blob: f83da2c5db2700096d4ee5f31b626797b1382d73 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "v8.h"
#include "api.h"
#include "arguments.h"
#include "ast.h"
#include "code-stubs.h"
#include "cpu-profiler.h"
#include "gdb-jit.h"
#include "ic-inl.h"
#include "stub-cache.h"
#include "type-info.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------
// StubCache implementation.
StubCache::StubCache(Isolate* isolate)
: isolate_(isolate) { }
void StubCache::Initialize() {
ASSERT(IsPowerOf2(kPrimaryTableSize));
ASSERT(IsPowerOf2(kSecondaryTableSize));
Clear();
}
Code* StubCache::Set(Name* name, Map* map, Code* code) {
// Get the flags from the code.
Code::Flags flags = Code::RemoveTypeFromFlags(code->flags());
// Validate that the name does not move on scavenge, and that we
// can use identity checks instead of structural equality checks.
ASSERT(!heap()->InNewSpace(name));
ASSERT(name->IsUniqueName());
// The state bits are not important to the hash function because
// the stub cache only contains monomorphic stubs. Make sure that
// the bits are the least significant so they will be the ones
// masked out.
ASSERT(Code::ExtractICStateFromFlags(flags) == MONOMORPHIC);
STATIC_ASSERT((Code::ICStateField::kMask & 1) == 1);
// Make sure that the code type is not included in the hash.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Compute the primary entry.
int primary_offset = PrimaryOffset(name, flags, map);
Entry* primary = entry(primary_, primary_offset);
Code* old_code = primary->value;
// If the primary entry has useful data in it, we retire it to the
// secondary cache before overwriting it.
if (old_code != isolate_->builtins()->builtin(Builtins::kIllegal)) {
Map* old_map = primary->map;
Code::Flags old_flags = Code::RemoveTypeFromFlags(old_code->flags());
int seed = PrimaryOffset(primary->key, old_flags, old_map);
int secondary_offset = SecondaryOffset(primary->key, old_flags, seed);
Entry* secondary = entry(secondary_, secondary_offset);
*secondary = *primary;
}
// Update primary cache.
primary->key = name;
primary->value = code;
primary->map = map;
isolate()->counters()->megamorphic_stub_cache_updates()->Increment();
return code;
}
Handle<Code> StubCache::FindIC(Handle<Name> name,
Handle<Map> stub_holder,
Code::Kind kind,
ExtraICState extra_state,
InlineCacheHolderFlag cache_holder) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
kind, extra_state, cache_holder);
Handle<Object> probe(stub_holder->FindInCodeCache(*name, flags), isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
return Handle<Code>::null();
}
Handle<Code> StubCache::FindHandler(Handle<Name> name,
Handle<Map> stub_holder,
Code::Kind kind,
InlineCacheHolderFlag cache_holder,
Code::StubType type) {
Code::Flags flags = Code::ComputeHandlerFlags(kind, type, cache_holder);
Handle<Object> probe(stub_holder->FindInCodeCache(*name, flags), isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
return Handle<Code>::null();
}
Handle<Code> StubCache::ComputeMonomorphicIC(
Code::Kind kind,
Handle<Name> name,
Handle<HeapType> type,
Handle<Code> handler,
ExtraICState extra_ic_state) {
InlineCacheHolderFlag flag = IC::GetCodeCacheFlag(*type);
Handle<Map> stub_holder;
Handle<Code> ic;
// There are multiple string maps that all use the same prototype. That
// prototype cannot hold multiple handlers, one for each of the string maps,
// for a single name. Hence, turn off caching of the IC.
bool can_be_cached = !type->Is(HeapType::String());
if (can_be_cached) {
stub_holder = IC::GetCodeCacheHolder(flag, *type, isolate());
ic = FindIC(name, stub_holder, kind, extra_ic_state, flag);
if (!ic.is_null()) return ic;
}
if (kind == Code::LOAD_IC) {
LoadStubCompiler ic_compiler(isolate(), extra_ic_state, flag);
ic = ic_compiler.CompileMonomorphicIC(type, handler, name);
} else if (kind == Code::KEYED_LOAD_IC) {
KeyedLoadStubCompiler ic_compiler(isolate(), extra_ic_state, flag);
ic = ic_compiler.CompileMonomorphicIC(type, handler, name);
} else if (kind == Code::STORE_IC) {
StoreStubCompiler ic_compiler(isolate(), extra_ic_state);
ic = ic_compiler.CompileMonomorphicIC(type, handler, name);
} else {
ASSERT(kind == Code::KEYED_STORE_IC);
ASSERT(STANDARD_STORE ==
KeyedStoreIC::GetKeyedAccessStoreMode(extra_ic_state));
KeyedStoreStubCompiler ic_compiler(isolate(), extra_ic_state);
ic = ic_compiler.CompileMonomorphicIC(type, handler, name);
}
if (can_be_cached) Map::UpdateCodeCache(stub_holder, name, ic);
return ic;
}
Handle<Code> StubCache::ComputeLoadNonexistent(Handle<Name> name,
Handle<HeapType> type) {
InlineCacheHolderFlag flag = IC::GetCodeCacheFlag(*type);
Handle<Map> stub_holder = IC::GetCodeCacheHolder(flag, *type, isolate());
// If no dictionary mode objects are present in the prototype chain, the load
// nonexistent IC stub can be shared for all names for a given map and we use
// the empty string for the map cache in that case. If there are dictionary
// mode objects involved, we need to do negative lookups in the stub and
// therefore the stub will be specific to the name.
Handle<Map> current_map = stub_holder;
Handle<Name> cache_name = current_map->is_dictionary_map()
? name : Handle<Name>::cast(isolate()->factory()->nonexistent_symbol());
Handle<Object> next(current_map->prototype(), isolate());
Handle<JSObject> last = Handle<JSObject>::null();
while (!next->IsNull()) {
last = Handle<JSObject>::cast(next);
next = handle(current_map->prototype(), isolate());
current_map = handle(Handle<HeapObject>::cast(next)->map());
if (current_map->is_dictionary_map()) cache_name = name;
}
// Compile the stub that is either shared for all names or
// name specific if there are global objects involved.
