blob: 354c2fdcb0c3c7f386a71fe32d6e8f2d2c9f16bb [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_IA32
#include "ic-inl.h"
#include "codegen.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register receiver,
// Number of the cache entry pointer-size scaled.
Register offset,
Register extra) {
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
ExternalReference map_offset(isolate->stub_cache()->map_reference(table));
Label miss;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ lea(offset, Operand(offset, offset, times_2, 0));
if (extra.is_valid()) {
// Get the code entry from the cache.
__ mov(extra, Operand::StaticArray(offset, times_1, value_offset));
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_1, key_offset));
__ j(not_equal, &miss);
// Check the map matches.
__ mov(offset, Operand::StaticArray(offset, times_1, map_offset));
__ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(extra, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ add(extra, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(extra);
__ bind(&miss);
} else {
// Save the offset on the stack.
__ push(offset);
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_1, key_offset));
__ j(not_equal, &miss);
// Check the map matches.
__ mov(offset, Operand::StaticArray(offset, times_1, map_offset));
__ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Restore offset register.
__ mov(offset, Operand(esp, 0));
// Get the code entry from the cache.
__ mov(offset, Operand::StaticArray(offset, times_1, value_offset));
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(offset, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Restore offset and re-load code entry from cache.
__ pop(offset);
__ mov(offset, Operand::StaticArray(offset, times_1, value_offset));
// Jump to the first instruction in the code stub.
__ add(offset, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(offset);
// Pop at miss.
__ bind(&miss);
__ pop(offset);
}
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be unique and receiver must be a heap object.
static void GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
Handle<Name> name,
Register r0,
Register r1) {
ASSERT(name->IsUniqueName());
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1);
__ IncrementCounter(counters->negative_lookups_miss(), 1);
__ mov(r0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ test_b(FieldOperand(r0, Map::kBitFieldOffset),
kInterceptorOrAccessCheckNeededMask);
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(r0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = r0;
__ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ cmp(FieldOperand(properties, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->hash_table_map()));
__ j(not_equal, miss_label);
Label done;
NameDictionaryLookupStub::GenerateNegativeLookup(masm,
miss_label,
&done,
properties,
name,
r1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1);
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2,
Register extra3) {
Label miss;
// Assert that code is valid. The multiplying code relies on the entry size
// being 12.
ASSERT(sizeof(Entry) == 12);
// Assert the flags do not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Assert that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
ASSERT(!extra.is(receiver));
ASSERT(!extra.is(name));
ASSERT(!extra.is(scratch));
// Assert scratch and extra registers are valid, and extra2/3 are unused.
ASSERT(!scratch.is(no_reg));
ASSERT(extra2.is(no_reg));
ASSERT(extra3.is(no_reg));
Register offset = scratch;
scratch = no_reg;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ mov(offset, FieldOperand(name, Name::kHashFieldOffset));
__ add(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(offset, flags);
// We mask out the last two bits because they are not part of the hash and
// they are always 01 for maps. Also in the two 'and' instructions below.
__ and_(offset, (kPrimaryTableSize - 1) << kHeapObjectTagSize);
// ProbeTable expects the offset to be pointer scaled, which it is, because
// the heap object tag size is 2 and the pointer size log 2 is also 2.
ASSERT(kHeapObjectTagSize == kPointerSizeLog2);
// Probe the primary table.
ProbeTable(isolate(), masm, flags, kPrimary, name, receiver, offset, extra);
// Primary miss: Compute hash for secondary probe.
__ mov(offset, FieldOperand(name, Name::kHashFieldOffset));
__ add(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(offset, flags);
__ and_(offset, (kPrimaryTableSize - 1) << kHeapObjectTagSize);
__ sub(offset, name);
__ add(offset, Immediate(flags));
__ and_(offset, (kSecondaryTableSize - 1) << kHeapObjectTagSize);
// Probe the secondary table.
ProbeTable(
isolate(), masm, flags, kSecondary, name, receiver, offset, extra);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
__ LoadGlobalFunction(index, prototype);
__ LoadGlobalFunctionInitialMap(prototype, prototype);
// Load the prototype from the initial map.
__ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm,
int index,
Register prototype,
Label* miss) {
// Check we're still in the same context.
__ cmp(Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)),
masm->isolate()->global_object());
__ j(not_equal, miss);
// Get the global function with the given index.
