blob: 188119d66bf9e08254098d9f0b89cb4881dac118 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/base/bits.h"
#include "src/double.h"
#include "src/factory.h"
#include "src/hydrogen-infer-representation.h"
#include "src/property-details-inl.h"
#if V8_TARGET_ARCH_IA32
#include "src/ia32/lithium-ia32.h" // NOLINT
#elif V8_TARGET_ARCH_X64
#include "src/x64/lithium-x64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/lithium-arm64.h" // NOLINT
#elif V8_TARGET_ARCH_ARM
#include "src/arm/lithium-arm.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/lithium-mips.h" // NOLINT
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/lithium-mips64.h" // NOLINT
#elif V8_TARGET_ARCH_X87
#include "src/x87/lithium-x87.h" // NOLINT
#else
#error Unsupported target architecture.
#endif
#include "src/base/safe_math.h"
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \
return builder->Do##type(this); \
}
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
Isolate* HValue::isolate() const {
DCHECK(block() != NULL);
return block()->isolate();
}
void HValue::AssumeRepresentation(Representation r) {
if (CheckFlag(kFlexibleRepresentation)) {
ChangeRepresentation(r);
// The representation of the value is dictated by type feedback and
// will not be changed later.
ClearFlag(kFlexibleRepresentation);
}
}
void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
DCHECK(CheckFlag(kFlexibleRepresentation));
Representation new_rep = RepresentationFromInputs();
UpdateRepresentation(new_rep, h_infer, "inputs");
new_rep = RepresentationFromUses();
UpdateRepresentation(new_rep, h_infer, "uses");
if (representation().IsSmi() && HasNonSmiUse()) {
UpdateRepresentation(
Representation::Integer32(), h_infer, "use requirements");
}
}
Representation HValue::RepresentationFromUses() {
if (HasNoUses()) return Representation::None();
// Array of use counts for each representation.
int use_count[Representation::kNumRepresentations] = { 0 };
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
Representation rep = use->observed_input_representation(it.index());
if (rep.IsNone()) continue;
if (FLAG_trace_representation) {
PrintF("#%d %s is used by #%d %s as %s%s\n",
id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
(use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
}
use_count[rep.kind()] += 1;
}
if (IsPhi()) HPhi::cast(this)->AddIndirectUsesTo(&use_count[0]);
int tagged_count = use_count[Representation::kTagged];
int double_count = use_count[Representation::kDouble];
int int32_count = use_count[Representation::kInteger32];
int smi_count = use_count[Representation::kSmi];
if (tagged_count > 0) return Representation::Tagged();
if (double_count > 0) return Representation::Double();
if (int32_count > 0) return Representation::Integer32();
if (smi_count > 0) return Representation::Smi();
return Representation::None();
}
void HValue::UpdateRepresentation(Representation new_rep,
HInferRepresentationPhase* h_infer,
const char* reason) {
Representation r = representation();
if (new_rep.is_more_general_than(r)) {
if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
if (FLAG_trace_representation) {
PrintF("Changing #%d %s representation %s -> %s based on %s\n",
id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
}
ChangeRepresentation(new_rep);
AddDependantsToWorklist(h_infer);
}
}
void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
h_infer->AddToWorklist(it.value());
}
for (int i = 0; i < OperandCount(); ++i) {
h_infer->AddToWorklist(OperandAt(i));
}
}
static int32_t ConvertAndSetOverflow(Representation r,
int64_t result,
bool* overflow) {
if (r.IsSmi()) {
if (result > Smi::kMaxValue) {
*overflow = true;
return Smi::kMaxValue;
}
if (result < Smi::kMinValue) {
*overflow = true;
return Smi::kMinValue;
}
} else {
if (result > kMaxInt) {
*overflow = true;
return kMaxInt;
}
if (result < kMinInt) {
*overflow = true;
return kMinInt;
}
}
return static_cast<int32_t>(result);
}
static int32_t AddWithoutOverflow(Representation r,
int32_t a,
int32_t b,
bool* overflow) {
int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
return ConvertAndSetOverflow(r, result, overflow);
}
static int32_t SubWithoutOverflow(Representation r,
int32_t a,
int32_t b,
bool* overflow) {
int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
return ConvertAndSetOverflow(r, result, overflow);
}
static int32_t MulWithoutOverflow(const Representation& r,
int32_t a,
int32_t b,
bool* overflow) {
int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
return ConvertAndSetOverflow(r, result, overflow);
}
int32_t Range::Mask() const {
if (lower_ == upper_) return lower_;
if (lower_ >= 0) {
int32_t res = 1;
while (res < upper_) {
res = (res << 1) | 1;
}
return res;
}
return 0xffffffff;
}
void Range::AddConstant(int32_t value) {
if (value == 0) return;
bool may_overflow = false; // Overflow is ignored here.
Representation r = Representation::Integer32();
lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
#ifdef DEBUG
Verify();
#endif
}
void Range::Intersect(Range* other) {
upper_ = Min(upper_, other->upper_);
lower_ = Max(lower_, other->lower_);
bool b = CanBeMinusZero() && other->CanBeMinusZero();
set_can_be_minus_zero(b);
}
void Range::Union(Range* other) {
upper_ = Max(upper_, other->upper_);
lower_ = Min(lower_, other->lower_);
bool b = CanBeMinusZero() || other->CanBeMinusZero();
set_can_be_minus_zero(b);
}
void Range::CombinedMax(Range* other) {
upper_ = Max(upper_, other->upper_);
lower_ = Max(lower_, other->lower_);
set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
}
void Range::CombinedMin(Range* other) {
upper_ = Min(upper_, other->upper_);
lower_ = Min(lower_, other->lower_);
set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
}
void Range::Sar(int32_t value) {
int32_t bits = value & 0x1F;
lower_ = lower_ >> bits;
upper_ = upper_ >> bits;
set_can_be_minus_zero(false);
}
void Range::Shl(int32_t value) {
int32_t bits = value & 0x1F;
int old_lower = lower_;
int old_upper = upper_;
lower_ = lower_ << bits;
upper_ = upper_ << bits;
if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
upper_ = kMaxInt;
lower_ = kMinInt;
}
set_can_be_minus_zero(false);
}
bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
bool may_overflow = false;
lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
KeepOrder();
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
bool may_overflow = false;
lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
KeepOrder();
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
void Range::KeepOrder() {
if (lower_ > upper_) {
int32_t tmp = lower_;
lower_ = upper_;
upper_ = tmp;
}
}
#ifdef DEBUG
void Range::Verify() const {
DCHECK(lower_ <= upper_);
}
#endif
bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
bool may_overflow = false;
int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
lower_ = Min(Min(v1, v2), Min(v3, v4));
upper_ = Max(Max(v1, v2), Max(v3, v4));
#ifdef DEBUG
Verify();
#endif
return may_overflow;
}
bool HValue::IsDefinedAfter(HBasicBlock* other) const {
return block()->block_id() > other->block_id();
}
HUseListNode* HUseListNode::tail() {
// Skip and remove dead items in the use list.
while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
tail_ = tail_->tail_;
}
return tail_;
}
bool HValue::CheckUsesForFlag(Flag f) const {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (it.value()->IsSimulate()) continue;
if (!it.value()->CheckFlag(f)) return false;
}
return true;
}
bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (it.value()->IsSimulate()) continue;
if (!it.value()->CheckFlag(f)) {
*value = it.value();
return false;
}
}
return true;
}
bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
bool return_value = false;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (it.value()->IsSimulate()) continue;
if (!it.value()->CheckFlag(f)) return false;
return_value = true;
}
return return_value;
}
HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
Advance();
}
void HUseIterator::Advance() {
current_ = next_;
if (current_ != NULL) {
next_ = current_->tail();
value_ = current_->value();
index_ = current_->index();
}
}
int HValue::UseCount() const {
int count = 0;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
return count;
}
HUseListNode* HValue::RemoveUse(HValue* value, int index) {
HUseListNode* previous = NULL;
HUseListNode* current = use_list_;
while (current != NULL) {
if (current->value() == value && current->index() == index) {
if (previous == NULL) {
use_list_ = current->tail();
} else {
previous->set_tail(current->tail());
}
break;
}
previous = current;
current = current->tail();
}
#ifdef DEBUG
// Do not reuse use list nodes in debug mode, zap them.
if (current != NULL) {
HUseListNode* temp =
new(block()->zone())
HUseListNode(current->value(), current->index(), NULL);
current->Zap();
current = temp;
}
#endif
return current;
}
bool HValue::Equals(HValue* other) {
if (other->opcode() != opcode()) return false;
if (!other->representation().Equals(representation())) return false;
if (!other->type_.Equals(type_)) return false;
if (other->flags() != flags()) return false;
if (OperandCount() != other->OperandCount()) return false;
for (int i = 0; i < OperandCount(); ++i) {
if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
}
bool result = DataEquals(other);
DCHECK(!result || Hashcode() == other->Hashcode());
return result;
}
intptr_t HValue::Hashcode() {
intptr_t result = opcode();
int count = OperandCount();
for (int i = 0; i < count; ++i) {
result = result * 19 + OperandAt(i)->id() + (result >> 7);
}
return result;
}
const char* HValue::Mnemonic() const {
switch (opcode()) {
#define MAKE_CASE(type) case k##type: return #type;
HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
#undef MAKE_CASE
case kPhi: return "Phi";
default: return "";
}
}
bool HValue::CanReplaceWithDummyUses() {
return FLAG_unreachable_code_elimination &&
!(block()->IsReachable() ||
IsBlockEntry() ||
IsControlInstruction() ||
IsArgumentsObject() ||
IsCapturedObject() ||
IsSimulate() ||
IsEnterInlined() ||
IsLeaveInlined());
}
bool HValue::IsInteger32Constant() {
return IsConstant() && HConstant::cast(this)->HasInteger32Value();
}
int32_t HValue::GetInteger32Constant() {
return HConstant::cast(this)->Integer32Value();
}
bool HValue::EqualsInteger32Constant(int32_t value) {
return IsInteger32Constant() && GetInteger32Constant() == value;
}
void HValue::SetOperandAt(int index, HValue* value) {
RegisterUse(index, value);
InternalSetOperandAt(index, value);
}
void HValue::DeleteAndReplaceWith(HValue* other) {
// We replace all uses first, so Delete can assert that there are none.
if (other != NULL) ReplaceAllUsesWith(other);
Kill();
DeleteFromGraph();
}
void HValue::ReplaceAllUsesWith(HValue* other) {
while (use_list_ != NULL) {
HUseListNode* list_node = use_list_;
HValue* value = list_node->value();
DCHECK(!value->block()->IsStartBlock());
value->InternalSetOperandAt(list_node->index(), other);
use_list_ = list_node->tail();
list_node->set_tail(other->use_list_);
other->use_list_ = list_node;
}
}
void HValue::Kill() {
// Instead of going through the entire use list of each operand, we only
// check the first item in each use list and rely on the tail() method to
// skip dead items, removing them lazily next time we traverse the list.
SetFlag(kIsDead);
for (int i = 0; i < OperandCount(); ++i) {
HValue* operand = OperandAt(i);
if (operand == NULL) continue;
HUseListNode* first = operand->use_list_;
if (first != NULL && first->value()->CheckFlag(kIsDead)) {
operand->use_list_ = first->tail();
}
}
}
void HValue::SetBlock(HBasicBlock* block) {
DCHECK(block_ == NULL || block == NULL);
block_ = block;
if (id_ == kNoNumber && block != NULL) {
id_ = block->graph()->GetNextValueID(this);
}
}
std::ostream& operator<<(std::ostream& os, const HValue& v) {
return v.PrintTo(os);
}
std::ostream& operator<<(std::ostream& os, const TypeOf& t) {
if (t.value->representation().IsTagged() &&
!t.value->type().Equals(HType::Tagged()))
return os;
return os << " type:" << t.value->type();
}
std::ostream& operator<<(std::ostream& os, const ChangesOf& c) {
GVNFlagSet changes_flags = c.value->ChangesFlags();
if (changes_flags.IsEmpty()) return os;
os << " changes[";
if (changes_flags == c.value->AllSideEffectsFlagSet()) {
os << "*";
} else {
bool add_comma = false;
#define PRINT_DO(Type) \
if (changes_flags.Contains(k##Type)) { \
if (add_comma) os << ","; \
add_comma = true; \
os << #Type; \
}
GVN_TRACKED_FLAG_LIST(PRINT_DO);
GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
#undef PRINT_DO
}
return os << "]";
}
bool HValue::HasMonomorphicJSObjectType() {
return !GetMonomorphicJSObjectMap().is_null();
}
bool HValue::UpdateInferredType() {
HType type = CalculateInferredType();
bool result = (!type.Equals(type_));
type_ = type;
return result;
}
void HValue::RegisterUse(int index, HValue* new_value) {
HValue* old_value = OperandAt(index);
if (old_value == new_value) return;
HUseListNode* removed = NULL;
if (old_value != NULL) {
removed = old_value->RemoveUse(this, index);
}
if (new_value != NULL) {
if (removed == NULL) {
new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
this, index, new_value->use_list_);
} else {
removed->set_tail(new_value->use_list_);
new_value->use_list_ = removed;
}
}
}
void HValue::AddNewRange(Range* r, Zone* zone) {
if (!HasRange()) ComputeInitialRange(zone);
if (!HasRange()) range_ = new(zone) Range();
DCHECK(HasRange());
r->StackUpon(range_);
range_ = r;
}
void HValue::RemoveLastAddedRange() {
DCHECK(HasRange());
DCHECK(range_->next() != NULL);
range_ = range_->next();
}
void HValue::ComputeInitialRange(Zone* zone) {
DCHECK(!HasRange());
range_ = InferRange(zone);
DCHECK(HasRange());
}
std::ostream& operator<<(std::ostream& os, const HSourcePosition& p) {
if (p.IsUnknown()) {
return os << "<?>";
} else if (FLAG_hydrogen_track_positions) {
return os << "<" << p.inlining_id() << ":" << p.position() << ">";
} else {
return os << "<0:" << p.raw() << ">";
}
}
std::ostream& HInstruction::PrintTo(std::ostream& os) const { // NOLINT
os << Mnemonic() << " ";
PrintDataTo(os) << ChangesOf(this) << TypeOf(this);
if (CheckFlag(HValue::kHasNoObservableSideEffects)) os << " [noOSE]";
if (CheckFlag(HValue::kIsDead)) os << " [dead]";
return os;
}
std::ostream& HInstruction::PrintDataTo(std::ostream& os) const { // NOLINT
for (int i = 0; i < OperandCount(); ++i) {
if (i > 0) os << " ";
os << NameOf(OperandAt(i));
}
return os;
}
void HInstruction::Unlink() {
DCHECK(IsLinked());
DCHECK(!IsControlInstruction()); // Must never move control instructions.
DCHECK(!IsBlockEntry()); // Doesn't make sense to delete these.
DCHECK(previous_ != NULL);
previous_->next_ = next_;
if (next_ == NULL) {
DCHECK(block()->last() == this);
block()->set_last(previous_);
} else {
next_->previous_ = previous_;
}
clear_block();
}
void HInstruction::InsertBefore(HInstruction* next) {
DCHECK(!IsLinked());
DCHECK(!next->IsBlockEntry());
DCHECK(!IsControlInstruction());
DCHECK(!next->block()->IsStartBlock());
DCHECK(next->previous_ != NULL);
HInstruction* prev = next->previous();
prev->next_ = this;
next->previous_ = this;
next_ = next;
previous_ = prev;
SetBlock(next->block());
if (!has_position() && next->has_position()) {
set_position(next->position());
}
}
void HInstruction::InsertAfter(HInstruction* previous) {
DCHECK(!IsLinked());
DCHECK(!previous->IsControlInstruction());
DCHECK(!IsControlInstruction() || previous->next_ == NULL);
HBasicBlock* block = previous->block();
// Never insert anything except constants into the start block after finishing
// it.
if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
DCHECK(block->end()->SecondSuccessor() == NULL);
InsertAfter(block->end()->FirstSuccessor()->first());
return;
}
// If we're inserting after an instruction with side-effects that is
// followed by a simulate instruction, we need to insert after the
// simulate instruction instead.