Handle<Code> handler = FindHandler(
cache_name, stub_holder, Code::LOAD_IC, flag, Code::FAST);
if (!handler.is_null()) {
return handler;
}
LoadStubCompiler compiler(isolate_, kNoExtraICState, flag);
handler = compiler.CompileLoadNonexistent(type, last, cache_name);
Map::UpdateCodeCache(stub_holder, cache_name, handler);
return handler;
}
Handle<Code> StubCache::ComputeKeyedLoadElement(Handle<Map> receiver_map) {
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC);
Handle<Name> name =
isolate()->factory()->KeyedLoadElementMonomorphic_string();
Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags), isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedLoadStubCompiler compiler(isolate());
Handle<Code> code = compiler.CompileLoadElement(receiver_map);
Map::UpdateCodeCache(receiver_map, name, code);
return code;
}
Handle<Code> StubCache::ComputeKeyedStoreElement(
Handle<Map> receiver_map,
StrictMode strict_mode,
KeyedAccessStoreMode store_mode) {
ExtraICState extra_state =
KeyedStoreIC::ComputeExtraICState(strict_mode, store_mode);
Code::Flags flags = Code::ComputeMonomorphicFlags(
Code::KEYED_STORE_IC, extra_state);
ASSERT(store_mode == STANDARD_STORE ||
store_mode == STORE_AND_GROW_NO_TRANSITION ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW);
Handle<String> name =
isolate()->factory()->KeyedStoreElementMonomorphic_string();
Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags), isolate_);
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedStoreStubCompiler compiler(isolate(), extra_state);
Handle<Code> code = compiler.CompileStoreElement(receiver_map);
Map::UpdateCodeCache(receiver_map, name, code);
ASSERT(KeyedStoreIC::GetKeyedAccessStoreMode(code->extra_ic_state())
== store_mode);
return code;
}
#define CALL_LOGGER_TAG(kind, type) (Logger::KEYED_##type)
static void FillCache(Isolate* isolate, Handle<Code> code) {
Handle<UnseededNumberDictionary> dictionary =
UnseededNumberDictionary::Set(isolate->factory()->non_monomorphic_cache(),
code->flags(),
code);
isolate->heap()->public_set_non_monomorphic_cache(*dictionary);
}
Code* StubCache::FindPreMonomorphicIC(Code::Kind kind, ExtraICState state) {
Code::Flags flags = Code::ComputeFlags(kind, PREMONOMORPHIC, state);
UnseededNumberDictionary* dictionary =
isolate()->heap()->non_monomorphic_cache();
int entry = dictionary->FindEntry(isolate(), flags);
ASSERT(entry != -1);
Object* code = dictionary->ValueAt(entry);
// This might be called during the marking phase of the collector
// hence the unchecked cast.
return reinterpret_cast<Code*>(code);
}
Handle<Code> StubCache::ComputeLoad(InlineCacheState ic_state,
ExtraICState extra_state) {
Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, ic_state, extra_state);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code;
if (ic_state == UNINITIALIZED) {
code = compiler.CompileLoadInitialize(flags);
} else if (ic_state == PREMONOMORPHIC) {
code = compiler.CompileLoadPreMonomorphic(flags);
} else if (ic_state == MEGAMORPHIC) {
code = compiler.CompileLoadMegamorphic(flags);
} else {
UNREACHABLE();
}
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeStore(InlineCacheState ic_state,
ExtraICState extra_state) {
Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, ic_state, extra_state);
Handle<UnseededNumberDictionary> cache =
isolate_->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate_, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
StubCompiler compiler(isolate_);
Handle<Code> code;
if (ic_state == UNINITIALIZED) {
code = compiler.CompileStoreInitialize(flags);
} else if (ic_state == PREMONOMORPHIC) {
code = compiler.CompileStorePreMonomorphic(flags);
} else if (ic_state == GENERIC) {
code = compiler.CompileStoreGeneric(flags);
} else if (ic_state == MEGAMORPHIC) {
code = compiler.CompileStoreMegamorphic(flags);
} else {
UNREACHABLE();
}
FillCache(isolate_, code);
return code;
}
Handle<Code> StubCache::ComputeCompareNil(Handle<Map> receiver_map,
CompareNilICStub& stub) {
Handle<String> name(isolate_->heap()->empty_string());
if (!receiver_map->is_shared()) {
Handle<Code> cached_ic = FindIC(name, receiver_map, Code::COMPARE_NIL_IC,
stub.GetExtraICState());
if (!cached_ic.is_null()) return cached_ic;
}
Code::FindAndReplacePattern pattern;
pattern.Add(isolate_->factory()->meta_map(), receiver_map);
Handle<Code> ic = stub.GetCodeCopy(pattern);
if (!receiver_map->is_shared()) {
Map::UpdateCodeCache(receiver_map, name, ic);
}
return ic;
}
// TODO(verwaest): Change this method so it takes in a TypeHandleList.