Handle<JSFunction> function(
JSFunction::cast(masm->isolate()->native_context()->get(index)));
// Load its initial map. The global functions all have initial maps.
__ Set(prototype, Immediate(Handle<Map>(function->initial_map())));
// Load the prototype from the initial map.
__ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, miss_label);
// Load length directly from the JS array.
__ mov(eax, FieldOperand(receiver, JSArray::kLengthOffset));
__ ret(0);
}
// Generate code to check if an object is a string. If the object is
// a string, the map's instance type is left in the scratch register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* smi,
Label* non_string_object) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, smi);
// Check that the object is a string.
__ mov(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ test(scratch, Immediate(kNotStringTag));
__ j(not_zero, non_string_object);
}
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss,
bool support_wrappers) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch register.
GenerateStringCheck(masm, receiver, scratch1, miss,
support_wrappers ? &check_wrapper : miss);
// Load length from the string and convert to a smi.
__ mov(eax, FieldOperand(receiver, String::kLengthOffset));
__ ret(0);
if (support_wrappers) {
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmp(scratch1, JS_VALUE_TYPE);
__ j(not_equal, miss);
// Check if the wrapped value is a string and load the length
// directly if it is.
__ mov(scratch2, FieldOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch2, scratch1, miss, miss);
__ mov(eax, FieldOperand(scratch2, String::kLengthOffset));
__ ret(0);
}
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ mov(eax, scratch1);
__ ret(0);
}
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst,
Register src,
bool inobject,
int index,
Representation representation) {
ASSERT(!FLAG_track_double_fields || !representation.IsDouble());
int offset = index * kPointerSize;
if (!inobject) {
// Calculate the offset into the properties array.
offset = offset + FixedArray::kHeaderSize;
__ mov(dst, FieldOperand(src, JSObject::kPropertiesOffset));
src = dst;
}
__ mov(dst, FieldOperand(src, offset));
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
STATIC_ASSERT(StubCache::kInterceptorArgsNameIndex == 0);
STATIC_ASSERT(StubCache::kInterceptorArgsInfoIndex == 1);
STATIC_ASSERT(StubCache::kInterceptorArgsThisIndex == 2);
STATIC_ASSERT(StubCache::kInterceptorArgsHolderIndex == 3);
STATIC_ASSERT(StubCache::kInterceptorArgsLength == 4);
__ push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor));
Register scratch = name;
__ mov(scratch, Immediate(interceptor));
__ push(scratch);
__ push(receiver);
__ push(holder);
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly),
masm->isolate()),
StubCache::kInterceptorArgsLength);
}
// Number of pointers to be reserved on stack for fast API call.
static const int kFastApiCallArguments = FunctionCallbackArguments::kArgsLength;
// Reserves space for the extra arguments to API function in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : last argument in the internal frame of the caller
// -----------------------------------
__ pop(scratch);
for (int i = 0; i < kFastApiCallArguments; i++) {
__ push(Immediate(Smi::FromInt(0)));
}
__ push(scratch);
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- esp[0] : return address.
// -- esp[4] : last fast api call extra argument.
// -- ...
// -- esp[kFastApiCallArguments * 4] : first fast api call extra argument.
// -- esp[kFastApiCallArguments * 4 + 4] : last argument in the internal
// frame.
// -----------------------------------
__ pop(scratch);
__ add(esp, Immediate(kPointerSize * kFastApiCallArguments));
__ push(scratch);
}
// Generates call to API function.
static void GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : object passing the type check
// (last fast api call extra argument,
// set by CheckPrototypes)
// -- esp[8] : api function
// (first fast api call extra argument)
// -- esp[12] : api call data
// -- esp[16] : isolate
// -- esp[20] : ReturnValue default value
// -- esp[24] : ReturnValue
// -- esp[28] : last argument
// -- ...
// -- esp[(argc + 6) * 4] : first argument
// -- esp[(argc + 7) * 4] : receiver
// -----------------------------------
// Get the function and setup the context.
Handle<JSFunction> function = optimization.constant_function();
__ LoadHeapObject(edi, function);
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Pass the additional arguments.