HInstruction* next = previous->next_;
if (previous->HasObservableSideEffects() && next != NULL) {
DCHECK(next->IsSimulate());
previous = next;
next = previous->next_;
}
previous_ = previous;
next_ = next;
SetBlock(block);
previous->next_ = this;
if (next != NULL) next->previous_ = this;
if (block->last() == previous) {
block->set_last(this);
}
if (!has_position() && previous->has_position()) {
set_position(previous->position());
}
}
bool HInstruction::Dominates(HInstruction* other) {
if (block() != other->block()) {
return block()->Dominates(other->block());
}
// Both instructions are in the same basic block. This instruction
// should precede the other one in order to dominate it.
for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
if (instr == other) {
return true;
}
}
return false;
}
#ifdef DEBUG
void HInstruction::Verify() {
// Verify that input operands are defined before use.
HBasicBlock* cur_block = block();
for (int i = 0; i < OperandCount(); ++i) {
HValue* other_operand = OperandAt(i);
if (other_operand == NULL) continue;
HBasicBlock* other_block = other_operand->block();
if (cur_block == other_block) {
if (!other_operand->IsPhi()) {
HInstruction* cur = this->previous();
while (cur != NULL) {
if (cur == other_operand) break;
cur = cur->previous();
}
// Must reach other operand in the same block!
DCHECK(cur == other_operand);
}
} else {
// If the following assert fires, you may have forgotten an
// AddInstruction.
DCHECK(other_block->Dominates(cur_block));
}
}
// Verify that instructions that may have side-effects are followed
// by a simulate instruction.
if (HasObservableSideEffects() && !IsOsrEntry()) {
DCHECK(next()->IsSimulate());
}
// Verify that instructions that can be eliminated by GVN have overridden
// HValue::DataEquals. The default implementation is UNREACHABLE. We
// don't actually care whether DataEquals returns true or false here.
if (CheckFlag(kUseGVN)) DataEquals(this);
// Verify that all uses are in the graph.
for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
if (use.value()->IsInstruction()) {
DCHECK(HInstruction::cast(use.value())->IsLinked());
}
}
}
#endif
bool HInstruction::CanDeoptimize() {
// TODO(titzer): make this a virtual method?
switch (opcode()) {
case HValue::kAbnormalExit:
case HValue::kAccessArgumentsAt:
case HValue::kAllocate:
case HValue::kArgumentsElements:
case HValue::kArgumentsLength:
case HValue::kArgumentsObject:
case HValue::kBlockEntry:
case HValue::kBoundsCheckBaseIndexInformation:
case HValue::kCallFunction:
case HValue::kCallNew:
case HValue::kCallNewArray:
case HValue::kCallStub:
case HValue::kCallWithDescriptor:
case HValue::kCapturedObject:
case HValue::kClassOfTestAndBranch:
case HValue::kCompareGeneric:
case HValue::kCompareHoleAndBranch:
case HValue::kCompareMap:
case HValue::kCompareMinusZeroAndBranch:
case HValue::kCompareNumericAndBranch:
case HValue::kCompareObjectEqAndBranch:
case HValue::kConstant:
case HValue::kConstructDouble:
case HValue::kContext:
case HValue::kDebugBreak:
case HValue::kDeclareGlobals:
case HValue::kDoubleBits:
case HValue::kDummyUse:
case HValue::kEnterInlined:
case HValue::kEnvironmentMarker:
case HValue::kForceRepresentation:
case HValue::kGetCachedArrayIndex:
case HValue::kGoto:
case HValue::kHasCachedArrayIndexAndBranch:
case HValue::kHasInstanceTypeAndBranch:
case HValue::kInnerAllocatedObject:
case HValue::kInstanceOf:
case HValue::kInstanceOfKnownGlobal:
case HValue::kIsConstructCallAndBranch:
case HValue::kIsObjectAndBranch:
case HValue::kIsSmiAndBranch:
case HValue::kIsStringAndBranch:
case HValue::kIsUndetectableAndBranch:
case HValue::kLeaveInlined:
case HValue::kLoadFieldByIndex:
case HValue::kLoadGlobalGeneric:
case HValue::kLoadNamedField:
case HValue::kLoadNamedGeneric:
case HValue::kLoadRoot:
case HValue::kMapEnumLength:
case HValue::kMathMinMax:
case HValue::kParameter:
case HValue::kPhi:
case HValue::kPushArguments:
case HValue::kRegExpLiteral:
case HValue::kReturn:
case HValue::kSeqStringGetChar:
case HValue::kStoreCodeEntry:
case HValue::kStoreFrameContext:
case HValue::kStoreKeyed:
case HValue::kStoreNamedField:
case HValue::kStoreNamedGeneric:
case HValue::kStringCharCodeAt:
case HValue::kStringCharFromCode:
case HValue::kTailCallThroughMegamorphicCache:
case HValue::kThisFunction:
case HValue::kTypeofIsAndBranch:
case HValue::kUnknownOSRValue:
case HValue::kUseConst:
return false;
case HValue::kAdd:
case HValue::kAllocateBlockContext:
case HValue::kApplyArguments:
case HValue::kBitwise:
case HValue::kBoundsCheck:
case HValue::kBranch:
case HValue::kCallJSFunction:
case HValue::kCallRuntime:
case HValue::kChange:
case HValue::kCheckHeapObject:
case HValue::kCheckInstanceType:
case HValue::kCheckMapValue:
case HValue::kCheckMaps:
case HValue::kCheckSmi:
case HValue::kCheckValue:
case HValue::kClampToUint8:
case HValue::kDateField:
case HValue::kDeoptimize:
case HValue::kDiv:
case HValue::kForInCacheArray:
case HValue::kForInPrepareMap:
case HValue::kFunctionLiteral:
case HValue::kInvokeFunction:
case HValue::kLoadContextSlot:
case HValue::kLoadFunctionPrototype:
case HValue::kLoadGlobalCell:
case HValue::kLoadKeyed:
case HValue::kLoadKeyedGeneric:
case HValue::kMathFloorOfDiv:
case HValue::kMod:
case HValue::kMul:
case HValue::kOsrEntry:
case HValue::kPower:
case HValue::kRor:
case HValue::kSar:
case HValue::kSeqStringSetChar:
case HValue::kShl:
case HValue::kShr:
case HValue::kSimulate:
case HValue::kStackCheck:
case HValue::kStoreContextSlot:
case HValue::kStoreGlobalCell:
case HValue::kStoreKeyedGeneric:
case HValue::kStringAdd:
case HValue::kStringCompareAndBranch:
case HValue::kSub:
case HValue::kToFastProperties:
case HValue::kTransitionElementsKind:
case HValue::kTrapAllocationMemento:
case HValue::kTypeof:
case HValue::kUnaryMathOperation:
case HValue::kWrapReceiver:
return true;
}
UNREACHABLE();
return true;
}
std::ostream& operator<<(std::ostream& os, const NameOf& v) {
return os << v.value->representation().Mnemonic() << v.value->id();
}
std::ostream& HDummyUse::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(value());
}
std::ostream& HEnvironmentMarker::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << (kind() == BIND ? "bind" : "lookup") << " var[" << index()
<< "]";
}
std::ostream& HUnaryCall::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(value()) << " #" << argument_count();
}
std::ostream& HCallJSFunction::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(function()) << " #" << argument_count();
}
HCallJSFunction* HCallJSFunction::New(
Zone* zone,
HValue* context,
HValue* function,
int argument_count,
bool pass_argument_count) {
bool has_stack_check = false;
if (function->IsConstant()) {
HConstant* fun_const = HConstant::cast(function);
Handle<JSFunction> jsfun =
Handle<JSFunction>::cast(fun_const->handle(zone->isolate()));
has_stack_check = !jsfun.is_null() &&
(jsfun->code()->kind() == Code::FUNCTION ||
jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION);
}
return new(zone) HCallJSFunction(
function, argument_count, pass_argument_count,
has_stack_check);
}
std::ostream& HBinaryCall::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(first()) << " " << NameOf(second()) << " #"
<< argument_count();
}
void HBoundsCheck::ApplyIndexChange() {
if (skip_check()) return;
DecompositionResult decomposition;
bool index_is_decomposable = index()->TryDecompose(&decomposition);
if (index_is_decomposable) {
DCHECK(decomposition.base() == base());
if (decomposition.offset() == offset() &&
decomposition.scale() == scale()) return;
} else {
return;
}
ReplaceAllUsesWith(index());
HValue* current_index = decomposition.base();
int actual_offset = decomposition.offset() + offset();
int actual_scale = decomposition.scale() + scale();
Zone* zone = block()->graph()->zone();
HValue* context = block()->graph()->GetInvalidContext();
if (actual_offset != 0) {
HConstant* add_offset = HConstant::New(zone, context, actual_offset);
add_offset->InsertBefore(this);
HInstruction* add = HAdd::New(zone, context,
current_index, add_offset);
add->InsertBefore(this);
add->AssumeRepresentation(index()->representation());
add->ClearFlag(kCanOverflow);
current_index = add;
}
if (actual_scale != 0) {
HConstant* sar_scale = HConstant::New(zone, context, actual_scale);
sar_scale->InsertBefore(this);
HInstruction* sar = HSar::New(zone, context,
current_index, sar_scale);
sar->InsertBefore(this);
sar->AssumeRepresentation(index()->representation());
current_index = sar;
}
SetOperandAt(0, current_index);
base_ = NULL;
offset_ = 0;
scale_ = 0;
}
std::ostream& HBoundsCheck::PrintDataTo(std::ostream& os) const { // NOLINT
os << NameOf(index()) << " " << NameOf(length());
if (base() != NULL && (offset() != 0 || scale() != 0)) {
os << " base: ((";
if (base() != index()) {
os << NameOf(index());
} else {
os << "index";
}
os << " + " << offset() << ") >> " << scale() << ")";
}
if (skip_check()) os << " [DISABLED]";
return os;
}
void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
DCHECK(CheckFlag(kFlexibleRepresentation));
HValue* actual_index = index()->ActualValue();
HValue* actual_length = length()->ActualValue();
Representation index_rep = actual_index->representation();
Representation length_rep = actual_length->representation();
if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
index_rep = Representation::Smi();
}
if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
length_rep = Representation::Smi();
}
Representation r = index_rep.generalize(length_rep);
if (r.is_more_general_than(Representation::Integer32())) {
r = Representation::Integer32();
}
UpdateRepresentation(r, h_infer, "boundscheck");
}
Range* HBoundsCheck::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32() && length()->HasRange()) {
int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
int lower = 0;
Range* result = new(zone) Range(lower, upper);
if (index()->HasRange()) {
result->Intersect(index()->range());
}
// In case of Smi representation, clamp result to Smi::kMaxValue.
if (r.IsSmi()) result->ClampToSmi();
return result;
}
return HValue::InferRange(zone);
}
std::ostream& HBoundsCheckBaseIndexInformation::PrintDataTo(
std::ostream& os) const { // NOLINT
// TODO(svenpanne) This 2nd base_index() looks wrong...
return os << "base: " << NameOf(base_index())
<< ", check: " << NameOf(base_index());
}
std::ostream& HCallWithDescriptor::PrintDataTo(
std::ostream& os) const { // NOLINT
for (int i = 0; i < OperandCount(); i++) {
os << NameOf(OperandAt(i)) << " ";
}
return os << "#" << argument_count();
}
std::ostream& HCallNewArray::PrintDataTo(std::ostream& os) const { // NOLINT
os << ElementsKindToString(elements_kind()) << " ";
return HBinaryCall::PrintDataTo(os);
}
std::ostream& HCallRuntime::PrintDataTo(std::ostream& os) const { // NOLINT
os << name()->ToCString().get() << " ";
if (save_doubles() == kSaveFPRegs) os << "[save doubles] ";
return os << "#" << argument_count();
}
std::ostream& HClassOfTestAndBranch::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << "class_of_test(" << NameOf(value()) << ", \""
<< class_name()->ToCString().get() << "\")";
}
std::ostream& HWrapReceiver::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(receiver()) << " " << NameOf(function());
}
std::ostream& HAccessArgumentsAt::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << NameOf(arguments()) << "[" << NameOf(index()) << "], length "
<< NameOf(length());
}
std::ostream& HAllocateBlockContext::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << NameOf(context()) << " " << NameOf(function());
}
std::ostream& HControlInstruction::PrintDataTo(
std::ostream& os) const { // NOLINT
os << " goto (";
bool first_block = true;
for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
if (!first_block) os << ", ";
os << *it.Current();
first_block = false;
}
return os << ")";
}
std::ostream& HUnaryControlInstruction::PrintDataTo(
std::ostream& os) const { // NOLINT
os << NameOf(value());
return HControlInstruction::PrintDataTo(os);
}
std::ostream& HReturn::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(value()) << " (pop " << NameOf(parameter_count())
<< " values)";
}
Representation HBranch::observed_input_representation(int index) {
static const ToBooleanStub::Types tagged_types(
ToBooleanStub::NULL_TYPE |
ToBooleanStub::SPEC_OBJECT |
ToBooleanStub::STRING |
ToBooleanStub::SYMBOL);
if (expected_input_types_.ContainsAnyOf(tagged_types)) {
return Representation::Tagged();
}
if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
return Representation::Double();
}
return Representation::Tagged();
}
if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
return Representation::Double();
}
if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
return Representation::Smi();
}
return Representation::None();
}
bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
HValue* value = this->value();
if (value->EmitAtUses()) {
DCHECK(value->IsConstant());
DCHECK(!value->representation().IsDouble());
*block = HConstant::cast(value)->BooleanValue()
? FirstSuccessor()
: SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
std::ostream& HBranch::PrintDataTo(std::ostream& os) const { // NOLINT
return HUnaryControlInstruction::PrintDataTo(os) << " "
<< expected_input_types();
}
std::ostream& HCompareMap::PrintDataTo(std::ostream& os) const { // NOLINT
os << NameOf(value()) << " (" << *map().handle() << ")";
HControlInstruction::PrintDataTo(os);
if (known_successor_index() == 0) {
os << " [true]";
} else if (known_successor_index() == 1) {
os << " [false]";
}
return os;
}
const char* HUnaryMathOperation::OpName() const {
switch (op()) {
case kMathFloor:
return "floor";
case kMathFround:
return "fround";
case kMathRound:
return "round";
case kMathAbs:
return "abs";
case kMathLog:
return "log";
case kMathExp:
return "exp";
case kMathSqrt:
return "sqrt";
case kMathPowHalf:
return "pow-half";
case kMathClz32:
return "clz32";
default:
UNREACHABLE();
return NULL;
}
}
Range* HUnaryMathOperation::InferRange(Zone* zone) {
Representation r = representation();
if (op() == kMathClz32) return new(zone) Range(0, 32);
if (r.IsSmiOrInteger32() && value()->HasRange()) {
if (op() == kMathAbs) {
int upper = value()->range()->upper();
int lower = value()->range()->lower();
bool spans_zero = value()->range()->CanBeZero();
// Math.abs(kMinInt) overflows its representation, on which the
// instruction deopts. Hence clamp it to kMaxInt.
int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
Range* result =
new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
Max(abs_lower, abs_upper));
// In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
// Smi::kMaxValue.