Handle<Code> StubCache::ComputeLoadElementPolymorphic(
MapHandleList* receiver_maps) {
Code::Flags flags = Code::ComputeFlags(Code::KEYED_LOAD_IC, POLYMORPHIC);
Handle<PolymorphicCodeCache> cache =
isolate_->factory()->polymorphic_code_cache();
Handle<Object> probe = cache->Lookup(receiver_maps, flags);
if (probe->IsCode()) return Handle<Code>::cast(probe);
TypeHandleList types(receiver_maps->length());
for (int i = 0; i < receiver_maps->length(); i++) {
types.Add(HeapType::Class(receiver_maps->at(i), isolate()));
}
CodeHandleList handlers(receiver_maps->length());
KeyedLoadStubCompiler compiler(isolate_);
compiler.CompileElementHandlers(receiver_maps, &handlers);
Handle<Code> code = compiler.CompilePolymorphicIC(
&types, &handlers, factory()->empty_string(), Code::NORMAL, ELEMENT);
isolate()->counters()->keyed_load_polymorphic_stubs()->Increment();
PolymorphicCodeCache::Update(cache, receiver_maps, flags, code);
return code;
}
Handle<Code> StubCache::ComputePolymorphicIC(
Code::Kind kind,
TypeHandleList* types,
CodeHandleList* handlers,
int number_of_valid_types,
Handle<Name> name,
ExtraICState extra_ic_state) {
Handle<Code> handler = handlers->at(0);
Code::StubType type = number_of_valid_types == 1 ? handler->type()
: Code::NORMAL;
if (kind == Code::LOAD_IC) {
LoadStubCompiler ic_compiler(isolate_, extra_ic_state);
return ic_compiler.CompilePolymorphicIC(
types, handlers, name, type, PROPERTY);
} else {
ASSERT(kind == Code::STORE_IC);
StoreStubCompiler ic_compiler(isolate_, extra_ic_state);
return ic_compiler.CompilePolymorphicIC(
types, handlers, name, type, PROPERTY);
}
}
Handle<Code> StubCache::ComputeStoreElementPolymorphic(
MapHandleList* receiver_maps,
KeyedAccessStoreMode store_mode,
StrictMode strict_mode) {
ASSERT(store_mode == STANDARD_STORE ||
store_mode == STORE_AND_GROW_NO_TRANSITION ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW);
Handle<PolymorphicCodeCache> cache =
isolate_->factory()->polymorphic_code_cache();
ExtraICState extra_state = KeyedStoreIC::ComputeExtraICState(
strict_mode, store_mode);
Code::Flags flags =
Code::ComputeFlags(Code::KEYED_STORE_IC, POLYMORPHIC, extra_state);
Handle<Object> probe = cache->Lookup(receiver_maps, flags);
if (probe->IsCode()) return Handle<Code>::cast(probe);
KeyedStoreStubCompiler compiler(isolate_, extra_state);
Handle<Code> code = compiler.CompileStoreElementPolymorphic(receiver_maps);
PolymorphicCodeCache::Update(cache, receiver_maps, flags, code);
return code;
}
void StubCache::Clear() {
Code* empty = isolate_->builtins()->builtin(Builtins::kIllegal);
for (int i = 0; i < kPrimaryTableSize; i++) {
primary_[i].key = heap()->empty_string();
primary_[i].map = NULL;
primary_[i].value = empty;
}
for (int j = 0; j < kSecondaryTableSize; j++) {
secondary_[j].key = heap()->empty_string();
secondary_[j].map = NULL;
secondary_[j].value = empty;
}
}
void StubCache::CollectMatchingMaps(SmallMapList* types,
Handle<Name> name,
Code::Flags flags,
Handle<Context> native_context,
Zone* zone) {
for (int i = 0; i < kPrimaryTableSize; i++) {
if (primary_[i].key == *name) {
Map* map = primary_[i].map;
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
int offset = PrimaryOffset(*name, flags, map);
if (entry(primary_, offset) == &primary_[i] &&
!TypeFeedbackOracle::CanRetainOtherContext(map, *native_context)) {
types->AddMapIfMissing(Handle<Map>(map), zone);
}
}
}
for (int i = 0; i < kSecondaryTableSize; i++) {
if (secondary_[i].key == *name) {
Map* map = secondary_[i].map;
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
// Lookup in primary table and skip duplicates.
int primary_offset = PrimaryOffset(*name, flags, map);
// Lookup in secondary table and add matches.
int offset = SecondaryOffset(*name, flags, primary_offset);
if (entry(secondary_, offset) == &secondary_[i] &&
!TypeFeedbackOracle::CanRetainOtherContext(map, *native_context)) {
types->AddMapIfMissing(Handle<Map>(map), zone);
}
}
}
}
// ------------------------------------------------------------------------
// StubCompiler implementation.
RUNTIME_FUNCTION(StoreCallbackProperty) {
JSObject* receiver = JSObject::cast(args[0]);
JSObject* holder = JSObject::cast(args[1]);
ExecutableAccessorInfo* callback = ExecutableAccessorInfo::cast(args[2]);
Address setter_address = v8::ToCData<Address>(callback->setter());
v8::AccessorSetterCallback fun =
FUNCTION_CAST<v8::AccessorSetterCallback>(setter_address);
ASSERT(fun != NULL);
ASSERT(callback->IsCompatibleReceiver(receiver));
Handle<Name> name = args.at<Name>(3);
Handle<Object> value = args.at<Object>(4);
HandleScope scope(isolate);
// TODO(rossberg): Support symbols in the API.
if (name->IsSymbol()) return *value;
Handle<String> str = Handle<String>::cast(name);
LOG(isolate, ApiNamedPropertyAccess("store", receiver, *name));
PropertyCallbackArguments
custom_args(isolate, callback->data(), receiver, holder);
custom_args.Call(fun, v8::Utils::ToLocal(str), v8::Utils::ToLocal(value));
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return *value;
}
/**
* Attempts to load a property with an interceptor (which must be present),
* but doesn't search the prototype chain.
*
* Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't
* provide any value for the given name.