__ mov(Operand(esp, 2 * kPointerSize), edi);
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data(api_call_info->data(), masm->isolate());
if (masm->isolate()->heap()->InNewSpace(*call_data)) {
__ mov(ecx, api_call_info);
__ mov(ebx, FieldOperand(ecx, CallHandlerInfo::kDataOffset));
__ mov(Operand(esp, 3 * kPointerSize), ebx);
} else {
__ mov(Operand(esp, 3 * kPointerSize), Immediate(call_data));
}
__ mov(Operand(esp, 4 * kPointerSize),
Immediate(reinterpret_cast<int>(masm->isolate())));
__ mov(Operand(esp, 5 * kPointerSize),
masm->isolate()->factory()->undefined_value());
__ mov(Operand(esp, 6 * kPointerSize),
masm->isolate()->factory()->undefined_value());
// Prepare arguments.
STATIC_ASSERT(kFastApiCallArguments == 6);
__ lea(eax, Operand(esp, kFastApiCallArguments * kPointerSize));
// API function gets reference to the v8::Arguments. If CPU profiler
// is enabled wrapper function will be called and we need to pass
// address of the callback as additional parameter, always allocate
// space for it.
const int kApiArgc = 1 + 1;
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 4;
// Function address is a foreign pointer outside V8's heap.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
__ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
// v8::Arguments::implicit_args_.
__ mov(ApiParameterOperand(2), eax);
__ add(eax, Immediate(argc * kPointerSize));
// v8::Arguments::values_.
__ mov(ApiParameterOperand(3), eax);
// v8::Arguments::length_.
__ Set(ApiParameterOperand(4), Immediate(argc));
// v8::Arguments::is_construct_call_.
__ Set(ApiParameterOperand(5), Immediate(0));
// v8::InvocationCallback's argument.
__ lea(eax, ApiParameterOperand(2));
__ mov(ApiParameterOperand(0), eax);
Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
__ CallApiFunctionAndReturn(function_address,
thunk_address,
ApiParameterOperand(1),
argc + kFastApiCallArguments + 1,
kFastApiCallArguments + 1);
}
// Generate call to api function.
static void GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
Register receiver,
Register scratch,
int argc,
Register* values) {
ASSERT(optimization.is_simple_api_call());
ASSERT(!receiver.is(scratch));
const int stack_space = kFastApiCallArguments + argc + 1;
// Copy return value.
__ mov(scratch, Operand(esp, 0));
// Assign stack space for the call arguments.
__ sub(esp, Immediate(stack_space * kPointerSize));
// Move the return address on top of the stack.
__ mov(Operand(esp, 0), scratch);
// Write holder to stack frame.
__ mov(Operand(esp, 1 * kPointerSize), receiver);
// Write receiver to stack frame.
int index = stack_space;
__ mov(Operand(esp, index-- * kPointerSize), receiver);
// Write the arguments to stack frame.
for (int i = 0; i < argc; i++) {
ASSERT(!receiver.is(values[i]));
ASSERT(!scratch.is(values[i]));
__ mov(Operand(esp, index-- * kPointerSize), values[i]);
}
GenerateFastApiCall(masm, optimization, argc);
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(StubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name,
Code::ExtraICState extra_state)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name),
extra_state_(extra_state) {}
void Compile(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3,
holder, lookup, name, optimization, miss);
} else {
CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3,
name, holder, miss);
}
}
private:
void CompileCacheable(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Handle<Name> name,
const CallOptimization& optimization,
Label* miss_label) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 = optimization.GetPrototypeDepthOfExpectedType(
object, interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 = optimization.GetPrototypeDepthOfExpectedType(
interceptor_holder, Handle<JSObject>(lookup->holder()));
}
can_do_fast_api_call =
depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth;
}
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->call_const_interceptor(), 1);
if (can_do_fast_api_call) {
__ IncrementCounter(counters->call_const_interceptor_fast_api(), 1);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (*interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
Handle<JSObject>(lookup->holder()),
scratch1, scratch2, scratch3,
name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
GenerateFastApiCall(masm, optimization, arguments_.immediate());
} else {
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
Handle<JSFunction> function = optimization.constant_function();
ParameterCount expected(function);
__ InvokeFunction(function, expected, arguments_,
JUMP_FUNCTION, NullCallWrapper(), call_kind);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm, scratch1);
__ jmp(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm, scratch1);
}
}
void CompileRegular(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<Name> name,
Handle<JSObject> interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss_label);
FrameScope scope(masm, StackFrame::INTERNAL);
// Save the name_ register across the call.