if (r.IsSmi()) result->ClampToSmi();
return result;
}
}
return HValue::InferRange(zone);
}
std::ostream& HUnaryMathOperation::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << OpName() << " " << NameOf(value());
}
std::ostream& HUnaryOperation::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(value());
}
std::ostream& HHasInstanceTypeAndBranch::PrintDataTo(
std::ostream& os) const { // NOLINT
os << NameOf(value());
switch (from_) {
case FIRST_JS_RECEIVER_TYPE:
if (to_ == LAST_TYPE) os << " spec_object";
break;
case JS_REGEXP_TYPE:
if (to_ == JS_REGEXP_TYPE) os << " reg_exp";
break;
case JS_ARRAY_TYPE:
if (to_ == JS_ARRAY_TYPE) os << " array";
break;
case JS_FUNCTION_TYPE:
if (to_ == JS_FUNCTION_TYPE) os << " function";
break;
default:
break;
}
return os;
}
std::ostream& HTypeofIsAndBranch::PrintDataTo(
std::ostream& os) const { // NOLINT
os << NameOf(value()) << " == " << type_literal()->ToCString().get();
return HControlInstruction::PrintDataTo(os);
}
static String* TypeOfString(HConstant* constant, Isolate* isolate) {
Heap* heap = isolate->heap();
if (constant->HasNumberValue()) return heap->number_string();
if (constant->IsUndetectable()) return heap->undefined_string();
if (constant->HasStringValue()) return heap->string_string();
switch (constant->GetInstanceType()) {
case ODDBALL_TYPE: {
Unique<Object> unique = constant->GetUnique();
if (unique.IsKnownGlobal(heap->true_value()) ||
unique.IsKnownGlobal(heap->false_value())) {
return heap->boolean_string();
}
if (unique.IsKnownGlobal(heap->null_value())) {
return heap->object_string();
}
DCHECK(unique.IsKnownGlobal(heap->undefined_value()));
return heap->undefined_string();
}
case SYMBOL_TYPE:
return heap->symbol_string();
case JS_FUNCTION_TYPE:
case JS_FUNCTION_PROXY_TYPE:
return heap->function_string();
default:
return heap->object_string();
}
}
bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (FLAG_fold_constants && value()->IsConstant()) {
HConstant* constant = HConstant::cast(value());
String* type_string = TypeOfString(constant, isolate());
bool same_type = type_literal_.IsKnownGlobal(type_string);
*block = same_type ? FirstSuccessor() : SecondSuccessor();
return true;
} else if (value()->representation().IsSpecialization()) {
bool number_type =
type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
*block = number_type ? FirstSuccessor() : SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
std::ostream& HCheckMapValue::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(value()) << " " << NameOf(map());
}
HValue* HCheckMapValue::Canonicalize() {
if (map()->IsConstant()) {
HConstant* c_map = HConstant::cast(map());
return HCheckMaps::CreateAndInsertAfter(
block()->graph()->zone(), value(), c_map->MapValue(),
c_map->HasStableMapValue(), this);
}
return this;
}
std::ostream& HForInPrepareMap::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(enumerable());
}
std::ostream& HForInCacheArray::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(enumerable()) << " " << NameOf(map()) << "[" << idx_
<< "]";
}
std::ostream& HLoadFieldByIndex::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << NameOf(object()) << " " << NameOf(index());
}
static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
if (!l->EqualsInteger32Constant(~0)) return false;
*negated = r;
return true;
}
static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
if (!instr->IsBitwise()) return false;
HBitwise* b = HBitwise::cast(instr);
return (b->op() == Token::BIT_XOR) &&
(MatchLeftIsOnes(b->left(), b->right(), negated) ||
MatchLeftIsOnes(b->right(), b->left(), negated));
}
static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
HValue* negated;
return MatchNegationViaXor(instr, &negated) &&
MatchNegationViaXor(negated, arg);
}
HValue* HBitwise::Canonicalize() {
if (!representation().IsSmiOrInteger32()) return this;
// If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
if (left()->EqualsInteger32Constant(nop_constant) &&
!right()->CheckFlag(kUint32)) {
return right();
}
if (right()->EqualsInteger32Constant(nop_constant) &&
!left()->CheckFlag(kUint32)) {
return left();
}
// Optimize double negation, a common pattern used for ToInt32(x).
HValue* arg;
if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
return arg;
}
return this;
}
Representation HAdd::RepresentationFromInputs() {
Representation left_rep = left()->representation();
if (left_rep.IsExternal()) {
return Representation::External();
}
return HArithmeticBinaryOperation::RepresentationFromInputs();
}
Representation HAdd::RequiredInputRepresentation(int index) {
if (index == 2) {
Representation left_rep = left()->representation();
if (left_rep.IsExternal()) {
return Representation::Integer32();
}
}
return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
}
static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
return arg1->representation().IsSpecialization() &&
arg2->EqualsInteger32Constant(identity);
}
HValue* HAdd::Canonicalize() {
// Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
if (IsIdentityOperation(left(), right(), 0) &&
!left()->representation().IsDouble()) { // Left could be -0.
return left();
}
if (IsIdentityOperation(right(), left(), 0) &&
!left()->representation().IsDouble()) { // Right could be -0.
return right();
}
return this;
}
HValue* HSub::Canonicalize() {
if (IsIdentityOperation(left(), right(), 0)) return left();
return this;
}
HValue* HMul::Canonicalize() {
if (IsIdentityOperation(left(), right(), 1)) return left();
if (IsIdentityOperation(right(), left(), 1)) return right();
return this;
}
bool HMul::MulMinusOne() {
if (left()->EqualsInteger32Constant(-1) ||
right()->EqualsInteger32Constant(-1)) {
return true;
}
return false;
}
HValue* HMod::Canonicalize() {
return this;
}
HValue* HDiv::Canonicalize() {
if (IsIdentityOperation(left(), right(), 1)) return left();
return this;
}
HValue* HChange::Canonicalize() {
return (from().Equals(to())) ? value() : this;
}
HValue* HWrapReceiver::Canonicalize() {
if (HasNoUses()) return NULL;
if (receiver()->type().IsJSObject()) {
return receiver();
}
return this;
}
std::ostream& HTypeof::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(value());
}
HInstruction* HForceRepresentation::New(Zone* zone, HValue* context,
HValue* value, Representation representation) {
if (FLAG_fold_constants && value->IsConstant()) {
HConstant* c = HConstant::cast(value);
c = c->CopyToRepresentation(representation, zone);
if (c != NULL) return c;
}
return new(zone) HForceRepresentation(value, representation);
}
std::ostream& HForceRepresentation::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << representation().Mnemonic() << " " << NameOf(value());
}
std::ostream& HChange::PrintDataTo(std::ostream& os) const { // NOLINT
HUnaryOperation::PrintDataTo(os);
os << " " << from().Mnemonic() << " to " << to().Mnemonic();
if (CanTruncateToSmi()) os << " truncating-smi";
if (CanTruncateToInt32()) os << " truncating-int32";
if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
if (CheckFlag(kAllowUndefinedAsNaN)) os << " allow-undefined-as-nan";
return os;
}
HValue* HUnaryMathOperation::Canonicalize() {
if (op() == kMathRound || op() == kMathFloor) {
HValue* val = value();
if (val->IsChange()) val = HChange::cast(val)->value();
if (val->representation().IsSmiOrInteger32()) {
if (val->representation().Equals(representation())) return val;
return Prepend(new(block()->zone()) HChange(
val, representation(), false, false));
}
}
if (op() == kMathFloor && value()->IsDiv() && value()->HasOneUse()) {
HDiv* hdiv = HDiv::cast(value());
HValue* left = hdiv->left();
if (left->representation().IsInteger32()) {
// A value with an integer representation does not need to be transformed.
} else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) {
// A change from an integer32 can be replaced by the integer32 value.
left = HChange::cast(left)->value();
} else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
left = Prepend(new(block()->zone()) HChange(
left, Representation::Integer32(), false, false));
} else {
return this;
}
HValue* right = hdiv->right();
if (right->IsInteger32Constant()) {
right = Prepend(HConstant::cast(right)->CopyToRepresentation(
Representation::Integer32(), right->block()->zone()));
} else if (right->representation().IsInteger32()) {
// A value with an integer representation does not need to be transformed.
} else if (right->IsChange() &&
HChange::cast(right)->from().IsInteger32()) {
// A change from an integer32 can be replaced by the integer32 value.
right = HChange::cast(right)->value();
} else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
right = Prepend(new(block()->zone()) HChange(
right, Representation::Integer32(), false, false));
} else {
return this;
}
return Prepend(HMathFloorOfDiv::New(
block()->zone(), context(), left, right));
}
return this;
}
HValue* HCheckInstanceType::Canonicalize() {
if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) ||
(check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
(check_ == IS_STRING && value()->type().IsString())) {
return value();
}
if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
if (HConstant::cast(value())->HasInternalizedStringValue()) {
return value();
}
}
return this;
}
void HCheckInstanceType::GetCheckInterval(InstanceType* first,
InstanceType* last) {
DCHECK(is_interval_check());
switch (check_) {
case IS_SPEC_OBJECT:
*first = FIRST_SPEC_OBJECT_TYPE;
*last = LAST_SPEC_OBJECT_TYPE;
return;
case IS_JS_ARRAY:
*first = *last = JS_ARRAY_TYPE;
return;
default:
UNREACHABLE();
}
}
void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
DCHECK(!is_interval_check());
switch (check_) {
case IS_STRING:
*mask = kIsNotStringMask;
*tag = kStringTag;
return;
case IS_INTERNALIZED_STRING:
*mask = kIsNotStringMask | kIsNotInternalizedMask;
*tag = kInternalizedTag;
return;
default:
UNREACHABLE();
}
}
std::ostream& HCheckMaps::PrintDataTo(std::ostream& os) const { // NOLINT
os << NameOf(value()) << " [" << *maps()->at(0).handle();
for (int i = 1; i < maps()->size(); ++i) {
os << "," << *maps()->at(i).handle();
}
os << "]";
if (IsStabilityCheck()) os << "(stability-check)";
return os;
}
HValue* HCheckMaps::Canonicalize() {
if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
HConstant* c_value = HConstant::cast(value());
if (c_value->HasObjectMap()) {
for (int i = 0; i < maps()->size(); ++i) {
if (c_value->ObjectMap() == maps()->at(i)) {
if (maps()->size() > 1) {
set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
maps()->at(i), block()->graph()->zone()));
}
MarkAsStabilityCheck();
break;
}
}
}
}
return this;
}
std::ostream& HCheckValue::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(value()) << " " << Brief(*object().handle());
}
HValue* HCheckValue::Canonicalize() {
return (value()->IsConstant() &&
HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
}
const char* HCheckInstanceType::GetCheckName() const {
switch (check_) {
case IS_SPEC_OBJECT: return "object";
case IS_JS_ARRAY: return "array";
case IS_STRING: return "string";
case IS_INTERNALIZED_STRING: return "internalized_string";
}
UNREACHABLE();
return "";
}
std::ostream& HCheckInstanceType::PrintDataTo(
std::ostream& os) const { // NOLINT
os << GetCheckName() << " ";
return HUnaryOperation::PrintDataTo(os);
}
std::ostream& HCallStub::PrintDataTo(std::ostream& os) const { // NOLINT
os << CodeStub::MajorName(major_key_, false) << " ";
return HUnaryCall::PrintDataTo(os);
}
std::ostream& HTailCallThroughMegamorphicCache::PrintDataTo(
std::ostream& os) const { // NOLINT
for (int i = 0; i < OperandCount(); i++) {
os << NameOf(OperandAt(i)) << " ";
}
return os << "flags: " << flags();
}
std::ostream& HUnknownOSRValue::PrintDataTo(std::ostream& os) const { // NOLINT
const char* type = "expression";
if (environment_->is_local_index(index_)) type = "local";
if (environment_->is_special_index(index_)) type = "special";
if (environment_->is_parameter_index(index_)) type = "parameter";
return os << type << " @ " << index_;
}
std::ostream& HInstanceOf::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(left()) << " " << NameOf(right()) << " "
<< NameOf(context());
}
Range* HValue::InferRange(Zone* zone) {
Range* result;
if (representation().IsSmi() || type().IsSmi()) {
result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
result->set_can_be_minus_zero(false);
} else {
result = new(zone) Range();
result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
// TODO(jkummerow): The range cannot be minus zero when the upper type
// bound is Integer32.
}
return result;
}
Range* HChange::InferRange(Zone* zone) {
Range* input_range = value()->range();
if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
(to().IsSmi() ||
(to().IsTagged() &&
input_range != NULL &&
input_range->IsInSmiRange()))) {
set_type(HType::Smi());
ClearChangesFlag(kNewSpacePromotion);
}
if (to().IsSmiOrTagged() &&
input_range != NULL &&
input_range->IsInSmiRange() &&
(!SmiValuesAre32Bits() ||
!value()->CheckFlag(HValue::kUint32) ||
input_range->upper() != kMaxInt)) {
// The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
// interval, so we treat kMaxInt as a sentinel for this entire interval.
ClearFlag(kCanOverflow);
}
Range* result = (input_range != NULL)
? input_range->Copy(zone)
: HValue::InferRange(zone);
result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
!(CheckFlag(kAllUsesTruncatingToInt32) ||
CheckFlag(kAllUsesTruncatingToSmi)));
if (to().IsSmi()) result->ClampToSmi();
return result;
}
Range* HConstant::InferRange(Zone* zone) {
if (has_int32_value_) {
Range* result = new(zone) Range(int32_value_, int32_value_);
result->set_can_be_minus_zero(false);
return result;
}
return HValue::InferRange(zone);
}
HSourcePosition HPhi::position() const {
return block()->first()->position();
}
Range* HPhi::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32()) {
if (block()->IsLoopHeader()) {
Range* range = r.IsSmi()
? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
: new(zone) Range(kMinInt, kMaxInt);
return range;
} else {
Range* range = OperandAt(0)->range()->Copy(zone);
for (int i = 1; i < OperandCount(); ++i) {
range->Union(OperandAt(i)->range());
}
return range;
}
} else {
return HValue::InferRange(zone);
}
}
Range* HAdd::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->AddAndCheckOverflow(r, b) ||
(r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
(r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
ClearFlag(kCanOverflow);
}
res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
!CheckFlag(kAllUsesTruncatingToInt32) &&
a->CanBeMinusZero() && b->CanBeMinusZero());
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HSub::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->SubAndCheckOverflow(r, b) ||
(r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
(r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
ClearFlag(kCanOverflow);
}
res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
!CheckFlag(kAllUsesTruncatingToInt32) &&
a->CanBeMinusZero() && b->CanBeZero());
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HMul::InferRange(Zone* zone) {
Representation r = representation();
if (r.IsSmiOrInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (!res->MulAndCheckOverflow(r, b) ||
(((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
(r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
MulMinusOne())) {
// Truncated int multiplication is too precise and therefore not the
// same as converting to Double and back.
// Handle truncated integer multiplication by -1 special.
