedType(self)
def is_function_variadic(self):
"""Determine whether this function Type is a variadic function type."""
assert self.kind == TypeKind.FUNCTIONPROTO
return lib.clang_isFunctionTypeVariadic(self)
def is_pod(self):
"""Determine whether this Type represents plain old data (POD)."""
return lib.clang_isPODType(self)
def get_pointee(self):
"""
For pointer types, returns the type of the pointee.
"""
return lib.clang_getPointeeType(self)
def get_declaration(self):
"""
Return the cursor for the declaration of the given type.
"""
return lib.clang_getTypeDeclaration(self)
def get_result(self):
"""
Retrieve the result type associated with a function type.
"""
return lib.clang_getResultType(self)
def get_array_element_type(self):
"""
Retrieve the type of the elements of the array type.
"""
return lib.clang_getArrayElementType(self)
def get_array_size(self):
"""
Retrieve the size of the constant array.
"""
return lib.clang_getArraySize(self)
def __eq__(self, other):
if type(other) != type(self):
return False
return lib.clang_equalTypes(self, other)
def __ne__(self, other):
return not self.__eq__(other)
## CIndex Objects ##
# CIndex objects (derived from ClangObject) are essentially lightweight
# wrappers attached to some underlying object, which is exposed via CIndex as
# a void*.
class ClangObject(object):
"""
A helper for Clang objects. This class helps act as an intermediary for
the ctypes library and the Clang CIndex library.
"""
def __init__(self, obj):
assert isinstance(obj, c_object_p) and obj
self.obj = self._as_parameter_ = obj
def from_param(self):
return self._as_parameter_
class _CXUnsavedFile(Structure):
"""Helper for passing unsaved file arguments."""
_fields_ = [("name", c_char_p), ("contents", c_char_p), ('length', c_ulong)]
class CompletionChunk:
class Kind:
def __init__(self, name):
self.name = name
def __str__(self):
return self.name
def __repr__(self):
return "<ChunkKind: %s>" % self
def __init__(self, completionString, key):
self.cs = completionString
self.key = key
def __repr__(self):
return "{'" + self.spelling + "', " + str(self.kind) + "}"
@CachedProperty
def spelling(self):
return lib.clang_getCompletionChunkText(self.cs, self.key).spelling
@CachedProperty
def kind(self):
res = lib.clang_getCompletionChunkKind(self.cs, self.key)
return completionChunkKindMap[res]
@CachedProperty
def string(self):
res = lib.clang_getCompletionChunkCompletionString(self.cs, self.key)
if (res):
return CompletionString(res)
else:
None
def isKindOptional(self):
return self.kind == completionChunkKindMap[0]
def isKindTypedText(self):
return self.kind == completionChunkKindMap[1]
def isKindPlaceHolder(self):
return self.kind == completionChunkKindMap[3]
def isKindInformative(self):
return self.kind == completionChunkKindMap[4]
def isKindResultType(self):
return self.kind == completionChunkKindMap[15]
completionChunkKindMap = {
0: CompletionChunk.Kind("Optional"),
1: CompletionChunk.Kind("TypedText"),
2: CompletionChunk.Kind("Text"),
3: CompletionChunk.Kind("Placeholder"),
4: CompletionChunk.Kind("Informative"),
5: CompletionChunk.Kind("CurrentParameter"),
6: CompletionChunk.Kind("LeftParen"),
7: CompletionChunk.Kind("RightParen"),
8: CompletionChunk.Kind("LeftBracket"),
9: CompletionChunk.Kind("RightBracket"),
10: CompletionChunk.Kind("LeftBrace"),
11: CompletionChunk.Kind("RightBrace"),
12: CompletionChunk.Kind("LeftAngle"),
13: CompletionChunk.Kind("RightAngle"),
14: CompletionChunk.Kind("Comma"),
15: CompletionChunk.Kind("ResultType"),
16: CompletionChunk.Kind("Colon"),
17: CompletionChunk.Kind("SemiColon"),
18: CompletionChunk.Kind("Equal"),
19: CompletionChunk.Kind("HorizontalSpace"),
20: CompletionChunk.Kind("VerticalSpace")}
class CompletionString(ClangObject):
class Availability:
def __init__(self, name):
self.name = name
def __str__(self):
return self.name
def __repr__(self):
return "<Availability: %s>" % self
def __len__(self):
self.num_chunks
@CachedProperty
def num_chunks(self):
return lib.clang_getNumCompletionChunks(self.obj)
def __getitem__(self, key):
if self.num_chunks <= key:
raise IndexError
return CompletionChunk(self.obj, key)
@property
def priority(self):
return lib.clang_getCompletionPriority(self.obj)
@property
def availability(self):
res = lib.clang_getCompletionAvailability(self.obj)
return availabilityKinds[res]
def __repr__(self):
return " | ".join([str(a) for a in self]) \
+ " || Priority: " + str(self.priority) \
+ " || Availability: " + str(self.availability)
availabilityKinds = {
0: CompletionChunk.Kind("Available"),
1: CompletionChunk.Kind("Deprecated"),
2: CompletionChunk.Kind("NotAvailable")}
class CodeCompletionResult(Structure):
_fields_ = [('cursorKind', c_int), ('completionString', c_object_p)]
def __repr__(self):
return str(CompletionString(self.completionString))
@property
def kind(self):
return CursorKind.from_id(self.cursorKind)
@property
def string(self):
return CompletionString(self.completionString)
class CCRStructure(Structure):
_fields_ = [('results', POINTER(CodeCompletionResult)),
('numResults', c_int)]
def __len__(self):
return self.numResults
def __getitem__(self, key):
if len(self) <= key:
raise IndexError
return self.results[key]
class CodeCompletionResults(ClangObject):
def __init__(self, ptr):
assert isinstance(ptr, POINTER(CCRStructure)) and ptr
self.ptr = self._as_parameter_ = ptr
def from_param(self):
return self._as_parameter_
def __del__(self):
lib.clang_disposeCodeCompleteResults(self)
@property
def results(self):
return self.ptr.contents
@property
def diagnostics(self):
class DiagnosticsItr:
def __init__(self, ccr):
self.ccr= ccr
def __len__(self):
return int(lib.clang_codeCompleteGetNumDiagnostics(self.ccr))
def __getitem__(self, key):
return lib.clang_codeCompleteGetDiagnostic(self.ccr, key)
return DiagnosticsItr(self)
class Index(ClangObject):
"""
The Index type provides the primary interface to the Clang CIndex library,
primarily by providing an interface for reading and parsing translation
units.