__ push(name_);
PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall),
masm->isolate()),
StubCache::kInterceptorArgsLength);
// Restore the name_ register.
__ pop(name_);
// Leave the internal frame.
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Handle<JSObject> holder_obj,
Label* interceptor_succeeded) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(holder); // Save the holder.
__ push(name_); // Save the name.
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
// Leave the internal frame.
}
__ cmp(eax, masm->isolate()->factory()->no_interceptor_result_sentinel());
__ j(not_equal, interceptor_succeeded);
}
StubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
Code::ExtraICState extra_state_;
};
void BaseStoreStubCompiler::GenerateRestoreName(MacroAssembler* masm,
Label* label,
Handle<Name> name) {
if (!label->is_unused()) {
__ bind(label);
__ mov(this->name(), Immediate(name));
}
}
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
static void GenerateCheckPropertyCell(MacroAssembler* masm,
Handle<GlobalObject> global,
Handle<Name> name,
Register scratch,
Label* miss) {
Handle<PropertyCell> cell =
GlobalObject::EnsurePropertyCell(global, name);
ASSERT(cell->value()->IsTheHole());
Handle<Oddball> the_hole = masm->isolate()->factory()->the_hole_value();
if (Serializer::enabled()) {
__ mov(scratch, Immediate(cell));
__ cmp(FieldOperand(scratch, PropertyCell::kValueOffset),
Immediate(the_hole));
} else {
__ cmp(Operand::ForCell(cell), Immediate(the_hole));
}
__ j(not_equal, miss);
}
void BaseStoreStubCompiler::GenerateNegativeHolderLookup(
MacroAssembler* masm,
Handle<JSObject> holder,
Register holder_reg,
Handle<Name> name,
Label* miss) {
if (holder->IsJSGlobalObject()) {
GenerateCheckPropertyCell(
masm, Handle<GlobalObject>::cast(holder), name, scratch1(), miss);
} else if (!holder->HasFastProperties() && !holder->IsJSGlobalProxy()) {
GenerateDictionaryNegativeLookup(
masm, miss, holder_reg, name, scratch1(), scratch2());
}
}
// Receiver_reg is preserved on jumps to miss_label, but may be destroyed if
// store is successful.
void BaseStoreStubCompiler::GenerateStoreTransition(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name,
Register receiver_reg,
Register storage_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Register unused,
Label* miss_label,
Label* slow) {
int descriptor = transition->LastAdded();
DescriptorArray* descriptors = transition->instance_descriptors();
PropertyDetails details = descriptors->GetDetails(descriptor);
Representation representation = details.representation();
ASSERT(!representation.IsNone());
if (details.type() == CONSTANT) {
Handle<Object> constant(descriptors->GetValue(descriptor), masm->isolate());
__ CmpObject(value_reg, constant);
__ j(not_equal, miss_label);
} else if (FLAG_track_fields && representation.IsSmi()) {
__ JumpIfNotSmi(value_reg, miss_label);
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
__ JumpIfSmi(value_reg, miss_label);
} else if (FLAG_track_double_fields && representation.IsDouble()) {
Label do_store, heap_number;
__ AllocateHeapNumber(storage_reg, scratch1, scratch2, slow);
__ JumpIfNotSmi(value_reg, &heap_number);
__ SmiUntag(value_reg);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope use_sse2(masm, SSE2);
__ cvtsi2sd(xmm0, value_reg);
} else {
__ push(value_reg);
__ fild_s(Operand(esp, 0));
__ pop(value_reg);
}
__ SmiTag(value_reg);
__ jmp(&do_store);
__ bind(&heap_number);
__ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(),
miss_label, DONT_DO_SMI_CHECK);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope use_sse2(masm, SSE2);
__ movdbl(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset));
} else {
__ fld_d(FieldOperand(value_reg, HeapNumber::kValueOffset));
}
__ bind(&do_store);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope use_sse2(masm, SSE2);
__ movdbl(FieldOperand(storage_reg, HeapNumber::kValueOffset), xmm0);
} else {
__ fstp_d(FieldOperand(storage_reg, HeapNumber::kValueOffset));
}
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if (details.type() == FIELD &&
object->map()->unused_property_fields() == 0) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ pop(scratch1); // Return address.