ClearFlag(kCanOverflow);
}
res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
!CheckFlag(kAllUsesTruncatingToInt32) &&
((a->CanBeZero() && b->CanBeNegative()) ||
(a->CanBeNegative() && b->CanBeZero())));
return res;
} else {
return HValue::InferRange(zone);
}
}
Range* HDiv::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* result = new(zone) Range();
result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
(a->CanBeMinusZero() ||
(a->CanBeZero() && b->CanBeNegative())));
if (!a->Includes(kMinInt) || !b->Includes(-1)) {
ClearFlag(kCanOverflow);
}
if (!b->CanBeZero()) {
ClearFlag(kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange(zone);
}
}
Range* HMathFloorOfDiv::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* result = new(zone) Range();
result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
(a->CanBeMinusZero() ||
(a->CanBeZero() && b->CanBeNegative())));
if (!a->Includes(kMinInt)) {
ClearFlag(kLeftCanBeMinInt);
}
if (!a->CanBeNegative()) {
ClearFlag(HValue::kLeftCanBeNegative);
}
if (!a->CanBePositive()) {
ClearFlag(HValue::kLeftCanBePositive);
}
if (!a->Includes(kMinInt) || !b->Includes(-1)) {
ClearFlag(kCanOverflow);
}
if (!b->CanBeZero()) {
ClearFlag(kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange(zone);
}
}
// Returns the absolute value of its argument minus one, avoiding undefined
// behavior at kMinInt.
static int32_t AbsMinus1(int32_t a) { return a < 0 ? -(a + 1) : (a - 1); }
Range* HMod::InferRange(Zone* zone) {
if (representation().IsInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
// The magnitude of the modulus is bounded by the right operand.
int32_t positive_bound = Max(AbsMinus1(b->lower()), AbsMinus1(b->upper()));
// The result of the modulo operation has the sign of its left operand.
bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
a->CanBePositive() ? positive_bound : 0);
result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
left_can_be_negative);
if (!a->CanBeNegative()) {
ClearFlag(HValue::kLeftCanBeNegative);
}
if (!a->Includes(kMinInt) || !b->Includes(-1)) {
ClearFlag(HValue::kCanOverflow);
}
if (!b->CanBeZero()) {
ClearFlag(HValue::kCanBeDivByZero);
}
return result;
} else {
return HValue::InferRange(zone);
}
}
InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
if (phi->block()->loop_information() == NULL) return NULL;
if (phi->OperandCount() != 2) return NULL;
int32_t candidate_increment;
candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
if (candidate_increment != 0) {
return new(phi->block()->graph()->zone())
InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
}
candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
if (candidate_increment != 0) {
return new(phi->block()->graph()->zone())
InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
}
return NULL;
}
/*
* This function tries to match the following patterns (and all the relevant
* variants related to |, & and + being commutative):
* base | constant_or_mask
* base & constant_and_mask
* (base + constant_offset) & constant_and_mask
* (base - constant_offset) & constant_and_mask
*/
void InductionVariableData::DecomposeBitwise(
HValue* value,
BitwiseDecompositionResult* result) {
HValue* base = IgnoreOsrValue(value);
result->base = value;
if (!base->representation().IsInteger32()) return;
if (base->IsBitwise()) {
bool allow_offset = false;
int32_t mask = 0;
HBitwise* bitwise = HBitwise::cast(base);
if (bitwise->right()->IsInteger32Constant()) {
mask = bitwise->right()->GetInteger32Constant();
base = bitwise->left();
} else if (bitwise->left()->IsInteger32Constant()) {
mask = bitwise->left()->GetInteger32Constant();
base = bitwise->right();
} else {
return;
}
if (bitwise->op() == Token::BIT_AND) {
result->and_mask = mask;
allow_offset = true;
} else if (bitwise->op() == Token::BIT_OR) {
result->or_mask = mask;
} else {
return;
}
result->context = bitwise->context();
if (allow_offset) {
if (base->IsAdd()) {
HAdd* add = HAdd::cast(base);
if (add->right()->IsInteger32Constant()) {
base = add->left();
} else if (add->left()->IsInteger32Constant()) {
base = add->right();
}
} else if (base->IsSub()) {
HSub* sub = HSub::cast(base);
if (sub->right()->IsInteger32Constant()) {
base = sub->left();
}
}
}
result->base = base;
}
}
void InductionVariableData::AddCheck(HBoundsCheck* check,
int32_t upper_limit) {
DCHECK(limit_validity() != NULL);
if (limit_validity() != check->block() &&
!limit_validity()->Dominates(check->block())) return;
if (!phi()->block()->current_loop()->IsNestedInThisLoop(
check->block()->current_loop())) return;
ChecksRelatedToLength* length_checks = checks();
while (length_checks != NULL) {
if (length_checks->length() == check->length()) break;
length_checks = length_checks->next();
}
if (length_checks == NULL) {
length_checks = new(check->block()->zone())
ChecksRelatedToLength(check->length(), checks());
checks_ = length_checks;
}
length_checks->AddCheck(check, upper_limit);
}
void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
if (checks() != NULL) {
InductionVariableCheck* c = checks();
HBasicBlock* current_block = c->check()->block();
while (c != NULL && c->check()->block() == current_block) {
c->set_upper_limit(current_upper_limit_);
c = c->next();
}
}
}
void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
Token::Value token,
int32_t mask,
HValue* index_base,
HValue* context) {
DCHECK(first_check_in_block() != NULL);
HValue* previous_index = first_check_in_block()->index();
DCHECK(context != NULL);
Zone* zone = index_base->block()->graph()->zone();
set_added_constant(HConstant::New(zone, context, mask));
if (added_index() != NULL) {
added_constant()->InsertBefore(added_index());
} else {
added_constant()->InsertBefore(first_check_in_block());
}
if (added_index() == NULL) {
first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
HInstruction* new_index = HBitwise::New(zone, context, token, index_base,
added_constant());
DCHECK(new_index->IsBitwise());
new_index->ClearAllSideEffects();
new_index->AssumeRepresentation(Representation::Integer32());
set_added_index(HBitwise::cast(new_index));
added_index()->InsertBefore(first_check_in_block());
}
DCHECK(added_index()->op() == token);
added_index()->SetOperandAt(1, index_base);
added_index()->SetOperandAt(2, added_constant());
first_check_in_block()->SetOperandAt(0, added_index());
if (previous_index->HasNoUses()) {
previous_index->DeleteAndReplaceWith(NULL);
}
}
void InductionVariableData::ChecksRelatedToLength::AddCheck(
HBoundsCheck* check,
int32_t upper_limit) {
BitwiseDecompositionResult decomposition;
InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
if (first_check_in_block() == NULL ||
first_check_in_block()->block() != check->block()) {
CloseCurrentBlock();
first_check_in_block_ = check;
set_added_index(NULL);
set_added_constant(NULL);
current_and_mask_in_block_ = decomposition.and_mask;
current_or_mask_in_block_ = decomposition.or_mask;
current_upper_limit_ = upper_limit;
InductionVariableCheck* new_check = new(check->block()->graph()->zone())
InductionVariableCheck(check, checks_, upper_limit);
checks_ = new_check;
return;
}
if (upper_limit > current_upper_limit()) {
current_upper_limit_ = upper_limit;
}
if (decomposition.and_mask != 0 &&
current_or_mask_in_block() == 0) {
if (current_and_mask_in_block() == 0 ||
decomposition.and_mask > current_and_mask_in_block()) {
UseNewIndexInCurrentBlock(Token::BIT_AND,
decomposition.and_mask,
decomposition.base,
decomposition.context);
current_and_mask_in_block_ = decomposition.and_mask;
}
check->set_skip_check();
}
if (current_and_mask_in_block() == 0) {
if (decomposition.or_mask > current_or_mask_in_block()) {
UseNewIndexInCurrentBlock(Token::BIT_OR,
decomposition.or_mask,
decomposition.base,
decomposition.context);
current_or_mask_in_block_ = decomposition.or_mask;
}
check->set_skip_check();
}
if (!check->skip_check()) {
InductionVariableCheck* new_check = new(check->block()->graph()->zone())
InductionVariableCheck(check, checks_, upper_limit);
checks_ = new_check;
}
}
/*
* This method detects if phi is an induction variable, with phi_operand as
* its "incremented" value (the other operand would be the "base" value).
*
* It cheks is phi_operand has the form "phi + constant".
* If yes, the constant is the increment that the induction variable gets at
* every loop iteration.
* Otherwise it returns 0.
*/
int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
HValue* phi_operand) {
if (!phi_operand->representation().IsSmiOrInteger32()) return 0;
if (phi_operand->IsAdd()) {
HAdd* operation = HAdd::cast(phi_operand);
if (operation->left() == phi &&
operation->right()->IsInteger32Constant()) {
return operation->right()->GetInteger32Constant();
} else if (operation->right() == phi &&
operation->left()->IsInteger32Constant()) {
return operation->left()->GetInteger32Constant();
}
} else if (phi_operand->IsSub()) {
HSub* operation = HSub::cast(phi_operand);
if (operation->left() == phi &&
operation->right()->IsInteger32Constant()) {
return -operation->right()->GetInteger32Constant();
}
}
return 0;
}
/*
* Swaps the information in "update" with the one contained in "this".
* The swapping is important because this method is used while doing a
* dominator tree traversal, and "update" will retain the old data that
* will be restored while backtracking.
*/
void InductionVariableData::UpdateAdditionalLimit(
InductionVariableLimitUpdate* update) {
DCHECK(update->updated_variable == this);
if (update->limit_is_upper) {
swap(&additional_upper_limit_, &update->limit);
swap(&additional_upper_limit_is_included_, &update->limit_is_included);
} else {
swap(&additional_lower_limit_, &update->limit);
swap(&additional_lower_limit_is_included_, &update->limit_is_included);
}
}
int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
int32_t or_mask) {
// Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
const int32_t MAX_LIMIT = 1 << 30;
int32_t result = MAX_LIMIT;
if (limit() != NULL &&
limit()->IsInteger32Constant()) {
int32_t limit_value = limit()->GetInteger32Constant();
if (!limit_included()) {
limit_value--;
}
if (limit_value < result) result = limit_value;
}
if (additional_upper_limit() != NULL &&
additional_upper_limit()->IsInteger32Constant()) {
int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
if (!additional_upper_limit_is_included()) {
limit_value--;
}
if (limit_value < result) result = limit_value;
}
if (and_mask > 0 && and_mask < MAX_LIMIT) {
if (and_mask < result) result = and_mask;
return result;
}
// Add the effect of the or_mask.
result |= or_mask;
return result >= MAX_LIMIT ? kNoLimit : result;
}
HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
if (!v->IsPhi()) return v;
HPhi* phi = HPhi::cast(v);
if (phi->OperandCount() != 2) return v;
if (phi->OperandAt(0)->block()->is_osr_entry()) {
return phi->OperandAt(1);
} else if (phi->OperandAt(1)->block()->is_osr_entry()) {
return phi->OperandAt(0);
} else {
return v;
}
}
InductionVariableData* InductionVariableData::GetInductionVariableData(
HValue* v) {
v = IgnoreOsrValue(v);
if (v->IsPhi()) {
return HPhi::cast(v)->induction_variable_data();
}
return NULL;
}
/*
* Check if a conditional branch to "current_branch" with token "token" is
* the branch that keeps the induction loop running (and, conversely, will
* terminate it if the "other_branch" is taken).
*
* Three conditions must be met:
* - "current_branch" must be in the induction loop.
* - "other_branch" must be out of the induction loop.
* - "token" and the induction increment must be "compatible": the token should
* be a condition that keeps the execution inside the loop until the limit is
* reached.
*/
bool InductionVariableData::CheckIfBranchIsLoopGuard(
Token::Value token,
HBasicBlock* current_branch,
HBasicBlock* other_branch) {
if (!phi()->block()->current_loop()->IsNestedInThisLoop(
current_branch->current_loop())) {
return false;
}
if (phi()->block()->current_loop()->IsNestedInThisLoop(
other_branch->current_loop())) {
return false;
}
if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
return true;
}
if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
return true;
}
if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
return true;
}
return false;
}
void InductionVariableData::ComputeLimitFromPredecessorBlock(
HBasicBlock* block,
LimitFromPredecessorBlock* result) {
if (block->predecessors()->length() != 1) return;
HBasicBlock* predecessor = block->predecessors()->at(0);
HInstruction* end = predecessor->last();
if (!end->IsCompareNumericAndBranch()) return;
HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
Token::Value token = branch->token();
if (!Token::IsArithmeticCompareOp(token)) return;
HBasicBlock* other_target;
if (block == branch->SuccessorAt(0)) {
other_target = branch->SuccessorAt(1);
} else {
other_target = branch->SuccessorAt(0);
token = Token::NegateCompareOp(token);
DCHECK(block == branch->SuccessorAt(1));
}
InductionVariableData* data;
data = GetInductionVariableData(branch->left());
HValue* limit = branch->right();
if (data == NULL) {
data = GetInductionVariableData(branch->right());
token = Token::ReverseCompareOp(token);
limit = branch->left();
}
if (data != NULL) {
result->variable = data;
result->token = token;
result->limit = limit;
result->other_target = other_target;
}
}
/*
* Compute the limit that is imposed on an induction variable when entering
* "block" (if any).
* If the limit is the "proper" induction limit (the one that makes the loop
* terminate when the induction variable reaches it) it is stored directly in
* the induction variable data.
* Otherwise the limit is written in "additional_limit" and the method
* returns true.
*/
bool InductionVariableData::ComputeInductionVariableLimit(
HBasicBlock* block,
InductionVariableLimitUpdate* additional_limit) {
LimitFromPredecessorBlock limit;
ComputeLimitFromPredecessorBlock(block, &limit);
if (!limit.LimitIsValid()) return false;
if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
block,
limit.other_target)) {
limit.variable->limit_ = limit.limit;
limit.variable->limit_included_ = limit.LimitIsIncluded();
limit.variable->limit_validity_ = block;
limit.variable->induction_exit_block_ = block->predecessors()->at(0);
limit.variable->induction_exit_target_ = limit.other_target;
return false;
} else {
additional_limit->updated_variable = limit.variable;
additional_limit->limit = limit.limit;
additional_limit->limit_is_upper = limit.LimitIsUpper();
additional_limit->limit_is_included = limit.LimitIsIncluded();
return true;
}
}
Range* HMathMinMax::InferRange(Zone* zone) {
if (representation().IsSmiOrInteger32()) {
Range* a = left()->range();
Range* b = right()->range();
Range* res = a->Copy(zone);
if (operation_ == kMathMax) {
res->CombinedMax(b);
} else {
DCHECK(operation_ == kMathMin);
res->CombinedMin(b);
}
return res;
} else {
return HValue::InferRange(zone);
}
}
void HPushArguments::AddInput(HValue* value) {
inputs_.Add(NULL, value->block()->zone());
SetOperandAt(OperandCount() - 1, value);
}
std::ostream& HPhi::PrintTo(std::ostream& os) const { // NOLINT
os << "[";
for (int i = 0; i < OperandCount(); ++i) {
os << " " << NameOf(OperandAt(i)) << " ";
}
return os << " uses:" << UseCount() << "_"
<< smi_non_phi_uses() + smi_indirect_uses() << "s_"
<< int32_non_phi_uses() + int32_indirect_uses() << "i_"
<< double_non_phi_uses() + double_indirect_uses() << "d_"
<< tagged_non_phi_uses() + tagged_indirect_uses() << "t"
<< TypeOf(this) << "]";
}
void HPhi::AddInput(HValue* value) {
inputs_.Add(NULL, value->block()->zone());
SetOperandAt(OperandCount() - 1, value);
// Mark phis that may have 'arguments' directly or indirectly as an operand.
if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
SetFlag(kIsArguments);
}
}
bool HPhi::HasRealUses() {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
if (!it.value()->IsPhi()) return true;
}
return false;
}
HValue* HPhi::GetRedundantReplacement() {
HValue* candidate = NULL;
int count = OperandCount();
int position = 0;
while (position < count && candidate == NULL) {
HValue* current = OperandAt(position++);
if (current != this) candidate = current;
}
while (position < count) {
HValue* current = OperandAt(position++);
if (current != this && current != candidate) return NULL;
}
DCHECK(candidate != this);
return candidate;
}
void HPhi::DeleteFromGraph() {
DCHECK(block() != NULL);
block()->RemovePhi(this);
DCHECK(block() == NULL);
}
void HPhi::InitRealUses(int phi_id) {
// Initialize real uses.
phi_id_ = phi_id;
// Compute a conservative approximation of truncating uses before inferring
// representations. The proper, exact computation will be done later, when
// inserting representation changes.