"""
@staticmethod
def create(excludeDecls=False):
"""
Create a new Index.
Parameters:
excludeDecls -- Exclude local declarations from translation units.
"""
return Index(lib.clang_createIndex(excludeDecls, 0))
def __del__(self):
lib.clang_disposeIndex(self)
def read(self, path):
"""Load a TranslationUnit from the given AST file."""
return TranslationUnit.from_ast(path, self)
def parse(self, path, args=None, unsaved_files=None, options = 0):
"""Load the translation unit from the given source code file by running
clang and generating the AST before loading. Additional command line
parameters can be passed to clang via the args parameter.
In-memory contents for files can be provided by passing a list of pairs
to as unsaved_files, the first item should be the filenames to be mapped
and the second should be the contents to be substituted for the
file. The contents may be passed as strings or file objects.
If an error was encountered during parsing, a TranslationUnitLoadError
will be raised.
"""
return TranslationUnit.from_source(path, args, unsaved_files, options,
self)
class TranslationUnit(ClangObject):
"""Represents a source code translation unit.
This is one of the main types in the API. Any time you wish to interact
with Clang's representation of a source file, you typically start with a
translation unit.
"""
# Default parsing mode.
PARSE_NONE = 0
# Instruct the parser to create a detailed processing record containing
# metadata not normally retained.
PARSE_DETAILED_PROCESSING_RECORD = 1
# Indicates that the translation unit is incomplete. This is typically used
# when parsing headers.
PARSE_INCOMPLETE = 2
# Instruct the parser to create a pre-compiled preamble for the translation
# unit. This caches the preamble (included files at top of source file).
# This is useful if the translation unit will be reparsed and you don't
# want to incur the overhead of reparsing the preamble.
PARSE_PRECOMPILED_PREAMBLE = 4
# Cache code completion information on parse. This adds time to parsing but
# speeds up code completion.
PARSE_CACHE_COMPLETION_RESULTS = 8
# Flags with values 16 and 32 are deprecated and intentionally omitted.
# Do not parse function bodies. This is useful if you only care about
# searching for declarations/definitions.
PARSE_SKIP_FUNCTION_BODIES = 64
@classmethod
def from_source(cls, filename, args=None, unsaved_files=None, options=0,
index=None):
"""Create a TranslationUnit by parsing source.
This is capable of processing source code both from files on the
filesystem as well as in-memory contents.
Command-line arguments that would be passed to clang are specified as
a list via args. These can be used to specify include paths, warnings,
etc. e.g. ["-Wall", "-I/path/to/include"].
In-memory file content can be provided via unsaved_files. This is an
iterable of 2-tuples. The first element is the str filename. The
second element defines the content. Content can be provided as str
source code or as file objects (anything with a read() method). If
a file object is being used, content will be read until EOF and the
read cursor will not be reset to its original position.
options is a bitwise or of TranslationUnit.PARSE_XXX flags which will
control parsing behavior.
index is an Index instance to utilize. If not provided, a new Index
will be created for this TranslationUnit.
To parse source from the filesystem, the filename of the file to parse
is specified by the filename argument. Or, filename could be None and
the args list would contain the filename(s) to parse.
To parse source from an in-memory buffer, set filename to the virtual
filename you wish to associate with this source (e.g. "test.c"). The
contents of that file are then provided in unsaved_files.
If an error occurs, a TranslationUnitLoadError is raised.
Please note that a TranslationUnit with parser errors may be returned.
It is the caller's responsibility to check tu.diagnostics for errors.
Also note that Clang infers the source language from the extension of
the input filename. If you pass in source code containing a C++ class
declaration with the filename "test.c" parsing will fail.
"""
if args is None:
args = []
if unsaved_files is None:
unsaved_files = []
if index is None:
index = Index.create()
args_array = None
if len(args) > 0:
args_array = (c_char_p * len(args))(* args)
unsaved_array = None
if len(unsaved_files) > 0:
unsaved_array = (_CXUnsavedFile * len(unsaved_files))()
for i, (name, contents) in enumerate(unsaved_files):
if hasattr(contents, "read"):
contents = contents.read()
unsaved_array[i].name = name
unsaved_array[i].contents = contents
unsaved_array[i].length = len(contents)
ptr = lib.clang_parseTranslationUnit(index, filename, args_array,
len(args), unsaved_array,
len(unsaved_files), options)
if ptr is None:
raise TranslationUnitLoadError("Error parsing translation unit.")
return cls(ptr, index=index)
@classmethod
def from_ast_file(cls, filename, index=None):
"""Create a TranslationUnit instance from a saved AST file.