__ push(receiver_reg);
__ push(Immediate(transition));
__ push(value_reg);
__ push(scratch1);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
masm->isolate()),
3,
1);
return;
}
// Update the map of the object.
__ mov(scratch1, Immediate(transition));
__ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1);
// Update the write barrier for the map field.
__ RecordWriteField(receiver_reg,
HeapObject::kMapOffset,
scratch1,
scratch2,
kDontSaveFPRegs,
OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
if (details.type() == CONSTANT) {
ASSERT(value_reg.is(eax));
__ ret(0);
return;
}
int index = transition->instance_descriptors()->GetFieldIndex(
transition->LastAdded());
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
SmiCheck smi_check = representation.IsTagged()
? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
// TODO(verwaest): Share this code as a code stub.
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
if (FLAG_track_double_fields && representation.IsDouble()) {
__ mov(FieldOperand(receiver_reg, offset), storage_reg);
} else {
__ mov(FieldOperand(receiver_reg, offset), value_reg);
}
if (!FLAG_track_fields || !representation.IsSmi()) {
// Update the write barrier for the array address.
if (!FLAG_track_double_fields || !representation.IsDouble()) {
__ mov(storage_reg, value_reg);
}
__ RecordWriteField(receiver_reg,
offset,
storage_reg,
scratch1,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
smi_check);
}
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
if (FLAG_track_double_fields && representation.IsDouble()) {
__ mov(FieldOperand(scratch1, offset), storage_reg);
} else {
__ mov(FieldOperand(scratch1, offset), value_reg);
}
if (!FLAG_track_fields || !representation.IsSmi()) {
// Update the write barrier for the array address.
if (!FLAG_track_double_fields || !representation.IsDouble()) {
__ mov(storage_reg, value_reg);
}
__ RecordWriteField(scratch1,
offset,
storage_reg,
receiver_reg,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
smi_check);
}
}
// Return the value (register eax).
ASSERT(value_reg.is(eax));
__ ret(0);
}
// Both name_reg and receiver_reg are preserved on jumps to miss_label,
// but may be destroyed if store is successful.
void BaseStoreStubCompiler::GenerateStoreField(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Register receiver_reg,
Register name_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Label* miss_label) {
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
int index = lookup->GetFieldIndex().field_index();
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
Representation representation = lookup->representation();
ASSERT(!representation.IsNone());
if (FLAG_track_fields && representation.IsSmi()) {
__ JumpIfNotSmi(value_reg, miss_label);
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
__ JumpIfSmi(value_reg, miss_label);
} else if (FLAG_track_double_fields && representation.IsDouble()) {
// Load the double storage.
if (index < 0) {
int offset = object->map()->instance_size() + (index * kPointerSize);
__ mov(scratch1, FieldOperand(receiver_reg, offset));
} else {
__ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ mov(scratch1, FieldOperand(scratch1, offset));
}
// Store the value into the storage.
Label do_store, heap_number;
__ JumpIfNotSmi(value_reg, &heap_number);
__ SmiUntag(value_reg);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope use_sse2(masm, SSE2);
__ cvtsi2sd(xmm0, value_reg);
} else {
__ push(value_reg);
__ fild_s(Operand(esp, 0));
__ pop(value_reg);
}
__ SmiTag(value_reg);
__ jmp(&do_store);
__ bind(&heap_number);
__ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(),
miss_label, DONT_DO_SMI_CHECK);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope use_sse2(masm, SSE2);
__ movdbl(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset));
} else {
__ fld_d(FieldOperand(value_reg, HeapNumber::kValueOffset));
}
__ bind(&do_store);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatureScope use_sse2(masm, SSE2);
__ movdbl(FieldOperand(scratch1, HeapNumber::kValueOffset), xmm0);
} else {
__ fstp_d(FieldOperand(scratch1, HeapNumber::kValueOffset));
}
// Return the value (register eax).
ASSERT(value_reg.is(eax));
__ ret(0);
return;
}
ASSERT(!FLAG_track_double_fields || !representation.IsDouble());
// TODO(verwaest): Share this code as a code stub.