SetFlag(kTruncatingToSmi);
SetFlag(kTruncatingToInt32);
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* value = it.value();
if (!value->IsPhi()) {
Representation rep = value->observed_input_representation(it.index());
non_phi_uses_[rep.kind()] += 1;
if (FLAG_trace_representation) {
PrintF("#%d Phi is used by real #%d %s as %s\n",
id(), value->id(), value->Mnemonic(), rep.Mnemonic());
}
if (!value->IsSimulate()) {
if (!value->CheckFlag(kTruncatingToSmi)) {
ClearFlag(kTruncatingToSmi);
}
if (!value->CheckFlag(kTruncatingToInt32)) {
ClearFlag(kTruncatingToInt32);
}
}
}
}
}
void HPhi::AddNonPhiUsesFrom(HPhi* other) {
if (FLAG_trace_representation) {
PrintF("adding to #%d Phi uses of #%d Phi: s%d i%d d%d t%d\n",
id(), other->id(),
other->non_phi_uses_[Representation::kSmi],
other->non_phi_uses_[Representation::kInteger32],
other->non_phi_uses_[Representation::kDouble],
other->non_phi_uses_[Representation::kTagged]);
}
for (int i = 0; i < Representation::kNumRepresentations; i++) {
indirect_uses_[i] += other->non_phi_uses_[i];
}
}
void HPhi::AddIndirectUsesTo(int* dest) {
for (int i = 0; i < Representation::kNumRepresentations; i++) {
dest[i] += indirect_uses_[i];
}
}
void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
while (!list->is_empty()) {
HSimulate* from = list->RemoveLast();
ZoneList<HValue*>* from_values = &from->values_;
for (int i = 0; i < from_values->length(); ++i) {
if (from->HasAssignedIndexAt(i)) {
int index = from->GetAssignedIndexAt(i);
if (HasValueForIndex(index)) continue;
AddAssignedValue(index, from_values->at(i));
} else {
if (pop_count_ > 0) {
pop_count_--;
} else {
AddPushedValue(from_values->at(i));
}
}
}
pop_count_ += from->pop_count_;
from->DeleteAndReplaceWith(NULL);
}
}
std::ostream& HSimulate::PrintDataTo(std::ostream& os) const { // NOLINT
os << "id=" << ast_id().ToInt();
if (pop_count_ > 0) os << " pop " << pop_count_;
if (values_.length() > 0) {
if (pop_count_ > 0) os << " /";
for (int i = values_.length() - 1; i >= 0; --i) {
if (HasAssignedIndexAt(i)) {
os << " var[" << GetAssignedIndexAt(i) << "] = ";
} else {
os << " push ";
}
os << NameOf(values_[i]);
if (i > 0) os << ",";
}
}
return os;
}
void HSimulate::ReplayEnvironment(HEnvironment* env) {
if (done_with_replay_) return;
DCHECK(env != NULL);
env->set_ast_id(ast_id());
env->Drop(pop_count());
for (int i = values()->length() - 1; i >= 0; --i) {
HValue* value = values()->at(i);
if (HasAssignedIndexAt(i)) {
env->Bind(GetAssignedIndexAt(i), value);
} else {
env->Push(value);
}
}
done_with_replay_ = true;
}
static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
HCapturedObject* other) {
for (int i = 0; i < values->length(); ++i) {
HValue* value = values->at(i);
if (value->IsCapturedObject()) {
if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
values->at(i) = other;
} else {
ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
}
}
}
}
// Replay captured objects by replacing all captured objects with the
// same capture id in the current and all outer environments.
void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
DCHECK(env != NULL);
while (env != NULL) {
ReplayEnvironmentNested(env->values(), this);
env = env->outer();
}
}
std::ostream& HCapturedObject::PrintDataTo(std::ostream& os) const { // NOLINT
os << "#" << capture_id() << " ";
return HDematerializedObject::PrintDataTo(os);
}
void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
Zone* zone) {
DCHECK(return_target->IsInlineReturnTarget());
return_targets_.Add(return_target, zone);
}
std::ostream& HEnterInlined::PrintDataTo(std::ostream& os) const { // NOLINT
return os << function()->debug_name()->ToCString().get()
<< ", id=" << function()->id().ToInt();
}
static bool IsInteger32(double value) {
double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
return bit_cast<int64_t>(roundtrip_value) == bit_cast<int64_t>(value);
}
HConstant::HConstant(Handle<Object> object, Representation r)
: HTemplateInstruction<0>(HType::FromValue(object)),
object_(Unique<Object>::CreateUninitialized(object)),
object_map_(Handle<Map>::null()),
has_stable_map_value_(false),
has_smi_value_(false),
has_int32_value_(false),
has_double_value_(false),
has_external_reference_value_(false),
is_not_in_new_space_(true),
boolean_value_(object->BooleanValue()),
is_undetectable_(false),
instance_type_(kUnknownInstanceType) {
if (object->IsHeapObject()) {
Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
Isolate* isolate = heap_object->GetIsolate();
Handle<Map> map(heap_object->map(), isolate);
is_not_in_new_space_ = !isolate->heap()->InNewSpace(*object);
instance_type_ = map->instance_type();
is_undetectable_ = map->is_undetectable();
if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
has_stable_map_value_ = (instance_type_ == MAP_TYPE &&
Handle<Map>::cast(heap_object)->is_stable());
}
if (object->IsNumber()) {
double n = object->Number();
has_int32_value_ = IsInteger32(n);
int32_value_ = DoubleToInt32(n);
has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
double_value_ = n;
has_double_value_ = true;
// TODO(titzer): if this heap number is new space, tenure a new one.
}
Initialize(r);
}
HConstant::HConstant(Unique<Object> object,
Unique<Map> object_map,
bool has_stable_map_value,
Representation r,
HType type,
bool is_not_in_new_space,
bool boolean_value,
bool is_undetectable,
InstanceType instance_type)
: HTemplateInstruction<0>(type),
object_(object),
object_map_(object_map),
has_stable_map_value_(has_stable_map_value),
has_smi_value_(false),
has_int32_value_(false),
has_double_value_(false),
has_external_reference_value_(false),
is_not_in_new_space_(is_not_in_new_space),
boolean_value_(boolean_value),
is_undetectable_(is_undetectable),
instance_type_(instance_type) {
DCHECK(!object.handle().is_null());
DCHECK(!type.IsTaggedNumber() || type.IsNone());
Initialize(r);
}
HConstant::HConstant(int32_t integer_value,
Representation r,
bool is_not_in_new_space,
Unique<Object> object)
: object_(object),
object_map_(Handle<Map>::null()),
has_stable_map_value_(false),
has_smi_value_(Smi::IsValid(integer_value)),
has_int32_value_(true),
has_double_value_(true),
has_external_reference_value_(false),
is_not_in_new_space_(is_not_in_new_space),
boolean_value_(integer_value != 0),
is_undetectable_(false),
int32_value_(integer_value),
double_value_(FastI2D(integer_value)),
instance_type_(kUnknownInstanceType) {
// It's possible to create a constant with a value in Smi-range but stored
// in a (pre-existing) HeapNumber. See crbug.com/349878.
bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
bool is_smi = has_smi_value_ && !could_be_heapobject;
set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
Initialize(r);
}
HConstant::HConstant(double double_value,
Representation r,
bool is_not_in_new_space,
Unique<Object> object)
: object_(object),
object_map_(Handle<Map>::null()),
has_stable_map_value_(false),
has_int32_value_(IsInteger32(double_value)),
has_double_value_(true),
has_external_reference_value_(false),
is_not_in_new_space_(is_not_in_new_space),
boolean_value_(double_value != 0 && !std::isnan(double_value)),
is_undetectable_(false),
int32_value_(DoubleToInt32(double_value)),
double_value_(double_value),
instance_type_(kUnknownInstanceType) {
has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
// It's possible to create a constant with a value in Smi-range but stored
// in a (pre-existing) HeapNumber. See crbug.com/349878.
bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
bool is_smi = has_smi_value_ && !could_be_heapobject;
set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
Initialize(r);
}
HConstant::HConstant(ExternalReference reference)
: HTemplateInstruction<0>(HType::Any()),
object_(Unique<Object>(Handle<Object>::null())),
object_map_(Handle<Map>::null()),
has_stable_map_value_(false),
has_smi_value_(false),
has_int32_value_(false),
has_double_value_(false),
has_external_reference_value_(true),
is_not_in_new_space_(true),
boolean_value_(true),
is_undetectable_(false),
external_reference_value_(reference),
instance_type_(kUnknownInstanceType) {
Initialize(Representation::External());
}
void HConstant::Initialize(Representation r) {
if (r.IsNone()) {
if (has_smi_value_ && SmiValuesAre31Bits()) {
r = Representation::Smi();
} else if (has_int32_value_) {
r = Representation::Integer32();
} else if (has_double_value_) {
r = Representation::Double();
} else if (has_external_reference_value_) {
r = Representation::External();
} else {
Handle<Object> object = object_.handle();
if (object->IsJSObject()) {
// Try to eagerly migrate JSObjects that have deprecated maps.
Handle<JSObject> js_object = Handle<JSObject>::cast(object);
if (js_object->map()->is_deprecated()) {
JSObject::TryMigrateInstance(js_object);
}
}
r = Representation::Tagged();
}
}
if (r.IsSmi()) {
// If we have an existing handle, zap it, because it might be a heap
// number which we must not re-use when copying this HConstant to
// Tagged representation later, because having Smi representation now
// could cause heap object checks not to get emitted.
object_ = Unique<Object>(Handle<Object>::null());
}
set_representation(r);
SetFlag(kUseGVN);
}
bool HConstant::ImmortalImmovable() const {
if (has_int32_value_) {
return false;
}
if (has_double_value_) {
if (IsSpecialDouble()) {
return true;
}
return false;
}
if (has_external_reference_value_) {
return false;
}
DCHECK(!object_.handle().is_null());
Heap* heap = isolate()->heap();
DCHECK(!object_.IsKnownGlobal(heap->minus_zero_value()));
DCHECK(!object_.IsKnownGlobal(heap->nan_value()));
return
#define IMMORTAL_IMMOVABLE_ROOT(name) \
object_.IsKnownGlobal(heap->root(Heap::k##name##RootIndex)) ||
IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
#undef IMMORTAL_IMMOVABLE_ROOT
#define INTERNALIZED_STRING(name, value) \
object_.IsKnownGlobal(heap->name()) ||
INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
#undef INTERNALIZED_STRING
#define STRING_TYPE(NAME, size, name, Name) \
object_.IsKnownGlobal(heap->name##_map()) ||
STRING_TYPE_LIST(STRING_TYPE)
#undef STRING_TYPE
false;
}
bool HConstant::EmitAtUses() {
DCHECK(IsLinked());
if (block()->graph()->has_osr() &&
block()->graph()->IsStandardConstant(this)) {
// TODO(titzer): this seems like a hack that should be fixed by custom OSR.
return true;
}
if (HasNoUses()) return true;
if (IsCell()) return false;
if (representation().IsDouble()) return false;
if (representation().IsExternal()) return false;
return true;
}
HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
if (r.IsSmi() && !has_smi_value_) return NULL;
if (r.IsInteger32() && !has_int32_value_) return NULL;
if (r.IsDouble() && !has_double_value_) return NULL;
if (r.IsExternal() && !has_external_reference_value_) return NULL;
if (has_int32_value_) {
return new(zone) HConstant(int32_value_, r, is_not_in_new_space_, object_);
}
if (has_double_value_) {
return new(zone) HConstant(double_value_, r, is_not_in_new_space_, object_);
}
if (has_external_reference_value_) {
return new(zone) HConstant(external_reference_value_);
}
DCHECK(!object_.handle().is_null());
return new(zone) HConstant(object_,
object_map_,
has_stable_map_value_,
r,
type_,
is_not_in_new_space_,
boolean_value_,
is_undetectable_,
instance_type_);
}
Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
HConstant* res = NULL;
if (has_int32_value_) {
res = new(zone) HConstant(int32_value_,
Representation::Integer32(),
is_not_in_new_space_,
object_);
} else if (has_double_value_) {
res = new(zone) HConstant(DoubleToInt32(double_value_),
Representation::Integer32(),
is_not_in_new_space_,
object_);
}
return Maybe<HConstant*>(res != NULL, res);
}
Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Zone* zone) {
HConstant* res = NULL;
Handle<Object> handle = this->handle(zone->isolate());
if (handle->IsBoolean()) {
res = handle->BooleanValue() ?
new(zone) HConstant(1) : new(zone) HConstant(0);
} else if (handle->IsUndefined()) {
res = new(zone) HConstant(base::OS::nan_value());
} else if (handle->IsNull()) {
res = new(zone) HConstant(0);
}
return Maybe<HConstant*>(res != NULL, res);
}
std::ostream& HConstant::PrintDataTo(std::ostream& os) const { // NOLINT
if (has_int32_value_) {
os << int32_value_ << " ";
} else if (has_double_value_) {
os << double_value_ << " ";
} else if (has_external_reference_value_) {
os << reinterpret_cast<void*>(external_reference_value_.address()) << " ";
} else {
// The handle() method is silently and lazily mutating the object.
Handle<Object> h = const_cast<HConstant*>(this)->handle(Isolate::Current());
os << Brief(*h) << " ";
if (HasStableMapValue()) os << "[stable-map] ";
if (HasObjectMap()) os << "[map " << *ObjectMap().handle() << "] ";
}
if (!is_not_in_new_space_) os << "[new space] ";
return os;
}
std::ostream& HBinaryOperation::PrintDataTo(std::ostream& os) const { // NOLINT
os << NameOf(left()) << " " << NameOf(right());
if (CheckFlag(kCanOverflow)) os << " !";
if (CheckFlag(kBailoutOnMinusZero)) os << " -0?";
return os;
}
void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
DCHECK(CheckFlag(kFlexibleRepresentation));
Representation new_rep = RepresentationFromInputs();
UpdateRepresentation(new_rep, h_infer, "inputs");
if (representation().IsSmi() && HasNonSmiUse()) {
UpdateRepresentation(
Representation::Integer32(), h_infer, "use requirements");
}
if (observed_output_representation_.IsNone()) {
new_rep = RepresentationFromUses();
UpdateRepresentation(new_rep, h_infer, "uses");
} else {
new_rep = RepresentationFromOutput();
UpdateRepresentation(new_rep, h_infer, "output");
}
}
Representation HBinaryOperation::RepresentationFromInputs() {
// Determine the worst case of observed input representations and
// the currently assumed output representation.
Representation rep = representation();
for (int i = 1; i <= 2; ++i) {
rep = rep.generalize(observed_input_representation(i));
}
// If any of the actual input representation is more general than what we
// have so far but not Tagged, use that representation instead.
Representation left_rep = left()->representation();
Representation right_rep = right()->representation();
if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
return rep;
}
bool HBinaryOperation::IgnoreObservedOutputRepresentation(
Representation current_rep) {
return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
(current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
// Mul in Integer32 mode would be too precise.
(!this->IsMul() || HMul::cast(this)->MulMinusOne());
}
Representation HBinaryOperation::RepresentationFromOutput() {
Representation rep = representation();
// Consider observed output representation, but ignore it if it's Double,
// this instruction is not a division, and all its uses are truncating
// to Integer32.
if (observed_output_representation_.is_more_general_than(rep) &&
!IgnoreObservedOutputRepresentation(rep)) {
return observed_output_representation_;
}
return Representation::None();
}
void HBinaryOperation::AssumeRepresentation(Representation r) {
set_observed_input_representation(1, r);
set_observed_input_representation(2, r);
HValue::AssumeRepresentation(r);
}
void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
DCHECK(CheckFlag(kFlexibleRepresentation));
Representation new_rep = RepresentationFromInputs();
UpdateRepresentation(new_rep, h_infer, "inputs");
// Do not care about uses.