A previously-saved AST file (provided with -emit-ast or
TranslationUnit.save()) is loaded from the filename specified.
If the file cannot be loaded, a TranslationUnitLoadError will be
raised.
index is optional and is the Index instance to use. If not provided,
a default Index will be created.
"""
if index is None:
index = Index.create()
ptr = lib.clang_createTranslationUnit(index, filename)
if ptr is None:
raise TranslationUnitLoadError(filename)
return cls(ptr=ptr, index=index)
def __init__(self, ptr, index):
"""Create a TranslationUnit instance.
TranslationUnits should be created using one of the from_* @classmethod
functions above. __init__ is only called internally.
"""
assert isinstance(index, Index)
ClangObject.__init__(self, ptr)
def __del__(self):
lib.clang_disposeTranslationUnit(self)
@property
def cursor(self):
"""Retrieve the cursor that represents the given translation unit."""
return lib.clang_getTranslationUnitCursor(self)
@property
def spelling(self):
"""Get the original translation unit source file name."""
return lib.clang_getTranslationUnitSpelling(self)
def get_includes(self):
"""
Return an iterable sequence of FileInclusion objects that describe the
sequence of inclusions in a translation unit. The first object in
this sequence is always the input file. Note that this method will not
recursively iterate over header files included through precompiled
headers.
"""
def visitor(fobj, lptr, depth, includes):
if depth > 0:
loc = lptr.contents
includes.append(FileInclusion(loc.file, File(fobj), loc, depth))
# Automatically adapt CIndex/ctype pointers to python objects
includes = []
lib.clang_getInclusions(self,
callbacks['translation_unit_includes'](visitor), includes)
return iter(includes)
def get_file(self, filename):
"""Obtain a File from this translation unit."""
return File.from_name(self, filename)
def get_location(self, filename, position):
"""Obtain a SourceLocation for a file in this translation unit.
The position can be specified by passing:
- Integer file offset. Initial file offset is 0.
- 2-tuple of (line number, column number). Initial file position is
(0, 0)
"""
f = self.get_file(filename)
if isinstance(position, int):
return SourceLocation.from_offset(self, f, position)
return SourceLocation.from_position(self, f, position[0], position[1])
def get_extent(self, filename, locations):
"""Obtain a SourceRange from this translation unit.
The bounds of the SourceRange must ultimately be defined by a start and
end SourceLocation. For the locations argument, you can pass:
- 2 SourceLocation instances in a 2-tuple or list.
- 2 int file offsets via a 2-tuple or list.
- 2 2-tuple or lists of (line, column) pairs in a 2-tuple or list.
e.g.
get_extent('foo.c', (5, 10))
get_extent('foo.c', ((1, 1), (1, 15)))
"""
f = self.get_file(filename)
if len(locations) < 2:
raise Exception('Must pass object with at least 2 elements')
start_location, end_location = locations
if hasattr(start_location, '__len__'):
start_location = SourceLocation.from_position(self, f,
start_location[0], start_location[1])
elif isinstance(start_location, int):
start_location = SourceLocation.from_offset(self, f,
start_location)
if hasattr(end_location, '__len__'):
end_location = SourceLocation.from_position(self, f,
end_location[0], end_location[1])
elif isinstance(end_location, int):
end_location = SourceLocation.from_offset(self, f, end_location)
assert isinstance(start_location, SourceLocation)
assert isinstance(end_location, SourceLocation)
return SourceRange.from_locations(start_location, end_location)
@property
def diagnostics(self):
"""
Return an iterable (and indexable) object containing the diagnostics.
"""
class DiagIterator:
def __init__(self, tu):
self.tu = tu
def __len__(self):
return int(lib.clang_getNumDiagnostics(self.tu))
def __getitem__(self, key):
diag = lib.clang_getDiagnostic(self.tu, key)
if not diag:
raise IndexError
return Diagnostic(diag)
return DiagIterator(self)
def reparse(self, unsaved_files=None, options=0):
"""
Reparse an already parsed translation unit.
In-memory contents for files can be provided by passing a list of pairs
as unsaved_files, the first items should be the filenames to be mapped
and the second should be the contents to be substituted for the
file. The contents may be passed as strings or file objects.
"""
if unsaved_files is None:
unsaved_files = []
unsaved_files_array = 0
if len(unsaved_files):
unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))()
for i,(name,value) in enumerate(unsaved_files):
if not isinstance(value, str):
# FIXME: It would be great to support an efficient version
# of this, one day.
value = value.read()
print value
if not isinstance(value, str):
raise TypeError,'Unexpected unsaved file contents.'
unsaved_files_array[i].name = name
unsaved_files_array[i].contents = value
unsaved_files_array[i].length = len(value)
ptr = lib.clang_reparseTranslationUnit(self, len(unsaved_files),
unsaved_files_array, options)
def save(self, filename):
"""Saves the TranslationUnit to a file.
This is equivalent to passing -emit-ast to the clang frontend. The
saved file can be loaded back into a TranslationUnit. Or, if it
corresponds to a header, it can be used as a pre-compiled header file.
If an error occurs while saving, a TranslationUnitSaveError is raised.