*/
RUNTIME_FUNCTION(LoadPropertyWithInterceptorOnly) {
ASSERT(args.length() == StubCache::kInterceptorArgsLength);
Handle<Name> name_handle =
args.at<Name>(StubCache::kInterceptorArgsNameIndex);
Handle<InterceptorInfo> interceptor_info =
args.at<InterceptorInfo>(StubCache::kInterceptorArgsInfoIndex);
// TODO(rossberg): Support symbols in the API.
if (name_handle->IsSymbol())
return isolate->heap()->no_interceptor_result_sentinel();
Handle<String> name = Handle<String>::cast(name_handle);
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetterCallback getter =
FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address);
ASSERT(getter != NULL);
Handle<JSObject> receiver =
args.at<JSObject>(StubCache::kInterceptorArgsThisIndex);
Handle<JSObject> holder =
args.at<JSObject>(StubCache::kInterceptorArgsHolderIndex);
PropertyCallbackArguments callback_args(
isolate, interceptor_info->data(), *receiver, *holder);
{
// Use the interceptor getter.
HandleScope scope(isolate);
v8::Handle<v8::Value> r =
callback_args.Call(getter, v8::Utils::ToLocal(name));
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
if (!r.IsEmpty()) {
Handle<Object> result = v8::Utils::OpenHandle(*r);
result->VerifyApiCallResultType();
return *v8::Utils::OpenHandle(*r);
}
}
return isolate->heap()->no_interceptor_result_sentinel();
}
static Object* ThrowReferenceError(Isolate* isolate, Name* name) {
// If the load is non-contextual, just return the undefined result.
// Note that both keyed and non-keyed loads may end up here.
HandleScope scope(isolate);
LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
if (ic.contextual_mode() != CONTEXTUAL) {
return isolate->heap()->undefined_value();
}
// Throw a reference error.
Handle<Name> name_handle(name);
Handle<Object> error =
isolate->factory()->NewReferenceError("not_defined",
HandleVector(&name_handle, 1));
return isolate->Throw(*error);
}
MUST_USE_RESULT static MaybeHandle<Object> LoadWithInterceptor(
Arguments* args,
PropertyAttributes* attrs) {
ASSERT(args->length() == StubCache::kInterceptorArgsLength);
Handle<Name> name_handle =
args->at<Name>(StubCache::kInterceptorArgsNameIndex);
Handle<InterceptorInfo> interceptor_info =
args->at<InterceptorInfo>(StubCache::kInterceptorArgsInfoIndex);
Handle<JSObject> receiver_handle =
args->at<JSObject>(StubCache::kInterceptorArgsThisIndex);
Handle<JSObject> holder_handle =
args->at<JSObject>(StubCache::kInterceptorArgsHolderIndex);
Isolate* isolate = receiver_handle->GetIsolate();
// TODO(rossberg): Support symbols in the API.
if (name_handle->IsSymbol()) {
return JSObject::GetPropertyPostInterceptor(
holder_handle, receiver_handle, name_handle, attrs);
}
Handle<String> name = Handle<String>::cast(name_handle);
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetterCallback getter =
FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address);
ASSERT(getter != NULL);
PropertyCallbackArguments callback_args(isolate,
interceptor_info->data(),
*receiver_handle,
*holder_handle);
{
HandleScope scope(isolate);
// Use the interceptor getter.
v8::Handle<v8::Value> r =
callback_args.Call(getter, v8::Utils::ToLocal(name));
RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (!r.IsEmpty()) {
*attrs = NONE;
Handle<Object> result = v8::Utils::OpenHandle(*r);
result->VerifyApiCallResultType();
return scope.CloseAndEscape(result);
}
}
return JSObject::GetPropertyPostInterceptor(
holder_handle, receiver_handle, name_handle, attrs);
}
/**
* Loads a property with an interceptor performing post interceptor
* lookup if interceptor failed.
*/
RUNTIME_FUNCTION(LoadPropertyWithInterceptorForLoad) {
PropertyAttributes attr = NONE;
HandleScope scope(isolate);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, LoadWithInterceptor(&args, &attr));
// If the property is present, return it.
if (attr != ABSENT) return *result;
return ThrowReferenceError(isolate, Name::cast(args[0]));
}
RUNTIME_FUNCTION(LoadPropertyWithInterceptorForCall) {
PropertyAttributes attr;
HandleScope scope(isolate);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, LoadWithInterceptor(&args, &attr));
// This is call IC. In this case, we simply return the undefined result which
// will lead to an exception when trying to invoke the result as a
// function.
return *result;
}
RUNTIME_FUNCTION(StoreInterceptorProperty) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<JSObject> receiver = args.at<JSObject>(0);
Handle<Name> name = args.at<Name>(1);
Handle<Object> value = args.at<Object>(2);
ASSERT(receiver->HasNamedInterceptor());
PropertyAttributes attr = NONE;
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
JSObject::SetPropertyWithInterceptor(
receiver, name, value, attr, ic.strict_mode()));
return *result;
}
RUNTIME_FUNCTION(KeyedLoadPropertyWithInterceptor) {
HandleScope scope(isolate);
Handle<JSObject> receiver = args.at<JSObject>(0);
ASSERT(args.smi_at(1) >= 0);
uint32_t index = args.smi_at(1);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
JSObject::GetElementWithInterceptor(receiver, receiver, index));
return *result;
}
Handle<Code> StubCompiler::CompileLoadInitialize(Code::Flags flags) {
LoadIC::GenerateInitialize(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileLoadInitialize");
PROFILE(isolate(),
CodeCreateEvent(Logger::LOAD_INITIALIZE_TAG, *code, 0));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *code));
return code;
}
Handle<Code> StubCompiler::CompileLoadPreMonomorphic(Code::Flags flags) {
LoadIC::GeneratePreMonomorphic(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileLoadPreMonomorphic");
PROFILE(isolate(),
CodeCreateEvent(Logger::LOAD_PREMONOMORPHIC_TAG, *code, 0));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *code));
return code;
}
Handle<Code> StubCompiler::CompileLoadMegamorphic(Code::Flags flags) {
LoadIC::GenerateMegamorphic(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileLoadMegamorphic");
PROFILE(isolate(),
CodeCreateEvent(Logger::LOAD_MEGAMORPHIC_TAG, *code, 0));
GDBJIT(AddCode(GDBJITInterface::LOAD_IC, *code));
return code;
}
Handle<Code> StubCompiler::CompileStoreInitialize(Code::Flags flags) {
StoreIC::GenerateInitialize(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileStoreInitialize");
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_INITIALIZE_TAG, *code, 0));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, *code));
return code;
}
Handle<Code> StubCompiler::CompileStorePreMonomorphic(Code::Flags flags) {
StoreIC::GeneratePreMonomorphic(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileStorePreMonomorphic");
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_PREMONOMORPHIC_TAG, *code, 0));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, *code));
return code;
}
Handle<Code> StubCompiler::CompileStoreGeneric(Code::Flags flags) {
ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
StrictMode strict_mode = StoreIC::GetStrictMode(extra_state);
StoreIC::GenerateRuntimeSetProperty(masm(), strict_mode);
Handle<Code> code = GetCodeWithFlags(flags, "CompileStoreGeneric");
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_GENERIC_TAG, *code, 0));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, *code));
return code;
}
Handle<Code> StubCompiler::CompileStoreMegamorphic(Code::Flags flags) {
StoreIC::GenerateMegamorphic(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileStoreMegamorphic");
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_MEGAMORPHIC_TAG, *code, 0));
GDBJIT(AddCode(GDBJITInterface::STORE_IC, *code));
return code;
}
#undef CALL_LOGGER_TAG
Handle<Code> StubCompiler::GetCodeWithFlags(Code::Flags flags,
const char* name) {
// Create code object in the heap.