}
Range* HBitwise::InferRange(Zone* zone) {
if (op() == Token::BIT_XOR) {
if (left()->HasRange() && right()->HasRange()) {
// The maximum value has the high bit, and all bits below, set:
// (1 << high) - 1.
// If the range can be negative, the minimum int is a negative number with
// the high bit, and all bits below, unset:
// -(1 << high).
// If it cannot be negative, conservatively choose 0 as minimum int.
int64_t left_upper = left()->range()->upper();
int64_t left_lower = left()->range()->lower();
int64_t right_upper = right()->range()->upper();
int64_t right_lower = right()->range()->lower();
if (left_upper < 0) left_upper = ~left_upper;
if (left_lower < 0) left_lower = ~left_lower;
if (right_upper < 0) right_upper = ~right_upper;
if (right_lower < 0) right_lower = ~right_lower;
int high = MostSignificantBit(
static_cast<uint32_t>(
left_upper | left_lower | right_upper | right_lower));
int64_t limit = 1;
limit <<= high;
int32_t min = (left()->range()->CanBeNegative() ||
right()->range()->CanBeNegative())
? static_cast<int32_t>(-limit) : 0;
return new(zone) Range(min, static_cast<int32_t>(limit - 1));
}
Range* result = HValue::InferRange(zone);
result->set_can_be_minus_zero(false);
return result;
}
const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
int32_t left_mask = (left()->range() != NULL)
? left()->range()->Mask()
: kDefaultMask;
int32_t right_mask = (right()->range() != NULL)
? right()->range()->Mask()
: kDefaultMask;
int32_t result_mask = (op() == Token::BIT_AND)
? left_mask & right_mask
: left_mask | right_mask;
if (result_mask >= 0) return new(zone) Range(0, result_mask);
Range* result = HValue::InferRange(zone);
result->set_can_be_minus_zero(false);
return result;
}
Range* HSar::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Sar(c->Integer32Value());
return result;
}
}
return HValue::InferRange(zone);
}
Range* HShr::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
int shift_count = c->Integer32Value() & 0x1f;
if (left()->range()->CanBeNegative()) {
// Only compute bounds if the result always fits into an int32.
return (shift_count >= 1)
? new(zone) Range(0,
static_cast<uint32_t>(0xffffffff) >> shift_count)
: new(zone) Range();
} else {
// For positive inputs we can use the >> operator.
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Sar(c->Integer32Value());
return result;
}
}
}
return HValue::InferRange(zone);
}
Range* HShl::InferRange(Zone* zone) {
if (right()->IsConstant()) {
HConstant* c = HConstant::cast(right());
if (c->HasInteger32Value()) {
Range* result = (left()->range() != NULL)
? left()->range()->Copy(zone)
: new(zone) Range();
result->Shl(c->Integer32Value());
return result;
}
}
return HValue::InferRange(zone);
}
Range* HLoadNamedField::InferRange(Zone* zone) {
if (access().representation().IsInteger8()) {
return new(zone) Range(kMinInt8, kMaxInt8);
}
if (access().representation().IsUInteger8()) {
return new(zone) Range(kMinUInt8, kMaxUInt8);
}
if (access().representation().IsInteger16()) {
return new(zone) Range(kMinInt16, kMaxInt16);
}
if (access().representation().IsUInteger16()) {
return new(zone) Range(kMinUInt16, kMaxUInt16);
}
if (access().IsStringLength()) {
return new(zone) Range(0, String::kMaxLength);
}
return HValue::InferRange(zone);
}
Range* HLoadKeyed::InferRange(Zone* zone) {
switch (elements_kind()) {
case EXTERNAL_INT8_ELEMENTS:
return new(zone) Range(kMinInt8, kMaxInt8);
case EXTERNAL_UINT8_ELEMENTS:
case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
return new(zone) Range(kMinUInt8, kMaxUInt8);
case EXTERNAL_INT16_ELEMENTS:
return new(zone) Range(kMinInt16, kMaxInt16);
case EXTERNAL_UINT16_ELEMENTS:
return new(zone) Range(kMinUInt16, kMaxUInt16);
default:
return HValue::InferRange(zone);
}
}
std::ostream& HCompareGeneric::PrintDataTo(std::ostream& os) const { // NOLINT
os << Token::Name(token()) << " ";
return HBinaryOperation::PrintDataTo(os);
}
std::ostream& HStringCompareAndBranch::PrintDataTo(
std::ostream& os) const { // NOLINT
os << Token::Name(token()) << " ";
return HControlInstruction::PrintDataTo(os);
}
std::ostream& HCompareNumericAndBranch::PrintDataTo(
std::ostream& os) const { // NOLINT
os << Token::Name(token()) << " " << NameOf(left()) << " " << NameOf(right());
return HControlInstruction::PrintDataTo(os);
}
std::ostream& HCompareObjectEqAndBranch::PrintDataTo(
std::ostream& os) const { // NOLINT
os << NameOf(left()) << " " << NameOf(right());
return HControlInstruction::PrintDataTo(os);
}
bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (known_successor_index() != kNoKnownSuccessorIndex) {
*block = SuccessorAt(known_successor_index());
return true;
}
if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
*block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
? FirstSuccessor() : SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
bool ConstantIsObject(HConstant* constant, Isolate* isolate) {
if (constant->HasNumberValue()) return false;
if (constant->GetUnique().IsKnownGlobal(isolate->heap()->null_value())) {
return true;
}
if (constant->IsUndetectable()) return false;
InstanceType type = constant->GetInstanceType();
return (FIRST_NONCALLABLE_SPEC_OBJECT_TYPE <= type) &&
(type <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
}
bool HIsObjectAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (FLAG_fold_constants && value()->IsConstant()) {
*block = ConstantIsObject(HConstant::cast(value()), isolate())
? FirstSuccessor() : SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (known_successor_index() != kNoKnownSuccessorIndex) {
*block = SuccessorAt(known_successor_index());
return true;
}
if (FLAG_fold_constants && value()->IsConstant()) {
*block = HConstant::cast(value())->HasStringValue()
? FirstSuccessor() : SecondSuccessor();
return true;
}
if (value()->type().IsString()) {
*block = FirstSuccessor();
return true;
}
if (value()->type().IsSmi() ||
value()->type().IsNull() ||
value()->type().IsBoolean() ||
value()->type().IsUndefined() ||
value()->type().IsJSObject()) {
*block = SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (FLAG_fold_constants && value()->IsConstant()) {
*block = HConstant::cast(value())->IsUndetectable()
? FirstSuccessor() : SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (FLAG_fold_constants && value()->IsConstant()) {
InstanceType type = HConstant::cast(value())->GetInstanceType();
*block = (from_ <= type) && (type <= to_)
? FirstSuccessor() : SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
void HCompareHoleAndBranch::InferRepresentation(
HInferRepresentationPhase* h_infer) {
ChangeRepresentation(value()->representation());
}
bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (left() == right() &&
left()->representation().IsSmiOrInteger32()) {
*block = (token() == Token::EQ ||
token() == Token::EQ_STRICT ||
token() == Token::LTE ||
token() == Token::GTE)
? FirstSuccessor() : SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
if (FLAG_fold_constants && value()->IsConstant()) {
HConstant* constant = HConstant::cast(value());
if (constant->HasDoubleValue()) {
*block = IsMinusZero(constant->DoubleValue())
? FirstSuccessor() : SecondSuccessor();
return true;
}
}
if (value()->representation().IsSmiOrInteger32()) {
// A Smi or Integer32 cannot contain minus zero.
*block = SecondSuccessor();
return true;
}
*block = NULL;
return false;
}
void HCompareMinusZeroAndBranch::InferRepresentation(
HInferRepresentationPhase* h_infer) {
ChangeRepresentation(value()->representation());
}
std::ostream& HGoto::PrintDataTo(std::ostream& os) const { // NOLINT
return os << *SuccessorAt(0);
}
void HCompareNumericAndBranch::InferRepresentation(
HInferRepresentationPhase* h_infer) {
Representation left_rep = left()->representation();
Representation right_rep = right()->representation();
Representation observed_left = observed_input_representation(0);
Representation observed_right = observed_input_representation(1);
Representation rep = Representation::None();
rep = rep.generalize(observed_left);
rep = rep.generalize(observed_right);
if (rep.IsNone() || rep.IsSmiOrInteger32()) {
if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
} else {
rep = Representation::Double();
}
if (rep.IsDouble()) {
// According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
// and !=) have special handling of undefined, e.g. undefined == undefined
// is 'true'. Relational comparisons have a different semantic, first
// calling ToPrimitive() on their arguments. The standard Crankshaft
// tagged-to-double conversion to ensure the HCompareNumericAndBranch's
// inputs are doubles caused 'undefined' to be converted to NaN. That's
// compatible out-of-the box with ordered relational comparisons (<, >, <=,
// >=). However, for equality comparisons (and for 'in' and 'instanceof'),
// it is not consistent with the spec. For example, it would cause undefined
// == undefined (should be true) to be evaluated as NaN == NaN
// (false). Therefore, any comparisons other than ordered relational
// comparisons must cause a deopt when one of their arguments is undefined.
// See also v8:1434
if (Token::IsOrderedRelationalCompareOp(token_)) {
SetFlag(kAllowUndefinedAsNaN);
}
}
ChangeRepresentation(rep);
}
std::ostream& HParameter::PrintDataTo(std::ostream& os) const { // NOLINT
return os << index();
}
std::ostream& HLoadNamedField::PrintDataTo(std::ostream& os) const { // NOLINT
os << NameOf(object()) << access_;
if (maps() != NULL) {
os << " [" << *maps()->at(0).handle();
for (int i = 1; i < maps()->size(); ++i) {
os << "," << *maps()->at(i).handle();
}
os << "]";
}
if (HasDependency()) os << " " << NameOf(dependency());
return os;
}
std::ostream& HLoadNamedGeneric::PrintDataTo(
std::ostream& os) const { // NOLINT
Handle<String> n = Handle<String>::cast(name());
return os << NameOf(object()) << "." << n->ToCString().get();
}
std::ostream& HLoadKeyed::PrintDataTo(std::ostream& os) const { // NOLINT
if (!is_external()) {
os << NameOf(elements());
} else {
DCHECK(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
}
os << "[" << NameOf(key());
if (IsDehoisted()) os << " + " << base_offset();
os << "]";
if (HasDependency()) os << " " << NameOf(dependency());
if (RequiresHoleCheck()) os << " check_hole";
return os;
}
bool HLoadKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
// The base offset is usually simply the size of the array header, except
// with dehoisting adds an addition offset due to a array index key
// manipulation, in which case it becomes (array header size +
// constant-offset-from-key * kPointerSize)
uint32_t base_offset = BaseOffsetField::decode(bit_field_);
v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset;
addition_result += increase_by_value;
if (!addition_result.IsValid()) return false;
base_offset = addition_result.ValueOrDie();
if (!BaseOffsetField::is_valid(base_offset)) return false;
bit_field_ = BaseOffsetField::update(bit_field_, base_offset);
return true;
}
bool HLoadKeyed::UsesMustHandleHole() const {
if (IsFastPackedElementsKind(elements_kind())) {
return false;
}
if (IsExternalArrayElementsKind(elements_kind())) {
return false;
}
if (hole_mode() == ALLOW_RETURN_HOLE) {
if (IsFastDoubleElementsKind(elements_kind())) {
return AllUsesCanTreatHoleAsNaN();
}
return true;
}
if (IsFastDoubleElementsKind(elements_kind())) {
return false;
}
// Holes are only returned as tagged values.
if (!representation().IsTagged()) {
return false;
}
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!use->IsChange()) return false;
}
return true;
}
bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
return IsFastDoubleElementsKind(elements_kind()) &&
CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
}
bool HLoadKeyed::RequiresHoleCheck() const {
if (IsFastPackedElementsKind(elements_kind())) {
return false;
}
if (IsExternalArrayElementsKind(elements_kind())) {
return false;
}
return !UsesMustHandleHole();
}
std::ostream& HLoadKeyedGeneric::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << NameOf(object()) << "[" << NameOf(key()) << "]";
}
HValue* HLoadKeyedGeneric::Canonicalize() {
// Recognize generic keyed loads that use property name generated
// by for-in statement as a key and rewrite them into fast property load
// by index.
if (key()->IsLoadKeyed()) {
HLoadKeyed* key_load = HLoadKeyed::cast(key());
if (key_load->elements()->IsForInCacheArray()) {
HForInCacheArray* names_cache =
HForInCacheArray::cast(key_load->elements());
if (names_cache->enumerable() == object()) {
HForInCacheArray* index_cache =
names_cache->index_cache();
HCheckMapValue* map_check =
HCheckMapValue::New(block()->graph()->zone(),
block()->graph()->GetInvalidContext(),
object(),
names_cache->map());
HInstruction* index = HLoadKeyed::New(
block()->graph()->zone(),
block()->graph()->GetInvalidContext(),
index_cache,
key_load->key(),
key_load->key(),
key_load->elements_kind());
map_check->InsertBefore(this);
index->InsertBefore(this);
return Prepend(new(block()->zone()) HLoadFieldByIndex(
object(), index));
}
}
}
return this;
}
std::ostream& HStoreNamedGeneric::PrintDataTo(
std::ostream& os) const { // NOLINT
Handle<String> n = Handle<String>::cast(name());
return os << NameOf(object()) << "." << n->ToCString().get() << " = "
<< NameOf(value());
}
std::ostream& HStoreNamedField::PrintDataTo(std::ostream& os) const { // NOLINT
os << NameOf(object()) << access_ << " = " << NameOf(value());
if (NeedsWriteBarrier()) os << " (write-barrier)";
if (has_transition()) os << " (transition map " << *transition_map() << ")";
return os;
}
std::ostream& HStoreKeyed::PrintDataTo(std::ostream& os) const { // NOLINT
if (!is_external()) {
os << NameOf(elements());
} else {
DCHECK(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
os << NameOf(elements()) << "." << ElementsKindToString(elements_kind());
}
os << "[" << NameOf(key());
if (IsDehoisted()) os << " + " << base_offset();
return os << "] = " << NameOf(value());
}
std::ostream& HStoreKeyedGeneric::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << NameOf(object()) << "[" << NameOf(key())
<< "] = " << NameOf(value());
}
std::ostream& HTransitionElementsKind::PrintDataTo(
std::ostream& os) const { // NOLINT
os << NameOf(object());
ElementsKind from_kind = original_map().handle()->elements_kind();
ElementsKind to_kind = transitioned_map().handle()->elements_kind();
os << " " << *original_map().handle() << " ["
<< ElementsAccessor::ForKind(from_kind)->name() << "] -> "
<< *transitioned_map().handle() << " ["
<< ElementsAccessor::ForKind(to_kind)->name() << "]";
if (IsSimpleMapChangeTransition(from_kind, to_kind)) os << " (simple)";
return os;
}
std::ostream& HLoadGlobalCell::PrintDataTo(std::ostream& os) const { // NOLINT
os << "[" << *cell().handle() << "]";
if (details_.IsConfigurable()) os << " (configurable)";
if (details_.IsReadOnly()) os << " (read-only)";
return os;
}
bool HLoadGlobalCell::RequiresHoleCheck() const {
if (!details_.IsConfigurable()) return false;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!use->IsChange()) return true;
}
return false;
}
std::ostream& HLoadGlobalGeneric::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << name()->ToCString().get() << " ";
}
std::ostream& HInnerAllocatedObject::PrintDataTo(
std::ostream& os) const { // NOLINT
os << NameOf(base_object()) << " offset ";
return offset()->PrintTo(os);
}
std::ostream& HStoreGlobalCell::PrintDataTo(std::ostream& os) const { // NOLINT
os << "[" << *cell().handle() << "] = " << NameOf(value());
if (details_.IsConfigurable()) os << " (configurable)";
if (details_.IsReadOnly()) os << " (read-only)";
return os;
}
std::ostream& HLoadContextSlot::PrintDataTo(std::ostream& os) const { // NOLINT
return os << NameOf(value()) << "[" << slot_index() << "]";
}
std::ostream& HStoreContextSlot::PrintDataTo(
std::ostream& os) const { // NOLINT
return os << NameOf(context()) << "[" << slot_index()
<< "] = " << NameOf(value());
}
// Implementation of type inference and type conversions. Calculates
// the inferred type of this instruction based on the input operands.