If the error was TranslationUnitSaveError.ERROR_INVALID_TU, this means
the constructed TranslationUnit was not valid at time of save. In this
case, the reason(s) why should be available via
TranslationUnit.diagnostics().
filename -- The path to save the translation unit to.
"""
options = lib.clang_defaultSaveOptions(self)
result = int(lib.clang_saveTranslationUnit(self, filename, options))
if result != 0:
raise TranslationUnitSaveError(result,
'Error saving TranslationUnit.')
def codeComplete(self, path, line, column, unsaved_files=None, options=0):
"""
Code complete in this translation unit.
In-memory contents for files can be provided by passing a list of pairs
as unsaved_files, the first items should be the filenames to be mapped
and the second should be the contents to be substituted for the
file. The contents may be passed as strings or file objects.
"""
if unsaved_files is None:
unsaved_files = []
unsaved_files_array = 0
if len(unsaved_files):
unsaved_files_array = (_CXUnsavedFile * len(unsaved_files))()
for i,(name,value) in enumerate(unsaved_files):
if not isinstance(value, str):
# FIXME: It would be great to support an efficient version
# of this, one day.
value = value.read()
print value
if not isinstance(value, str):
raise TypeError,'Unexpected unsaved file contents.'
unsaved_files_array[i].name = name
unsaved_files_array[i].contents = value
unsaved_files_array[i].length = len(value)
ptr = lib.clang_codeCompleteAt(self, path, line, column,
unsaved_files_array, len(unsaved_files), options)
if ptr:
return CodeCompletionResults(ptr)
return None
def get_tokens(self, locations=None, extent=None):
"""Obtain tokens in this translation unit.
This is a generator for Token instances. The caller specifies a range
of source code to obtain tokens for. The range can be specified as a
2-tuple of SourceLocation or as a SourceRange. If both are defined,
behavior is undefined.
"""
if locations is not None:
extent = SourceRange(start=locations[0], end=locations[1])
return TokenGroup.get_tokens(self, extent)
class File(ClangObject):
"""
The File class represents a particular source file that is part of a
translation unit.
"""
@staticmethod
def from_name(translation_unit, file_name):
"""Retrieve a file handle within the given translation unit."""
return File(lib.clang_getFile(translation_unit, file_name))
@property
def name(self):
"""Return the complete file and path name of the file."""
return lib.clang_getCString(lib.clang_getFileName(self))
@property
def time(self):
"""Return the last modification time of the file."""
return lib.clang_getFileTime(self)
def __str__(self):
return self.name
def __repr__(self):
return "<File: %s>" % (self.name)
@staticmethod
def from_cursor_result(res, fn, args):
assert isinstance(res, File)
# Copy a reference to the TranslationUnit to prevent premature GC.
res._tu = args[0]._tu
return res
class FileInclusion(object):
"""
The FileInclusion class represents the inclusion of one source file by
another via a '#include' directive or as the input file for the translation
unit. This class provides information about the included file, the including
file, the location of the '#include' directive and the depth of the included
file in the stack. Note that the input file has depth 0.
"""
def __init__(self, src, tgt, loc, depth):
self.source = src
self.include = tgt
self.location = loc
self.depth = depth
@property
def is_input_file(self):
"""True if the included file is the input file."""
return self.depth == 0
class CompilationDatabaseError(Exception):
"""Represents an error that occurred when working with a CompilationDatabase
Each error is associated to an enumerated value, accessible under
e.cdb_error. Consumers can compare the value with one of the ERROR_
constants in this class.
"""
# An unknown error occured
ERROR_UNKNOWN = 0
# The database could not be loaded
ERROR_CANNOTLOADDATABASE = 1
def __init__(self, enumeration, message):
assert isinstance(enumeration, int)
if enumeration > 1:
raise Exception("Encountered undefined CompilationDatabase error "
"constant: %d. Please file a bug to have this "
"value supported." % enumeration)
self.cdb_error = enumeration
Exception.__init__(self, 'Error %d: %s' % (enumeration, message))
class CompileCommand(object):
"""Represents the compile command used to build a file"""
def __init__(self, cmd, ccmds):
self.cmd = cmd
# Keep a reference to the originating CompileCommands
# to prevent garbage collection
self.ccmds = ccmds
@property
def directory(self):
"""Get the working directory for this CompileCommand"""
return lib.clang_CompileCommand_getDirectory(self.cmd)
@property
def arguments(self):
"""
Get an iterable object providing each argument in the
command line for the compiler invocation as a _CXString.
Invariant : the first argument is the compiler executable
"""
length = lib.clang_CompileCommand_getNumArgs(self.cmd)
for i in xrange(length):
yield lib.clang_CompileCommand_getArg(self.cmd, i)
class CompileCommands(object):
"""
CompileCommands is an iterable object containing all CompileCommand
that can be used for building a specific file.
"""
def __init__(self, ccmds):
self.ccmds = ccmds
def __del__(self):
lib.clang_CompileCommands_dispose(self.ccmds)
def __len__(self):
return int(lib.clang_CompileCommands_getSize(self.ccmds))
def __getitem__(self, i):
cc = lib.clang_CompileCommands_getCommand(self.ccmds, i)
if not cc:
raise IndexError
return CompileCommand(cc, self)
@staticmethod
def from_result(res, fn, args):
if not res:
return None
return CompileCommands(res)
class CompilationDatabase(ClangObject):
"""
The CompilationDatabase is a wrapper class around
clang::tooling::CompilationDatabase
It enables querying how a specific source file can be built.