CodeDesc desc;
masm_.GetCode(&desc);
Handle<Code> code = factory()->NewCode(desc, flags, masm_.CodeObject());
if (code->has_major_key()) {
code->set_major_key(CodeStub::NoCache);
}
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code_stubs) code->Disassemble(name);
#endif
return code;
}
Handle<Code> StubCompiler::GetCodeWithFlags(Code::Flags flags,
Handle<Name> name) {
return (FLAG_print_code_stubs && !name.is_null() && name->IsString())
? GetCodeWithFlags(flags, Handle<String>::cast(name)->ToCString().get())
: GetCodeWithFlags(flags, NULL);
}
void StubCompiler::LookupPostInterceptor(Handle<JSObject> holder,
Handle<Name> name,
LookupResult* lookup) {
holder->LocalLookupRealNamedProperty(name, lookup);
if (lookup->IsFound()) return;
if (holder->GetPrototype()->IsNull()) return;
holder->GetPrototype()->Lookup(name, lookup);
}
#define __ ACCESS_MASM(masm())
Register LoadStubCompiler::HandlerFrontendHeader(
Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss) {
PrototypeCheckType check_type = CHECK_ALL_MAPS;
int function_index = -1;
if (type->Is(HeapType::String())) {
function_index = Context::STRING_FUNCTION_INDEX;
} else if (type->Is(HeapType::Symbol())) {
function_index = Context::SYMBOL_FUNCTION_INDEX;
} else if (type->Is(HeapType::Number())) {
function_index = Context::NUMBER_FUNCTION_INDEX;
} else if (type->Is(HeapType::Boolean())) {
// Booleans use the generic oddball map, so an additional check is needed to
// ensure the receiver is really a boolean.
GenerateBooleanCheck(object_reg, miss);
function_index = Context::BOOLEAN_FUNCTION_INDEX;
} else {
check_type = SKIP_RECEIVER;
}
if (check_type == CHECK_ALL_MAPS) {
GenerateDirectLoadGlobalFunctionPrototype(
masm(), function_index, scratch1(), miss);
Object* function = isolate()->native_context()->get(function_index);
Object* prototype = JSFunction::cast(function)->instance_prototype();
type = IC::CurrentTypeOf(handle(prototype, isolate()), isolate());
object_reg = scratch1();
}
// Check that the maps starting from the prototype haven't changed.
return CheckPrototypes(
type, object_reg, holder, scratch1(), scratch2(), scratch3(),
name, miss, check_type);
}
// HandlerFrontend for store uses the name register. It has to be restored
// before a miss.
Register StoreStubCompiler::HandlerFrontendHeader(
Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss) {
return CheckPrototypes(type, object_reg, holder, this->name(),
scratch1(), scratch2(), name, miss, SKIP_RECEIVER);
}
bool BaseLoadStoreStubCompiler::IncludesNumberType(TypeHandleList* types) {
for (int i = 0; i < types->length(); ++i) {
if (types->at(i)->Is(HeapType::Number())) return true;
}
return false;
}
Register BaseLoadStoreStubCompiler::HandlerFrontend(Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name) {
Label miss;
Register reg = HandlerFrontendHeader(type, object_reg, holder, name, &miss);
HandlerFrontendFooter(name, &miss);
return reg;
}
void LoadStubCompiler::NonexistentHandlerFrontend(Handle<HeapType> type,
Handle<JSObject> last,
Handle<Name> name) {
Label miss;
Register holder;
Handle<Map> last_map;
if (last.is_null()) {
holder = receiver();
last_map = IC::TypeToMap(*type, isolate());
// If |type| has null as its prototype, |last| is Handle<JSObject>::null().