HType HValue::CalculateInferredType() {
return type_;
}
HType HPhi::CalculateInferredType() {
if (OperandCount() == 0) return HType::Tagged();
HType result = OperandAt(0)->type();
for (int i = 1; i < OperandCount(); ++i) {
HType current = OperandAt(i)->type();
result = result.Combine(current);
}
return result;
}
HType HChange::CalculateInferredType() {
if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
return type();
}
Representation HUnaryMathOperation::RepresentationFromInputs() {
if (SupportsFlexibleFloorAndRound() &&
(op_ == kMathFloor || op_ == kMathRound)) {
// Floor and Round always take a double input. The integral result can be
// used as an integer or a double. Infer the representation from the uses.
return Representation::None();
}
Representation rep = representation();
// If any of the actual input representation is more general than what we
// have so far but not Tagged, use that representation instead.
Representation input_rep = value()->representation();
if (!input_rep.IsTagged()) {
rep = rep.generalize(input_rep);
}
return rep;
}
bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
HValue* dominator) {
DCHECK(side_effect == kNewSpacePromotion);
Zone* zone = block()->zone();
if (!FLAG_use_allocation_folding) return false;
// Try to fold allocations together with their dominating allocations.
if (!dominator->IsAllocate()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s)\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return false;
}
// Check whether we are folding within the same block for local folding.
if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return false;
}
HAllocate* dominator_allocate = HAllocate::cast(dominator);
HValue* dominator_size = dominator_allocate->size();
HValue* current_size = size();
// TODO(hpayer): Add support for non-constant allocation in dominator.
if (!dominator_size->IsInteger32Constant()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), "
"dynamic allocation size in dominator\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return false;
}
dominator_allocate = GetFoldableDominator(dominator_allocate);
if (dominator_allocate == NULL) {
return false;
}
if (!has_size_upper_bound()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), "
"can't estimate total allocation size\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return false;
}
if (!current_size->IsInteger32Constant()) {
// If it's not constant then it is a size_in_bytes calculation graph
// like this: (const_header_size + const_element_size * size).
DCHECK(current_size->IsInstruction());
HInstruction* current_instr = HInstruction::cast(current_size);
if (!current_instr->Dominates(dominator_allocate)) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size "
"value does not dominate target allocation\n",
id(), Mnemonic(), dominator_allocate->id(),
dominator_allocate->Mnemonic());
}
return false;
}
}
DCHECK((IsNewSpaceAllocation() &&
dominator_allocate->IsNewSpaceAllocation()) ||
(IsOldDataSpaceAllocation() &&
dominator_allocate->IsOldDataSpaceAllocation()) ||
(IsOldPointerSpaceAllocation() &&
dominator_allocate->IsOldPointerSpaceAllocation()));
// First update the size of the dominator allocate instruction.
dominator_size = dominator_allocate->size();
int32_t original_object_size =
HConstant::cast(dominator_size)->GetInteger32Constant();
int32_t dominator_size_constant = original_object_size;
if (MustAllocateDoubleAligned()) {
if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
dominator_size_constant += kDoubleSize / 2;
}
}
int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant();
int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
// Since we clear the first word after folded memory, we cannot use the
// whole Page::kMaxRegularHeapObjectSize memory.
if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
id(), Mnemonic(), dominator_allocate->id(),
dominator_allocate->Mnemonic(), new_dominator_size);
}
return false;
}
HInstruction* new_dominator_size_value;
if (current_size->IsInteger32Constant()) {
new_dominator_size_value =
HConstant::CreateAndInsertBefore(zone,
context(),
new_dominator_size,
Representation::None(),
dominator_allocate);
} else {
HValue* new_dominator_size_constant =
HConstant::CreateAndInsertBefore(zone,
context(),
dominator_size_constant,
Representation::Integer32(),
dominator_allocate);
// Add old and new size together and insert.
current_size->ChangeRepresentation(Representation::Integer32());
new_dominator_size_value = HAdd::New(zone, context(),
new_dominator_size_constant, current_size);
new_dominator_size_value->ClearFlag(HValue::kCanOverflow);
new_dominator_size_value->ChangeRepresentation(Representation::Integer32());
new_dominator_size_value->InsertBefore(dominator_allocate);
}
dominator_allocate->UpdateSize(new_dominator_size_value);
if (MustAllocateDoubleAligned()) {
if (!dominator_allocate->MustAllocateDoubleAligned()) {
dominator_allocate->MakeDoubleAligned();
}
}
bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats;
#ifdef VERIFY_HEAP
keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap;
#endif
if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) {
dominator_allocate->MakePrefillWithFiller();
} else {
// TODO(hpayer): This is a short-term hack to make allocation mementos
// work again in new space.
dominator_allocate->ClearNextMapWord(original_object_size);
}
dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
// After that replace the dominated allocate instruction.
HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
zone,
context(),
dominator_size_constant,
Representation::None(),
this);
HInstruction* dominated_allocate_instr =
HInnerAllocatedObject::New(zone,
context(),
dominator_allocate,
inner_offset,
type());
dominated_allocate_instr->InsertBefore(this);
DeleteAndReplaceWith(dominated_allocate_instr);
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) folded into #%d (%s)\n",
id(), Mnemonic(), dominator_allocate->id(),
dominator_allocate->Mnemonic());
}
return true;
}
HAllocate* HAllocate::GetFoldableDominator(HAllocate* dominator) {
if (!IsFoldable(dominator)) {
// We cannot hoist old space allocations over new space allocations.
if (IsNewSpaceAllocation() || dominator->IsNewSpaceAllocation()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), new space hoisting\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return NULL;
}
HAllocate* dominator_dominator = dominator->dominating_allocate_;
// We can hoist old data space allocations over an old pointer space
// allocation and vice versa. For that we have to check the dominator
// of the dominator allocate instruction.
if (dominator_dominator == NULL) {
dominating_allocate_ = dominator;
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n",
id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
}
return NULL;
}
// We can just fold old space allocations that are in the same basic block,
// since it is not guaranteed that we fill up the whole allocated old
// space memory.
// TODO(hpayer): Remove this limitation and add filler maps for each each
// allocation as soon as we have store elimination.
if (block()->block_id() != dominator_dominator->block()->block_id()) {
if (FLAG_trace_allocation_folding) {
PrintF("#%d (%s) cannot fold into #%d (%s), different basic blocks\n",
id(), Mnemonic(), dominator_dominator->id(),
dominator_dominator->Mnemonic());
}
return NULL;
}
DCHECK((IsOldDataSpaceAllocation() &&
dominator_dominator->IsOldDataSpaceAllocation()) ||
(IsOldPointerSpaceAllocation() &&
dominator_dominator->IsOldPointerSpaceAllocation()));
int32_t current_size = HConstant::cast(size())->GetInteger32Constant();
HStoreNamedField* dominator_free_space_size =
dominator->filler_free_space_size_;
if (dominator_free_space_size != NULL) {
// We already hoisted one old space allocation, i.e., we already installed
// a filler map. Hence, we just have to update the free space size.
dominator->UpdateFreeSpaceFiller(current_size);
} else {
// This is the first old space allocation that gets hoisted. We have to
// install a filler map since the follwing allocation may cause a GC.
dominator->CreateFreeSpaceFiller(current_size);
}
// We can hoist the old space allocation over the actual dominator.
return dominator_dominator;
}
return dominator;
}
void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
DCHECK(filler_free_space_size_ != NULL);
Zone* zone = block()->zone();
// We must explicitly force Smi representation here because on x64 we
// would otherwise automatically choose int32, but the actual store
// requires a Smi-tagged value.
HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
zone,
context(),
filler_free_space_size_->value()->GetInteger32Constant() +
free_space_size,
Representation::Smi(),
filler_free_space_size_);
filler_free_space_size_->UpdateValue(new_free_space_size);
}
void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
DCHECK(filler_free_space_size_ == NULL);
Zone* zone = block()->zone();
HInstruction* free_space_instr =
HInnerAllocatedObject::New(zone, context(), dominating_allocate_,
dominating_allocate_->size(), type());
free_space_instr->InsertBefore(this);
HConstant* filler_map = HConstant::CreateAndInsertAfter(
zone, Unique<Map>::CreateImmovable(
isolate()->factory()->free_space_map()), true, free_space_instr);
HInstruction* store_map = HStoreNamedField::New(zone, context(),
free_space_instr, HObjectAccess::ForMap(), filler_map);
store_map->SetFlag(HValue::kHasNoObservableSideEffects);
store_map->InsertAfter(filler_map);
// We must explicitly force Smi representation here because on x64 we
// would otherwise automatically choose int32, but the actual store
// requires a Smi-tagged value.
HConstant* filler_size = HConstant::CreateAndInsertAfter(
zone, context(), free_space_size, Representation::Smi(), store_map);
// Must force Smi representation for x64 (see comment above).
HObjectAccess access =
HObjectAccess::ForMapAndOffset(isolate()->factory()->free_space_map(),
FreeSpace::kSizeOffset,
Representation::Smi());
HStoreNamedField* store_size = HStoreNamedField::New(zone, context(),
free_space_instr, access, filler_size);
store_size->SetFlag(HValue::kHasNoObservableSideEffects);
store_size->InsertAfter(filler_size);
filler_free_space_size_ = store_size;
}
void HAllocate::ClearNextMapWord(int offset) {
if (MustClearNextMapWord()) {
Zone* zone = block()->zone();
HObjectAccess access =
HObjectAccess::ForObservableJSObjectOffset(offset);
HStoreNamedField* clear_next_map =
HStoreNamedField::New(zone, context(), this, access,
block()->graph()->GetConstant0());
clear_next_map->ClearAllSideEffects();
clear_next_map->InsertAfter(this);
}
}
std::ostream& HAllocate::PrintDataTo(std::ostream& os) const { // NOLINT
os << NameOf(size()) << " (";
if (IsNewSpaceAllocation()) os << "N";
if (IsOldPointerSpaceAllocation()) os << "P";
if (IsOldDataSpaceAllocation()) os << "D";
if (MustAllocateDoubleAligned()) os << "A";
if (MustPrefillWithFiller()) os << "F";
return os << ")";
}
bool HStoreKeyed::TryIncreaseBaseOffset(uint32_t increase_by_value) {
// The base offset is usually simply the size of the array header, except
// with dehoisting adds an addition offset due to a array index key
// manipulation, in which case it becomes (array header size +
// constant-offset-from-key * kPointerSize)
v8::base::internal::CheckedNumeric<uint32_t> addition_result = base_offset_;
addition_result += increase_by_value;
if (!addition_result.IsValid()) return false;
base_offset_ = addition_result.ValueOrDie();
return true;
}
bool HStoreKeyed::NeedsCanonicalization() {
// If value is an integer or smi or comes from the result of a keyed load or
// constant then it is either be a non-hole value or in the case of a constant
// the hole is only being stored explicitly: no need for canonicalization.
//
// The exception to that is keyed loads from external float or double arrays:
// these can load arbitrary representation of NaN.
if (value()->IsConstant()) {
return false;
}
if (value()->IsLoadKeyed()) {
return IsExternalFloatOrDoubleElementsKind(
HLoadKeyed::cast(value())->elements_kind());
}
if (value()->IsChange()) {
if (HChange::cast(value())->from().IsSmiOrInteger32()) {
return false;
}
if (HChange::cast(value())->value()->type().IsSmi()) {
return false;
}
}
return true;
}
#define H_CONSTANT_INT(val) \
HConstant::New(zone, context, static_cast<int32_t>(val))
#define H_CONSTANT_DOUBLE(val) \
HConstant::New(zone, context, static_cast<double>(val))
#define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op) \
HInstruction* HInstr::New( \
Zone* zone, HValue* context, HValue* left, HValue* right) { \
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
HConstant* c_left = HConstant::cast(left); \
HConstant* c_right = HConstant::cast(right); \
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \
if (IsInt32Double(double_res)) { \
return H_CONSTANT_INT(double_res); \
} \
return H_CONSTANT_DOUBLE(double_res); \
} \
} \
return new(zone) HInstr(context, left, right); \
}
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
#undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
HInstruction* HStringAdd::New(Zone* zone,
HValue* context,
HValue* left,
HValue* right,
PretenureFlag pretenure_flag,
StringAddFlags flags,
Handle<AllocationSite> allocation_site) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_right = HConstant::cast(right);
HConstant* c_left = HConstant::cast(left);
if (c_left->HasStringValue() && c_right->HasStringValue()) {
Handle<String> left_string = c_left->StringValue();
Handle<String> right_string = c_right->StringValue();
// Prevent possible exception by invalid string length.
if (left_string->length() + right_string->length() < String::kMaxLength) {
MaybeHandle<String> concat = zone->isolate()->factory()->NewConsString(
c_left->StringValue(), c_right->StringValue());
return HConstant::New(zone, context, concat.ToHandleChecked());
}
}
}
return new(zone) HStringAdd(
context, left, right, pretenure_flag, flags, allocation_site);
}
std::ostream& HStringAdd::PrintDataTo(std::ostream& os) const { // NOLINT
if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
os << "_CheckBoth";
} else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
os << "_CheckLeft";
} else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
os << "_CheckRight";
}
HBinaryOperation::PrintDataTo(os);
os << " (";
if (pretenure_flag() == NOT_TENURED)
os << "N";
else if (pretenure_flag() == TENURED)
os << "D";
return os << ")";
}
HInstruction* HStringCharFromCode::New(
Zone* zone, HValue* context, HValue* char_code) {
if (FLAG_fold_constants && char_code->IsConstant()) {
HConstant* c_code = HConstant::cast(char_code);
Isolate* isolate = zone->isolate();
if (c_code->HasNumberValue()) {
if (std::isfinite(c_code->DoubleValue())) {
uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
return HConstant::New(zone, context,
isolate->factory()->LookupSingleCharacterStringFromCode(code));
}
return HConstant::New(zone, context, isolate->factory()->empty_string());
}
}
return new(zone) HStringCharFromCode(context, char_code);
}
HInstruction* HUnaryMathOperation::New(
Zone* zone, HValue* context, HValue* value, BuiltinFunctionId op) {
do {
if (!FLAG_fold_constants) break;
if (!value->IsConstant()) break;
HConstant* constant = HConstant::cast(value);
if (!constant->HasNumberValue()) break;
double d = constant->DoubleValue();
if (std::isnan(d)) { // NaN poisons everything.
return H_CONSTANT_DOUBLE(base::OS::nan_value());
}
if (std::isinf(d)) { // +Infinity and -Infinity.
switch (op) {
case kMathExp:
return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
case kMathLog:
case kMathSqrt:
return H_CONSTANT_DOUBLE((d > 0.0) ? d : base::OS::nan_value());
case kMathPowHalf:
case kMathAbs:
return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
case kMathRound:
case kMathFround:
case kMathFloor:
return H_CONSTANT_DOUBLE(d);
case kMathClz32:
return H_CONSTANT_INT(32);
default:
UNREACHABLE();
break;
}
}
switch (op) {
case kMathExp:
return H_CONSTANT_DOUBLE(fast_exp(d));
case kMathLog:
return H_CONSTANT_DOUBLE(std::log(d));
case kMathSqrt:
return H_CONSTANT_DOUBLE(fast_sqrt(d));
case kMathPowHalf:
return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
case kMathAbs:
return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
case kMathRound:
// -0.5 .. -0.0 round to -0.0.