"""
def __del__(self):
lib.clang_CompilationDatabase_dispose(self)
@staticmethod
def from_result(res, fn, args):
if not res:
raise CompilationDatabaseError(0,
"CompilationDatabase loading failed")
return CompilationDatabase(res)
@staticmethod
def fromDirectory(buildDir):
"""Builds a CompilationDatabase from the database found in buildDir"""
errorCode = c_uint()
try:
cdb = lib.clang_CompilationDatabase_fromDirectory(buildDir,
byref(errorCode))
except CompilationDatabaseError as e:
raise CompilationDatabaseError(int(errorCode.value),
"CompilationDatabase loading failed")
return cdb
def getCompileCommands(self, filename):
"""
Get an iterable object providing all the CompileCommands available to
build filename. Returns None if filename is not found in the database.
"""
return lib.clang_CompilationDatabase_getCompileCommands(self, filename)
class Token(Structure):
"""Represents a single token from the preprocessor.
Tokens are effectively segments of source code. Source code is first parsed
into tokens before being converted into the AST and Cursors.
Tokens are obtained from parsed TranslationUnit instances. You currently
can't create tokens manually.
"""
_fields_ = [
('int_data', c_uint * 4),
('ptr_data', c_void_p)
]
@property
def spelling(self):
"""The spelling of this token.
This is the textual representation of the token in source.
"""
return lib.clang_getTokenSpelling(self._tu, self)
@property
def kind(self):
"""Obtain the TokenKind of the current token."""
return TokenKind.from_value(lib.clang_getTokenKind(self))
@property
def location(self):
"""The SourceLocation this Token occurs at."""
return lib.clang_getTokenLocation(self._tu, self)
@property
def extent(self):
"""The SourceRange this Token occupies."""
return lib.clang_getTokenExtent(self._tu, self)
@property
def cursor(self):
"""The Cursor this Token corresponds to."""
cursor = Cursor()
lib.clang_annotateTokens(self._tu, byref(self), 1, byref(cursor))
return cursor
# Now comes the plumbing to hook up the C library.
# Register callback types in common container.
callbacks['translation_unit_includes'] = CFUNCTYPE(None, c_object_p,
POINTER(SourceLocation), c_uint, py_object)
callbacks['cursor_visit'] = CFUNCTYPE(c_int, Cursor, Cursor, py_object)
def register_functions(lib):
"""Register function prototypes with a libclang library instance.
This must be called as part of library instantiation so Python knows how
to call out to the shared library.
"""
# Functions are registered in strictly alphabetical order.
lib.clang_annotateTokens.argtype = [TranslationUnit, POINTER(Token),
c_uint, POINTER(Cursor)]
lib.clang_CompilationDatabase_dispose.argtypes = [c_object_p]
lib.clang_CompilationDatabase_fromDirectory.argtypes = [c_char_p,
POINTER(c_uint)]
lib.clang_CompilationDatabase_fromDirectory.restype = c_object_p
lib.clang_CompilationDatabase_fromDirectory.errcheck = CompilationDatabase.from_result
lib.clang_CompilationDatabase_getCompileCommands.argtypes = [c_object_p, c_char_p]
lib.clang_CompilationDatabase_getCompileCommands.restype = c_object_p
lib.clang_CompilationDatabase_getCompileCommands.errcheck = CompileCommands.from_result
lib.clang_CompileCommands_dispose.argtypes = [c_object_p]
lib.clang_CompileCommands_getCommand.argtypes = [c_object_p, c_uint]
lib.clang_CompileCommands_getCommand.restype = c_object_p
lib.clang_CompileCommands_getSize.argtypes = [c_object_p]
lib.clang_CompileCommands_getSize.restype = c_uint
lib.clang_CompileCommand_getArg.argtypes = [c_object_p, c_uint]
lib.clang_CompileCommand_getArg.restype = _CXString
lib.clang_CompileCommand_getArg.errcheck = _CXString.from_result
lib.clang_CompileCommand_getDirectory.argtypes = [c_object_p]
lib.clang_CompileCommand_getDirectory.restype = _CXString
lib.clang_CompileCommand_getDirectory.errcheck = _CXString.from_result
lib.clang_CompileCommand_getNumArgs.argtypes = [c_object_p]
lib.clang_CompileCommand_getNumArgs.restype = c_uint
lib.clang_codeCompleteAt.argtypes = [TranslationUnit, c_char_p, c_int,
c_int, c_void_p, c_int, c_int]
lib.clang_codeCompleteAt.restype = POINTER(CCRStructure)
lib.clang_codeCompleteGetDiagnostic.argtypes = [CodeCompletionResults,
c_int]
lib.clang_codeCompleteGetDiagnostic.restype = Diagnostic
lib.clang_codeCompleteGetNumDiagnostics.argtypes = [CodeCompletionResults]
lib.clang_codeCompleteGetNumDiagnostics.restype = c_int