ASSERT(last_map->prototype() == isolate()->heap()->null_value());
} else {
holder = HandlerFrontendHeader(type, receiver(), last, name, &miss);
last_map = handle(last->map());
}
if (last_map->is_dictionary_map() &&
!last_map->IsJSGlobalObjectMap() &&
!last_map->IsJSGlobalProxyMap()) {
if (!name->IsUniqueName()) {
ASSERT(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
ASSERT(last.is_null() ||
last->property_dictionary()->FindEntry(name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), &miss, holder, name,
scratch2(), scratch3());
}
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last_map->IsJSGlobalObjectMap()) {
Handle<JSGlobalObject> global = last.is_null()
? Handle<JSGlobalObject>::cast(type->AsConstant()->Value())
: Handle<JSGlobalObject>::cast(last);
GenerateCheckPropertyCell(masm(), global, name, scratch2(), &miss);
}
HandlerFrontendFooter(name, &miss);
}
Handle<Code> LoadStubCompiler::CompileLoadField(
Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
PropertyIndex field,
Representation representation) {
Register reg = HandlerFrontend(type, receiver(), holder, name);
GenerateLoadField(reg, holder, field, representation);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> LoadStubCompiler::CompileLoadConstant(
Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<Object> value) {
HandlerFrontend(type, receiver(), holder, name);
GenerateLoadConstant(value);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> LoadStubCompiler::CompileLoadCallback(
Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<ExecutableAccessorInfo> callback) {
Register reg = CallbackHandlerFrontend(
type, receiver(), holder, name, callback);
GenerateLoadCallback(reg, callback);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> LoadStubCompiler::CompileLoadCallback(
Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
const CallOptimization& call_optimization) {
ASSERT(call_optimization.is_simple_api_call());
Handle<JSFunction> callback = call_optimization.constant_function();
CallbackHandlerFrontend(type, receiver(), holder, name, callback);
Handle<Map>receiver_map = IC::TypeToMap(*type, isolate());
GenerateFastApiCall(
masm(), call_optimization, receiver_map,
receiver(), scratch1(), false, 0, NULL);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> LoadStubCompiler::CompileLoadInterceptor(
Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name) {
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
Register reg = HandlerFrontend(type, receiver(), holder, name);
// TODO(368): Compile in the whole chain: all the interceptors in
// prototypes and ultimate answer.
GenerateLoadInterceptor(reg, type, holder, &lookup, name);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
void LoadStubCompiler::GenerateLoadPostInterceptor(
Register interceptor_reg,
Handle<JSObject> interceptor_holder,
Handle<Name> name,
LookupResult* lookup) {
Handle<JSObject> holder(lookup->holder());
if (lookup->IsField()) {
PropertyIndex field = lookup->GetFieldIndex();
if (interceptor_holder.is_identical_to(holder)) {
GenerateLoadField(
interceptor_reg, holder, field, lookup->representation());
} else {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
Register reg = HandlerFrontend(
IC::CurrentTypeOf(interceptor_holder, isolate()),
interceptor_reg, holder, name);
GenerateLoadField(
reg, holder, field, lookup->representation());
}
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
Handle<ExecutableAccessorInfo> callback(
ExecutableAccessorInfo::cast(lookup->GetCallbackObject()));
ASSERT(callback->getter() != NULL);
Register reg = CallbackHandlerFrontend(
IC::CurrentTypeOf(interceptor_holder, isolate()),
interceptor_reg, holder, name, callback);
GenerateLoadCallback(reg, callback);
}
}
Handle<Code> BaseLoadStoreStubCompiler::CompileMonomorphicIC(
Handle<HeapType> type,
Handle<Code> handler,
Handle<Name> name) {
TypeHandleList types(1);
CodeHandleList handlers(1);
types.Add(type);
handlers.Add(handler);
Code::StubType stub_type = handler->type();
return CompilePolymorphicIC(&types, &handlers, name, stub_type, PROPERTY);
}
Handle<Code> LoadStubCompiler::CompileLoadViaGetter(
Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<JSFunction> getter) {
HandlerFrontend(type, receiver(), holder, name);
GenerateLoadViaGetter(masm(), type, receiver(), getter);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreTransition(
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name) {
Label miss, slow;
// Ensure no transitions to deprecated maps are followed.
__ CheckMapDeprecated(transition, scratch1(), &miss);
// Check that we are allowed to write this.
if (object->GetPrototype()->IsJSObject()) {
Handle<JSObject> holder;
// holder == object indicates that no property was found.
if (lookup->holder() != *object) {
holder = Handle<JSObject>(lookup->holder());
} else {
// Find the top object.
holder = object;
do {
holder = Handle<JSObject>(JSObject::cast(holder->GetPrototype()));
} while (holder->GetPrototype()->IsJSObject());
}
Register holder_reg = HandlerFrontendHeader(
IC::CurrentTypeOf(object, isolate()), receiver(), holder, name, &miss);
// If no property was found, and the holder (the last object in the
// prototype chain) is in slow mode, we need to do a negative lookup on the
// holder.
if (lookup->holder() == *object) {
GenerateNegativeHolderLookup(masm(), holder, holder_reg, name, &miss);
}
}
GenerateStoreTransition(masm(),
object,
lookup,
transition,
name,
receiver(), this->name(), value(),
scratch1(), scratch2(), scratch3(),
&miss,
&slow);
// Handle store cache miss.
GenerateRestoreName(masm(), &miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
GenerateRestoreName(masm(), &slow, name);
TailCallBuiltin(masm(), SlowBuiltin(kind()));
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreField(Handle<JSObject> object,
LookupResult* lookup,
Handle<Name> name) {
Label miss;
HandlerFrontendHeader(IC::CurrentTypeOf(object, isolate()),
receiver(), object, name, &miss);
// Generate store field code.
GenerateStoreField(masm(),
object,
lookup,
receiver(), this->name(), value(), scratch1(), scratch2(),
&miss);
// Handle store cache miss.
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreArrayLength(Handle<JSObject> object,
LookupResult* lookup,
Handle<Name> name) {
// This accepts as a receiver anything JSArray::SetElementsLength accepts
// (currently anything except for external arrays which means anything with
// elements of FixedArray type). Value must be a number, but only smis are
// accepted as the most common case.
Label miss;
// Check that value is a smi.
__ JumpIfNotSmi(value(), &miss);
// Generate tail call to StoreIC_ArrayLength.
GenerateStoreArrayLength();
// Handle miss case.