if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
// Doubles are represented as Significant * 2 ^ Exponent. If the
// Exponent is not negative, the double value is already an integer.
if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
return H_CONSTANT_DOUBLE(Floor(d + 0.5));
case kMathFround:
return H_CONSTANT_DOUBLE(static_cast<double>(static_cast<float>(d)));
case kMathFloor:
return H_CONSTANT_DOUBLE(Floor(d));
case kMathClz32: {
uint32_t i = DoubleToUint32(d);
return H_CONSTANT_INT(base::bits::CountLeadingZeros32(i));
}
default:
UNREACHABLE();
break;
}
} while (false);
return new(zone) HUnaryMathOperation(context, value, op);
}
Representation HUnaryMathOperation::RepresentationFromUses() {
if (op_ != kMathFloor && op_ != kMathRound) {
return HValue::RepresentationFromUses();
}
// The instruction can have an int32 or double output. Prefer a double
// representation if there are double uses.
bool use_double = false;
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
int use_index = it.index();
Representation rep_observed = use->observed_input_representation(use_index);
Representation rep_required = use->RequiredInputRepresentation(use_index);
use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
if (use_double && !FLAG_trace_representation) {
// Having seen one double is enough.
break;
}
if (FLAG_trace_representation) {
if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
PrintF("#%d %s is used by #%d %s as %s%s\n",
id(), Mnemonic(), use->id(),
use->Mnemonic(), rep_observed.Mnemonic(),
(use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
} else {
PrintF("#%d %s is required by #%d %s as %s%s\n",
id(), Mnemonic(), use->id(),
use->Mnemonic(), rep_required.Mnemonic(),
(use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
}
}
}
return use_double ? Representation::Double() : Representation::Integer32();
}
HInstruction* HPower::New(Zone* zone,
HValue* context,
HValue* left,
HValue* right) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
double result = power_helper(c_left->DoubleValue(),
c_right->DoubleValue());
return H_CONSTANT_DOUBLE(std::isnan(result) ? base::OS::nan_value()
: result);
}
}
return new(zone) HPower(left, right);
}
HInstruction* HMathMinMax::New(
Zone* zone, HValue* context, HValue* left, HValue* right, Operation op) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
double d_left = c_left->DoubleValue();
double d_right = c_right->DoubleValue();
if (op == kMathMin) {
if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
if (d_left == d_right) {
// Handle +0 and -0.
return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
: d_right);
}
} else {
if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
if (d_left == d_right) {
// Handle +0 and -0.
return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
: d_left);
}
}
// All comparisons failed, must be NaN.
return H_CONSTANT_DOUBLE(base::OS::nan_value());
}
}
return new(zone) HMathMinMax(context, left, right, op);
}
HInstruction* HMod::New(Zone* zone,
HValue* context,
HValue* left,
HValue* right) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
int32_t dividend = c_left->Integer32Value();
int32_t divisor = c_right->Integer32Value();
if (dividend == kMinInt && divisor == -1) {
return H_CONSTANT_DOUBLE(-0.0);
}
if (divisor != 0) {
int32_t res = dividend % divisor;
if ((res == 0) && (dividend < 0)) {
return H_CONSTANT_DOUBLE(-0.0);
}
return H_CONSTANT_INT(res);
}
}
}
return new(zone) HMod(context, left, right);
}
HInstruction* HDiv::New(
Zone* zone, HValue* context, HValue* left, HValue* right) {
// If left and right are constant values, try to return a constant value.
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
if (c_right->DoubleValue() != 0) {
double double_res = c_left->DoubleValue() / c_right->DoubleValue();
if (IsInt32Double(double_res)) {
return H_CONSTANT_INT(double_res);
}
return H_CONSTANT_DOUBLE(double_res);
} else {
int sign = Double(c_left->DoubleValue()).Sign() *
Double(c_right->DoubleValue()).Sign(); // Right could be -0.
return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
}
}
}
return new(zone) HDiv(context, left, right);
}
HInstruction* HBitwise::New(
Zone* zone, HValue* context, Token::Value op, HValue* left, HValue* right) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
int32_t result;
int32_t v_left = c_left->NumberValueAsInteger32();
int32_t v_right = c_right->NumberValueAsInteger32();
switch (op) {
case Token::BIT_XOR:
result = v_left ^ v_right;
break;
case Token::BIT_AND:
result = v_left & v_right;
break;
case Token::BIT_OR:
result = v_left | v_right;
break;
default:
result = 0; // Please the compiler.
UNREACHABLE();
}
return H_CONSTANT_INT(result);
}
}
return new(zone) HBitwise(context, op, left, right);
}
#define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result) \
HInstruction* HInstr::New( \
Zone* zone, HValue* context, HValue* left, HValue* right) { \
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
HConstant* c_left = HConstant::cast(left); \
HConstant* c_right = HConstant::cast(right); \
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
return H_CONSTANT_INT(result); \
} \
} \
return new(zone) HInstr(context, left, right); \
}
DEFINE_NEW_H_BITWISE_INSTR(HSar,
c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
DEFINE_NEW_H_BITWISE_INSTR(HShl,
c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
#undef DEFINE_NEW_H_BITWISE_INSTR
HInstruction* HShr::New(
Zone* zone, HValue* context, HValue* left, HValue* right) {
if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
HConstant* c_left = HConstant::cast(left);
HConstant* c_right = HConstant::cast(right);
if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
int32_t left_val = c_left->NumberValueAsInteger32();
int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
if ((right_val == 0) && (left_val < 0)) {
return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
}
return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
}
}
return new(zone) HShr(context, left, right);
}
HInstruction* HSeqStringGetChar::New(Zone* zone,
HValue* context,
String::Encoding encoding,
HValue* string,
HValue* index) {
if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
HConstant* c_string = HConstant::cast(string);
HConstant* c_index = HConstant::cast(index);
if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
Handle<String> s = c_string->StringValue();
int32_t i = c_index->Integer32Value();
DCHECK_LE(0, i);
DCHECK_LT(i, s->length());
return H_CONSTANT_INT(s->Get(i));
}
}
return new(zone) HSeqStringGetChar(encoding, string, index);
}
#undef H_CONSTANT_INT
#undef H_CONSTANT_DOUBLE
std::ostream& HBitwise::PrintDataTo(std::ostream& os) const { // NOLINT
os << Token::Name(op_) << " ";
return HBitwiseBinaryOperation::PrintDataTo(os);
}
void HPhi::SimplifyConstantInputs() {
// Convert constant inputs to integers when all uses are truncating.
// This must happen before representation inference takes place.
if (!CheckUsesForFlag(kTruncatingToInt32)) return;
for (int i = 0; i < OperandCount(); ++i) {
if (!OperandAt(i)->IsConstant()) return;
}
HGraph* graph = block()->graph();
for (int i = 0; i < OperandCount(); ++i) {
HConstant* operand = HConstant::cast(OperandAt(i));
if (operand->HasInteger32Value()) {
continue;
} else if (operand->HasDoubleValue()) {
HConstant* integer_input =
HConstant::New(graph->zone(), graph->GetInvalidContext(),
DoubleToInt32(operand->DoubleValue()));
integer_input->InsertAfter(operand);
SetOperandAt(i, integer_input);
} else if (operand->HasBooleanValue()) {
SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
: graph->GetConstant0());
} else if (operand->ImmortalImmovable()) {
SetOperandAt(i, graph->GetConstant0());
}
}
// Overwrite observed input representations because they are likely Tagged.
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (use->IsBinaryOperation()) {
HBinaryOperation::cast(use)->set_observed_input_representation(
it.index(), Representation::Smi());
}
}
}
void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
DCHECK(CheckFlag(kFlexibleRepresentation));
Representation new_rep = RepresentationFromInputs();
UpdateRepresentation(new_rep, h_infer, "inputs");
new_rep = RepresentationFromUses();
UpdateRepresentation(new_rep, h_infer, "uses");
new_rep = RepresentationFromUseRequirements();
UpdateRepresentation(new_rep, h_infer, "use requirements");
}
Representation HPhi::RepresentationFromInputs() {
Representation r = Representation::None();
for (int i = 0; i < OperandCount(); ++i) {
r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
}
return r;
}
// Returns a representation if all uses agree on the same representation.
// Integer32 is also returned when some uses are Smi but others are Integer32.
Representation HValue::RepresentationFromUseRequirements() {
Representation rep = Representation::None();
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
// Ignore the use requirement from never run code
if (it.value()->block()->IsUnreachable()) continue;
// We check for observed_input_representation elsewhere.
Representation use_rep =
it.value()->RequiredInputRepresentation(it.index());
if (rep.IsNone()) {
rep = use_rep;
continue;
}
if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
if (rep.generalize(use_rep).IsInteger32()) {
rep = Representation::Integer32();
continue;
}
return Representation::None();
}
return rep;
}
bool HValue::HasNonSmiUse() {
for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
// We check for observed_input_representation elsewhere.
Representation use_rep =
it.value()->RequiredInputRepresentation(it.index());
if (!use_rep.IsNone() &&
!use_rep.IsSmi() &&
!use_rep.IsTagged()) {
return true;
}
}
return false;
}
// Node-specific verification code is only included in debug mode.
#ifdef DEBUG
void HPhi::Verify() {
DCHECK(OperandCount() == block()->predecessors()->length());
for (int i = 0; i < OperandCount(); ++i) {
HValue* value = OperandAt(i);
HBasicBlock* defining_block = value->block();
HBasicBlock* predecessor_block = block()->predecessors()->at(i);
DCHECK(defining_block == predecessor_block ||
defining_block->Dominates(predecessor_block));
}
}
void HSimulate::Verify() {
HInstruction::Verify();
DCHECK(HasAstId() || next()->IsEnterInlined());
}
void HCheckHeapObject::Verify() {
HInstruction::Verify();
DCHECK(HasNoUses());
}
void HCheckValue::Verify() {
HInstruction::Verify();
DCHECK(HasNoUses());
}
#endif
HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
DCHECK(offset >= 0);
DCHECK(offset < FixedArray::kHeaderSize);
if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
return HObjectAccess(kInobject, offset);
}
HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
Representation representation) {
DCHECK(offset >= 0);
Portion portion = kInobject;
if (offset == JSObject::kElementsOffset) {
portion = kElementsPointer;
} else if (offset == JSObject::kMapOffset) {
portion = kMaps;
}
bool existing_inobject_property = true;
if (!map.is_null()) {
existing_inobject_property = (offset <
map->instance_size() - map->unused_property_fields() * kPointerSize);
}
return HObjectAccess(portion, offset, representation, Handle<String>::null(),
false, existing_inobject_property);
}
HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
switch (offset) {
case AllocationSite::kTransitionInfoOffset:
return HObjectAccess(kInobject, offset, Representation::Tagged());
case AllocationSite::kNestedSiteOffset:
return HObjectAccess(kInobject, offset, Representation::Tagged());
case AllocationSite::kPretenureDataOffset:
return HObjectAccess(kInobject, offset, Representation::Smi());
case AllocationSite::kPretenureCreateCountOffset:
return HObjectAccess(kInobject, offset, Representation::Smi());
case AllocationSite::kDependentCodeOffset:
return HObjectAccess(kInobject, offset, Representation::Tagged());
case AllocationSite::kWeakNextOffset:
return HObjectAccess(kInobject, offset, Representation::Tagged());
default:
UNREACHABLE();
}
return HObjectAccess(kInobject, offset);
}
HObjectAccess HObjectAccess::ForContextSlot(int index) {
DCHECK(index >= 0);
Portion portion = kInobject;
int offset = Context::kHeaderSize + index * kPointerSize;
DCHECK_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
return HObjectAccess(portion, offset, Representation::Tagged());
}
HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
DCHECK(offset >= 0);
Portion portion = kInobject;
if (offset == JSObject::kElementsOffset) {
portion = kElementsPointer;
} else if (offset == JSArray::kLengthOffset) {
portion = kArrayLengths;
} else if (offset == JSObject::kMapOffset) {
portion = kMaps;
}
return HObjectAccess(portion, offset);
}
HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
Representation representation) {
DCHECK(offset >= 0);
return HObjectAccess(kBackingStore, offset, representation,
Handle<String>::null(), false, false);
}
HObjectAccess HObjectAccess::ForField(Handle<Map> map, int index,
Representation representation,
Handle<String> name) {
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
int offset = (index * kPointerSize) + map->instance_size();
return HObjectAccess(kInobject, offset, representation, name, false, true);
} else {
// Non-negative property indices are in the properties array.
int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
return HObjectAccess(kBackingStore, offset, representation, name,
false, false);
}
}
HObjectAccess HObjectAccess::ForCellPayload(Isolate* isolate) {
return HObjectAccess(kInobject, Cell::kValueOffset, Representation::Tagged(),
isolate->factory()->cell_value_string());
}
void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
// set the appropriate GVN flags for a given load or store instruction
if (access_type == STORE) {
// track dominating allocations in order to eliminate write barriers
instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
instr->SetFlag(HValue::kTrackSideEffectDominators);
} else {
// try to GVN loads, but don't hoist above map changes
instr->SetFlag(HValue::kUseGVN);
instr->SetDependsOnFlag(::v8::internal::kMaps);
}
switch (portion()) {
case kArrayLengths:
if (access_type == STORE) {
instr->SetChangesFlag(::v8::internal::kArrayLengths);
} else {
instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
}
break;
case kStringLengths:
if (access_type == STORE) {
instr->SetChangesFlag(::v8::internal::kStringLengths);
} else {
instr->SetDependsOnFlag(::v8::internal::kStringLengths);
}
break;
case kInobject:
if (access_type == STORE) {
instr->SetChangesFlag(::v8::internal::kInobjectFields);
} else {
instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
}
break;
case kDouble:
if (access_type == STORE) {
instr->SetChangesFlag(::v8::internal::kDoubleFields);
} else {
instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
}
break;
case kBackingStore:
if (access_type == STORE) {
instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
} else {
instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
}
break;
case kElementsPointer:
if (access_type == STORE) {
instr->SetChangesFlag(::v8::internal::kElementsPointer);
} else {
instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
}
break;
case kMaps:
if (access_type == STORE) {
instr->SetChangesFlag(::v8::internal::kMaps);
} else {
instr->SetDependsOnFlag(::v8::internal::kMaps);
}
break;
case kExternalMemory:
if (access_type == STORE) {
instr->SetChangesFlag(::v8::internal::kExternalMemory);
} else {
instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
}
break;
}
}
std::ostream& operator<<(std::ostream& os, const HObjectAccess& access) {
os << ".";
switch (access.portion()) {
case HObjectAccess::kArrayLengths:
case HObjectAccess::kStringLengths:
os << "%length";
break;
case HObjectAccess::kElementsPointer:
os << "%elements";
break;
case HObjectAccess::kMaps:
os << "%map";
break;
case HObjectAccess::kDouble: // fall through
case HObjectAccess::kInobject:
if (!access.name().is_null()) {
os << Handle<String>::cast(access.name())->ToCString().get();
}
os << "[in-object]";
break;
case HObjectAccess::kBackingStore:
if (!access.name().is_null()) {
os << Handle<String>::cast(access.name())->ToCString().get();
}
os << "[backing-store]";
break;
case HObjectAccess::kExternalMemory:
os << "[external-memory]";
break;
}
return os << "@" << access.offset();
}
} } // namespace v8::internal