lib.clang_createIndex.argtypes = [c_int, c_int]
lib.clang_createIndex.restype = c_object_p
lib.clang_createTranslationUnit.argtypes = [Index, c_char_p]
lib.clang_createTranslationUnit.restype = c_object_p
lib.clang_CXXMethod_isStatic.argtypes = [Cursor]
lib.clang_CXXMethod_isStatic.restype = bool
lib.clang_CXXMethod_isVirtual.argtypes = [Cursor]
lib.clang_CXXMethod_isVirtual.restype = bool
lib.clang_defaultSaveOptions.argtypes = [TranslationUnit]
lib.clang_defaultSaveOptions.restype = c_uint
lib.clang_disposeCodeCompleteResults.argtypes = [CodeCompletionResults]
#lib.clang_disposeCXTUResourceUsage.argtypes = [CXTUResourceUsage]
lib.clang_disposeDiagnostic.argtypes = [Diagnostic]
lib.clang_disposeIndex.argtypes = [Index]
lib.clang_disposeString.argtypes = [_CXString]
lib.clang_disposeTokens.argtype = [TranslationUnit, POINTER(Token), c_uint]
lib.clang_disposeTranslationUnit.argtypes = [TranslationUnit]
lib.clang_equalCursors.argtypes = [Cursor, Cursor]
lib.clang_equalCursors.restype = bool
lib.clang_equalLocations.argtypes = [SourceLocation, SourceLocation]
lib.clang_equalLocations.restype = bool
lib.clang_equalRanges.argtypes = [SourceRange, SourceRange]
lib.clang_equalRanges.restype = bool
lib.clang_equalTypes.argtypes = [Type, Type]
lib.clang_equalTypes.restype = bool
lib.clang_getArgType.argtypes = [Type, c_uint]
lib.clang_getArgType.restype = Type
lib.clang_getArgType.errcheck = Type.from_result
lib.clang_getArrayElementType.argtypes = [Type]
lib.clang_getArrayElementType.restype = Type
lib.clang_getArrayElementType.errcheck = Type.from_result
lib.clang_getArraySize.argtypes = [Type]
lib.clang_getArraySize.restype = c_longlong
lib.clang_getCanonicalCursor.argtypes = [Cursor]
lib.clang_getCanonicalCursor.restype = Cursor
lib.clang_getCanonicalCursor.errcheck = Cursor.from_cursor_result
lib.clang_getCanonicalType.argtypes = [Type]
lib.clang_getCanonicalType.restype = Type
lib.clang_getCanonicalType.errcheck = Type.from_result
lib.clang_getCompletionAvailability.argtypes = [c_void_p]
lib.clang_getCompletionAvailability.restype = c_int
lib.clang_getCompletionChunkCompletionString.argtypes = [c_void_p, c_int]
lib.clang_getCompletionChunkCompletionString.restype = c_object_p
lib.clang_getCompletionChunkKind.argtypes = [c_void_p, c_int]
lib.clang_getCompletionChunkKind.restype = c_int
lib.clang_getCompletionChunkText.argtypes = [c_void_p, c_int]
lib.clang_getCompletionChunkText.restype = _CXString
lib.clang_getCompletionPriority.argtypes = [c_void_p]
lib.clang_getCompletionPriority.restype = c_int
lib.clang_getCString.argtypes = [_CXString]
lib.clang_getCString.restype = c_char_p
lib.clang_getCursor.argtypes = [TranslationUnit, SourceLocation]
lib.clang_getCursor.restype = Cursor
lib.clang_getCursorDefinition.argtypes = [Cursor]
lib.clang_getCursorDefinition.restype = Cursor
lib.clang_getCursorDefinition.errcheck = Cursor.from_result
lib.clang_getCursorDisplayName.argtypes = [Cursor]
lib.clang_getCursorDisplayName.restype = _CXString
lib.clang_getCursorDisplayName.errcheck = _CXString.from_result
lib.clang_getCursorExtent.argtypes = [Cursor]
lib.clang_getCursorExtent.restype = SourceRange
lib.clang_getCursorLexicalParent.argtypes = [Cursor]
lib.clang_getCursorLexicalParent.restype = Cursor
lib.clang_getCursorLexicalParent.errcheck = Cursor.from_cursor_result
lib.clang_getCursorLocation.argtypes = [Cursor]
lib.clang_getCursorLocation.restype = SourceLocation
lib.clang_getCursorReferenced.argtypes = [Cursor]
lib.clang_getCursorReferenced.restype = Cursor
lib.clang_getCursorReferenced.errcheck = Cursor.from_result
lib.clang_getCursorReferenceNameRange.argtypes = [Cursor, c_uint, c_uint]
lib.clang_getCursorReferenceNameRange.restype = SourceRange
lib.clang_getCursorSemanticParent.argtypes = [Cursor]
lib.clang_getCursorSemanticParent.restype = Cursor
lib.clang_getCursorSemanticParent.errcheck = Cursor.from_cursor_result
lib.clang_getCursorSpelling.argtypes = [Cursor]
lib.clang_getCursorSpelling.restype = _CXString
lib.clang_getCursorSpelling.errcheck = _CXString.from_result
lib.clang_getCursorType.argtypes = [Cursor]
lib.clang_getCursorType.restype = Type
lib.clang_getCursorType.errcheck = Type.from_result
lib.clang_getCursorUSR.argtypes = [Cursor]
lib.clang_getCursorUSR.restype = _CXString
lib.clang_getCursorUSR.errcheck = _CXString.from_result
#lib.clang_getCXTUResourceUsage.argtypes = [TranslationUnit]