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreViaSetter(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<JSFunction> setter) {
Handle<HeapType> type = IC::CurrentTypeOf(object, isolate());
HandlerFrontend(type, receiver(), holder, name);
GenerateStoreViaSetter(masm(), type, receiver(), setter);
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
const CallOptimization& call_optimization) {
HandlerFrontend(IC::CurrentTypeOf(object, isolate()),
receiver(), holder, name);
Register values[] = { value() };
GenerateFastApiCall(
masm(), call_optimization, handle(object->map()),
receiver(), scratch1(), true, 1, values);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadElement(
Handle<Map> receiver_map) {
ElementsKind elements_kind = receiver_map->elements_kind();
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements() ||
receiver_map->has_fixed_typed_array_elements()) {
Handle<Code> stub = KeyedLoadFastElementStub(
isolate(),
receiver_map->instance_type() == JS_ARRAY_TYPE,
elements_kind).GetCode();
__ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK);
} else {
Handle<Code> stub = FLAG_compiled_keyed_dictionary_loads
? KeyedLoadDictionaryElementStub(isolate()).GetCode()
: KeyedLoadDictionaryElementPlatformStub(isolate()).GetCode();
__ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK);
}
TailCallBuiltin(masm(), Builtins::kKeyedLoadIC_Miss);
// Return the generated code.
return GetICCode(kind(), Code::NORMAL, factory()->empty_string());
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreElement(
Handle<Map> receiver_map) {
ElementsKind elements_kind = receiver_map->elements_kind();
bool is_jsarray = receiver_map->instance_type() == JS_ARRAY_TYPE;
Handle<Code> stub;
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements() ||
receiver_map->has_fixed_typed_array_elements()) {
stub = KeyedStoreFastElementStub(
isolate(),
is_jsarray,
elements_kind,
store_mode()).GetCode();
} else {
stub = KeyedStoreElementStub(isolate(),
is_jsarray,
elements_kind,
store_mode()).GetCode();
}
__ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK);
TailCallBuiltin(masm(), Builtins::kKeyedStoreIC_Miss);
// Return the generated code.
return GetICCode(kind(), Code::NORMAL, factory()->empty_string());
}
#undef __
void StubCompiler::TailCallBuiltin(MacroAssembler* masm, Builtins::Name name) {
Handle<Code> code(masm->isolate()->builtins()->builtin(name));
GenerateTailCall(masm, code);
}
void BaseLoadStoreStubCompiler::JitEvent(Handle<Name> name, Handle<Code> code) {
#ifdef ENABLE_GDB_JIT_INTERFACE
GDBJITInterface::CodeTag tag;
if (kind_ == Code::LOAD_IC) {
tag = GDBJITInterface::LOAD_IC;
} else if (kind_ == Code::KEYED_LOAD_IC) {
tag = GDBJITInterface::KEYED_LOAD_IC;
} else if (kind_ == Code::STORE_IC) {
tag = GDBJITInterface::STORE_IC;
} else {
tag = GDBJITInterface::KEYED_STORE_IC;
}
GDBJIT(AddCode(tag, *name, *code));
#endif
}
void BaseLoadStoreStubCompiler::InitializeRegisters() {
if (kind_ == Code::LOAD_IC) {
registers_ = LoadStubCompiler::registers();
} else if (kind_ == Code::KEYED_LOAD_IC) {
registers_ = KeyedLoadStubCompiler::registers();
} else if (kind_ == Code::STORE_IC) {
registers_ = StoreStubCompiler::registers();
} else {
registers_ = KeyedStoreStubCompiler::registers();
}
}
Handle<Code> BaseLoadStoreStubCompiler::GetICCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name,
InlineCacheState state) {
Code::Flags flags = Code::ComputeFlags(kind, state, extra_state(), type);
Handle<Code> code = GetCodeWithFlags(flags, name);
IC::RegisterWeakMapDependency(code);
PROFILE(isolate(), CodeCreateEvent(log_kind(code), *code, *name));
JitEvent(name, code);
return code;
}
Handle<Code> BaseLoadStoreStubCompiler::GetCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name) {
ASSERT_EQ(kNoExtraICState, extra_state());
Code::Flags flags = Code::ComputeHandlerFlags(kind, type, cache_holder_);
Handle<Code> code = GetCodeWithFlags(flags, name);
PROFILE(isolate(), CodeCreateEvent(log_kind(code), *code, *name));
JitEvent(name, code);
return code;
}
void KeyedLoadStubCompiler::CompileElementHandlers(MapHandleList* receiver_maps,
CodeHandleList* handlers) {
for (int i = 0; i < receiver_maps->length(); ++i) {
Handle<Map> receiver_map = receiver_maps->at(i);
Handle<Code> cached_stub;
if ((receiver_map->instance_type() & kNotStringTag) == 0) {
cached_stub = isolate()->builtins()->KeyedLoadIC_String();
} else if (receiver_map->instance_type() < FIRST_JS_RECEIVER_TYPE) {
cached_stub = isolate()->builtins()->KeyedLoadIC_Slow();
} else {
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
ElementsKind elements_kind = receiver_map->elements_kind();
if (IsFastElementsKind(elements_kind) ||
IsExternalArrayElementsKind(elements_kind) ||
IsFixedTypedArrayElementsKind(elements_kind)) {
cached_stub =
KeyedLoadFastElementStub(isolate(),
is_js_array,
elements_kind).GetCode();
} else if (elements_kind == SLOPPY_ARGUMENTS_ELEMENTS) {
cached_stub = isolate()->builtins()->KeyedLoadIC_SloppyArguments();
} else {
ASSERT(elements_kind == DICTIONARY_ELEMENTS);
cached_stub =
KeyedLoadDictionaryElementStub(isolate()).GetCode();
}
}
handlers->Add(cached_stub);
}
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreElementPolymorphic(
MapHandleList* receiver_maps) {
// Collect MONOMORPHIC stubs for all |receiver_maps|.