#lib.clang_getCXTUResourceUsage.restype = CXTUResourceUsage
lib.clang_getCXXAccessSpecifier.argtypes = [Cursor]
lib.clang_getCXXAccessSpecifier.restype = c_uint
lib.clang_getDeclObjCTypeEncoding.argtypes = [Cursor]
lib.clang_getDeclObjCTypeEncoding.restype = _CXString
lib.clang_getDeclObjCTypeEncoding.errcheck = _CXString.from_result
lib.clang_getDiagnostic.argtypes = [c_object_p, c_uint]
lib.clang_getDiagnostic.restype = c_object_p
lib.clang_getDiagnosticCategory.argtypes = [Diagnostic]
lib.clang_getDiagnosticCategory.restype = c_uint
lib.clang_getDiagnosticCategoryName.argtypes = [c_uint]
lib.clang_getDiagnosticCategoryName.restype = _CXString
lib.clang_getDiagnosticCategoryName.errcheck = _CXString.from_result
lib.clang_getDiagnosticFixIt.argtypes = [Diagnostic, c_uint,
POINTER(SourceRange)]
lib.clang_getDiagnosticFixIt.restype = _CXString
lib.clang_getDiagnosticFixIt.errcheck = _CXString.from_result
lib.clang_getDiagnosticLocation.argtypes = [Diagnostic]
lib.clang_getDiagnosticLocation.restype = SourceLocation
lib.clang_getDiagnosticNumFixIts.argtypes = [Diagnostic]
lib.clang_getDiagnosticNumFixIts.restype = c_uint
lib.clang_getDiagnosticNumRanges.argtypes = [Diagnostic]
lib.clang_getDiagnosticNumRanges.restype = c_uint
lib.clang_getDiagnosticOption.argtypes = [Diagnostic, POINTER(_CXString)]
lib.clang_getDiagnosticOption.restype = _CXString
lib.clang_getDiagnosticOption.errcheck = _CXString.from_result
lib.clang_getDiagnosticRange.argtypes = [Diagnostic, c_uint]
lib.clang_getDiagnosticRange.restype = SourceRange
lib.clang_getDiagnosticSeverity.argtypes = [Diagnostic]
lib.clang_getDiagnosticSeverity.restype = c_int
lib.clang_getDiagnosticSpelling.argtypes = [Diagnostic]
lib.clang_getDiagnosticSpelling.restype = _CXString
lib.clang_getDiagnosticSpelling.errcheck = _CXString.from_result
lib.clang_getElementType.argtypes = [Type]
lib.clang_getElementType.restype = Type
lib.clang_getElementType.errcheck = Type.from_result
lib.clang_getEnumConstantDeclUnsignedValue.argtypes = [Cursor]
lib.clang_getEnumConstantDeclUnsignedValue.restype = c_ulonglong
lib.clang_getEnumConstantDeclValue.argtypes = [Cursor]
lib.clang_getEnumConstantDeclValue.restype = c_longlong
lib.clang_getEnumDeclIntegerType.argtypes = [Cursor]
lib.clang_getEnumDeclIntegerType.restype = Type
lib.clang_getEnumDeclIntegerType.errcheck = Type.from_result
lib.clang_getFile.argtypes = [TranslationUnit, c_char_p]
lib.clang_getFile.restype = c_object_p
lib.clang_getFileName.argtypes = [File]
lib.clang_getFileName.restype = _CXString
# TODO go through _CXString.from_result?
lib.clang_getFileTime.argtypes = [File]
lib.clang_getFileTime.restype = c_uint
lib.clang_getIBOutletCollectionType.argtypes = [Cursor]
lib.clang_getIBOutletCollectionType.restype = Type
lib.clang_getIBOutletCollectionType.errcheck = Type.from_result
lib.clang_getIncludedFile.argtypes = [Cursor]
lib.clang_getIncludedFile.restype = File
lib.clang_getIncludedFile.errcheck = File.from_cursor_result
lib.clang_getInclusions.argtypes = [TranslationUnit,
callbacks['translation_unit_includes'], py_object]
lib.clang_getInstantiationLocation.argtypes = [SourceLocation,
POINTER(c_object_p), POINTER(c_uint), POINTER(c_uint), POINTER(c_uint)]
lib.clang_getLocation.argtypes = [TranslationUnit, File, c_uint, c_uint]
lib.clang_getLocation.restype = SourceLocation
lib.clang_getLocationForOffset.argtypes = [TranslationUnit, File, c_uint]
lib.clang_getLocationForOffset.restype = SourceLocation
lib.clang_getNullCursor.restype = Cursor
lib.clang_getNumArgTypes.argtypes = [Type]
lib.clang_getNumArgTypes.restype = c_uint
lib.clang_getNumCompletionChunks.argtypes = [c_void_p]
lib.clang_getNumCompletionChunks.restype = c_int
lib.clang_getNumDiagnostics.argtypes = [c_object_p]
lib.clang_getNumDiagnostics.restype = c_uint
lib.clang_getNumElements.argtypes = [Type]
lib.clang_getNumElements.restype = c_longlong
lib.clang_getNumOverloadedDecls.argtypes = [Cursor]
lib.clang_getNumOverloadedDecls.restyp = c_uint
lib.clang_getOverloadedDecl.argtypes = [Cursor, c_uint]
lib.clang_getOverloadedDecl.restype = Cursor
lib.clang_getOverloadedDecl.errcheck = Cursor.from_cursor_result
lib.clang_getPointeeType.argtypes = [Type]
lib.clang_getPointeeType.restype = Type
lib.clang_getPointeeType.errcheck = Type.from_result
lib.clang_getRange.argtypes = [SourceLocation, SourceLocation]
lib.clang_getRange.restype = SourceRange
lib.clang_getRangeEnd.argtypes = [SourceRange]
lib.clang_getRangeEnd.restype = SourceLocation
lib.clang_getRangeStart.argtypes = [SourceRange]
lib.clang_getRangeStart.restype = SourceLocation
lib.clang_getResultType.argtypes = [Type]
lib.clang_getResultType.restype = Type
lib.clang_getResultType.errcheck = Type.from_result
lib.clang_getSpecializedCursorTemplate.argtypes = [Cursor]
lib.clang_getSpecializedCursorTemplate.restype = Cursor
lib.clang_getSpecializedCursorTemplate.errcheck = Cursor.from_cursor_result
lib.clang_getTemplateCursorKind.argtypes = [Cursor]
lib.clang_getTemplateCursorKind.restype = c_uint
lib.clang_getTokenExtent.argtypes = [TranslationUnit, Token]
lib.clang_getTokenExtent.restype = SourceRange
lib.clang_getTokenKind.argtypes = [Token]
lib.clang_getTokenKind.restype = c_uint
lib.clang_getTokenLocation.argtype = [TranslationUnit, Token]
lib.clang_getTokenLocation.restype = SourceLocation
lib.clang_getTokenSpelling.argtype = [TranslationUnit, Token]
lib.clang_getTokenSpelling.restype = _CXString
lib.clang_getTokenSpelling.errcheck = _CXString.from_result
lib.clang_getTranslationUnitCursor.argtypes = [TranslationUnit]
lib.clang_getTranslationUnitCursor.restype = Cursor
lib.clang_getTranslationUnitCursor.errcheck = Cursor.from_result
lib.clang_getTranslationUnitSpelling.argtypes = [TranslationUnit]
lib.clang_getTranslationUnitSpelling.restype = _CXString
lib.clang_getTranslationUnitSpelling.errcheck = _CXString.from_result
lib.clang_getTUResourceUsageName.argtypes = [c_uint]
lib.clang_getTUResourceUsageName.restype = c_char_p
lib.clang_getTypeDeclaration.argtypes = [Type]
lib.clang_getTypeDeclaration.restype = Cursor
lib.clang_getTypeDeclaration.errcheck = Cursor.from_result
lib.clang_getTypedefDeclUnderlyingType.argtypes = [Cursor]
lib.clang_getTypedefDeclUnderlyingType.restype = Type
lib.clang_getTypedefDeclUnderlyingType.errcheck = Type.from_result
lib.clang_getTypeKindSpelling.argtypes = [c_uint]
lib.clang_getTypeKindSpelling.restype = _CXString
lib.clang_getTypeKindSpelling.errcheck = _CXString.from_result
lib.clang_hashCursor.argtypes = [Cursor]
lib.clang_hashCursor.restype = c_uint
lib.clang_isAttribute.argtypes = [CursorKind]
lib.clang_isAttribute.restype = bool
lib.clang_isConstQualifiedType.argtypes = [Type]
lib.clang_isConstQualifiedType.restype = bool
lib.clang_isCursorDefinition.argtypes = [Cursor]
lib.clang_isCursorDefinition.restype = bool
lib.clang_isDeclaration.argtypes = [CursorKind]
lib.clang_isDeclaration.restype = bool
lib.clang_isExpression.argtypes = [CursorKind]
lib.clang_isExpression.restype = bool
lib.clang_isFileMultipleIncludeGuarded.argtypes = [TranslationUnit, File]
lib.clang_isFileMultipleIncludeGuarded.restype = bool
lib.clang_isFunctionTypeVariadic.argtypes = [Type]
lib.clang_isFunctionTypeVariadic.restype = bool
lib.clang_isInvalid.argtypes = [CursorKind]
lib.clang_isInvalid.restype = bool
lib.clang_isPODType.argtypes = [Type]
lib.clang_isPODType.restype = bool
lib.clang_isPreprocessing.argtypes = [CursorKind]
lib.clang_isPreprocessing.restype = bool
lib.clang_isReference.argtypes = [CursorKind]
lib.clang_isReference.restype = bool
lib.clang_isRestrictQualifiedType.argtypes = [Type]
lib.clang_isRestrictQualifiedType.restype = bool
lib.clang_isStatement.argtypes = [CursorKind]
lib.clang_isStatement.restype = bool
lib.clang_isTranslationUnit.argtypes = [CursorKind]
lib.clang_isTranslationUnit.restype = bool
lib.clang_isUnexposed.argtypes = [CursorKind]
lib.clang_isUnexposed.restype = bool
lib.clang_isVirtualBase.argtypes = [Cursor]
lib.clang_isVirtualBase.restype = bool
lib.clang_isVolatileQualifiedType.argtypes = [Type]
lib.clang_isVolatileQualifiedType.restype = bool
lib.clang_parseTranslationUnit.argypes = [Index, c_char_p, c_void_p, c_int,
c_void_p, c_int, c_int]
lib.clang_parseTranslationUnit.restype = c_object_p
lib.clang_reparseTranslationUnit.argtypes = [TranslationUnit, c_int,
c_void_p, c_int]
lib.clang_reparseTranslationUnit.restype = c_int
lib.clang_saveTranslationUnit.argtypes = [TranslationUnit, c_char_p,
c_uint]
lib.clang_saveTranslationUnit.restype = c_int
lib.clang_tokenize.argtypes = [TranslationUnit, SourceRange,
POINTER(POINTER(Token)), POINTER(c_uint)]
lib.clang_visitChildren.argtypes = [Cursor, callbacks['cursor_visit'],
py_object]
lib.clang_visitChildren.restype = c_uint
register_functions(lib)