CodeHandleList handlers(receiver_maps->length());
MapHandleList transitioned_maps(receiver_maps->length());
for (int i = 0; i < receiver_maps->length(); ++i) {
Handle<Map> receiver_map(receiver_maps->at(i));
Handle<Code> cached_stub;
Handle<Map> transitioned_map =
receiver_map->FindTransitionedMap(receiver_maps);
// TODO(mvstanton): The code below is doing pessimistic elements
// transitions. I would like to stop doing that and rely on Allocation Site
// Tracking to do a better job of ensuring the data types are what they need
// to be. Not all the elements are in place yet, pessimistic elements
// transitions are still important for performance.
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
ElementsKind elements_kind = receiver_map->elements_kind();
if (!transitioned_map.is_null()) {
cached_stub = ElementsTransitionAndStoreStub(
isolate(),
elements_kind,
transitioned_map->elements_kind(),
is_js_array,
store_mode()).GetCode();
} else if (receiver_map->instance_type() < FIRST_JS_RECEIVER_TYPE) {
cached_stub = isolate()->builtins()->KeyedStoreIC_Slow();
} else {
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements() ||
receiver_map->has_fixed_typed_array_elements()) {
cached_stub = KeyedStoreFastElementStub(
isolate(),
is_js_array,
elements_kind,
store_mode()).GetCode();
} else {
cached_stub = KeyedStoreElementStub(
isolate(),
is_js_array,
elements_kind,
store_mode()).GetCode();
}
}
ASSERT(!cached_stub.is_null());
handlers.Add(cached_stub);
transitioned_maps.Add(transitioned_map);
}
Handle<Code> code =
CompileStorePolymorphic(receiver_maps, &handlers, &transitioned_maps);
isolate()->counters()->keyed_store_polymorphic_stubs()->Increment();
PROFILE(isolate(),
CodeCreateEvent(Logger::KEYED_STORE_POLYMORPHIC_IC_TAG, *code, 0));
return code;
}
void KeyedStoreStubCompiler::GenerateStoreDictionaryElement(
MacroAssembler* masm) {
KeyedStoreIC::GenerateSlow(masm);
}
CallOptimization::CallOptimization(LookupResult* lookup) {
if (lookup->IsFound() &&
lookup->IsCacheable() &&
lookup->IsConstantFunction()) {
// We only optimize constant function calls.
Initialize(Handle<JSFunction>(lookup->GetConstantFunction()));
} else {
Initialize(Handle<JSFunction>::null());
}
}
CallOptimization::CallOptimization(Handle<JSFunction> function) {
Initialize(function);
}
Handle<JSObject> CallOptimization::LookupHolderOfExpectedType(
Handle<Map> object_map,
HolderLookup* holder_lookup) const {
ASSERT(is_simple_api_call());
if (!object_map->IsJSObjectMap()) {
*holder_lookup = kHolderNotFound;
return Handle<JSObject>::null();
}
if (expected_receiver_type_.is_null() ||
expected_receiver_type_->IsTemplateFor(*object_map)) {
*holder_lookup = kHolderIsReceiver;
return Handle<JSObject>::null();
}
while (true) {
if (!object_map->prototype()->IsJSObject()) break;
Handle<JSObject> prototype(JSObject::cast(object_map->prototype()));
if (!prototype->map()->is_hidden_prototype()) break;
object_map = handle(prototype->map());
if (expected_receiver_type_->IsTemplateFor(*object_map)) {
*holder_lookup = kHolderFound;
return prototype;
}
}
*holder_lookup = kHolderNotFound;
return Handle<JSObject>::null();
}
bool CallOptimization::IsCompatibleReceiver(Handle<Object> receiver,
Handle<JSObject> holder) const {
ASSERT(is_simple_api_call());
if (!receiver->IsJSObject()) return false;
Handle<Map> map(JSObject::cast(*receiver)->map());
HolderLookup holder_lookup;
Handle<JSObject> api_holder =
LookupHolderOfExpectedType(map, &holder_lookup);
switch (holder_lookup) {
case kHolderNotFound:
return false;
case kHolderIsReceiver:
return true;
case kHolderFound:
if (api_holder.is_identical_to(holder)) return true;
// Check if holder is in prototype chain of api_holder.
{
JSObject* object = *api_holder;
while (true) {
Object* prototype = object->map()->prototype();
if (!prototype->IsJSObject()) return false;
if (prototype == *holder) return true;
object = JSObject::cast(prototype);
}
}
break;
}
UNREACHABLE();
return false;
}
void CallOptimization::Initialize(Handle<JSFunction> function) {
constant_function_ = Handle<JSFunction>::null();
is_simple_api_call_ = false;
expected_receiver_type_ = Handle<FunctionTemplateInfo>::null();
api_call_info_ = Handle<CallHandlerInfo>::null();
if (function.is_null() || !function->is_compiled()) return;
constant_function_ = function;
AnalyzePossibleApiFunction(function);
}
void CallOptimization::AnalyzePossibleApiFunction(Handle<JSFunction> function) {
if (!function->shared()->IsApiFunction()) return;
Handle<FunctionTemplateInfo> info(function->shared()->get_api_func_data());
// Require a C++ callback.
if (info->call_code()->IsUndefined()) return;
api_call_info_ =
Handle<CallHandlerInfo>(CallHandlerInfo::cast(info->call_code()));
// Accept signatures that either have no restrictions at all or
// only have restrictions on the receiver.
if (!info->signature()->IsUndefined()) {
Handle<SignatureInfo> signature =
Handle<SignatureInfo>(SignatureInfo::cast(info->signature()));
if (!signature->args()->IsUndefined()) return;
if (!signature->receiver()->IsUndefined()) {
expected_receiver_type_ =
Handle<FunctionTemplateInfo>(
FunctionTemplateInfo::cast(signature->receiver()));
}
}
is_simple_api_call_ = true;
}
} } // namespace v8::internal