SmiCheck smi_check = representation.IsTagged()
? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ mov(FieldOperand(receiver_reg, offset), value_reg);
if (!FLAG_track_fields || !representation.IsSmi()) {
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ mov(name_reg, value_reg);
__ RecordWriteField(receiver_reg,
offset,
name_reg,
scratch1,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
smi_check);
}
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ mov(FieldOperand(scratch1, offset), value_reg);
if (!FLAG_track_fields || !representation.IsSmi()) {
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ mov(name_reg, value_reg);
__ RecordWriteField(scratch1,
offset,
name_reg,
receiver_reg,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
smi_check);
}
}
// Return the value (register eax).
ASSERT(value_reg.is(eax));
__ ret(0);
}
// Calls GenerateCheckPropertyCell for each global object in the prototype chain
// from object to (but not including) holder.
static void GenerateCheckPropertyCells(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Register scratch,
Label* miss) {
Handle<JSObject> current = object;
while (!current.is_identical_to(holder)) {
if (current->IsGlobalObject()) {
GenerateCheckPropertyCell(masm,
Handle<GlobalObject>::cast(current),
name,
scratch,
miss);
}
current = Handle<JSObject>(JSObject::cast(current->GetPrototype()));
}
}
void StubCompiler::GenerateTailCall(MacroAssembler* masm, Handle<Code> code) {
__ jmp(code, RelocInfo::CODE_TARGET);
}
#undef __
#define __ ACCESS_MASM(masm())
Register StubCompiler::CheckPrototypes(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<Name> name,
int save_at_depth,
Label* miss,
PrototypeCheckType check) {
// Make sure that the type feedback oracle harvests the receiver map.
// TODO(svenpanne) Remove this hack when all ICs are reworked.
__ mov(scratch1, Handle<Map>(object->map()));
Handle<JSObject> first = object;
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg.
Register reg = object_reg;
Handle<JSObject> current = object;
int depth = 0;
if (save_at_depth == depth) {
__ mov(Operand(esp, kPointerSize), reg);
}
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (!current.is_identical_to(holder)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
Handle<JSObject> prototype(JSObject::cast(current->GetPrototype()));
if (!current->HasFastProperties() &&
!current->IsJSGlobalObject() &&
!current->IsJSGlobalProxy()) {
if (!name->IsUniqueName()) {
ASSERT(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
ASSERT(current->property_dictionary()->FindEntry(*name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
scratch1, scratch2);
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
bool in_new_space = heap()->InNewSpace(*prototype);
Handle<Map> current_map(current->map());
if (!current.is_identical_to(first) || check == CHECK_ALL_MAPS) {
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss);
}
if (in_new_space) {
// Save the map in scratch1 for later.
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
}
reg = holder_reg; // From now on the object will be in holder_reg.
if (in_new_space) {
// The prototype is in new space; we cannot store a reference to it
// in the code. Load it from the map.
__ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
// The prototype is in old space; load it directly.
__ mov(reg, prototype);
}
}
if (save_at_depth == depth) {
__ mov(Operand(esp, kPointerSize), reg);
}
// Go to the next object in the prototype chain.
current = prototype;
}
ASSERT(current.is_identical_to(holder));
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
if (!holder.is_identical_to(first) || check == CHECK_ALL_MAPS) {
// Check the holder map.
__ CheckMap(reg, Handle<Map>(holder->map()), miss, DONT_DO_SMI_CHECK);
}
// Perform security check for access to the global object.
ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded());
if (holder->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss);
}
// If we've skipped any global objects, it's not enough to verify that
// their maps haven't changed. We also need to check that the property
// cell for the property is still empty.
GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss);
// Return the register containing the holder.
return reg;
}
void BaseLoadStubCompiler::HandlerFrontendFooter(Handle<Name> name,
Label* success,
Label* miss) {
if (!miss->is_unused()) {
__ jmp(success);
__ bind(miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
}
}
void BaseStoreStubCompiler::HandlerFrontendFooter(Handle<Name> name,
Label* success,
Label* miss) {
if (!miss->is_unused()) {
__ jmp(success);
GenerateRestoreName(masm(), miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
}
}
Register BaseLoadStubCompiler::CallbackHandlerFrontend(
Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* success,
Handle<Object> callback) {
Label miss;
Register reg = HandlerFrontendHeader(object, object_reg, holder, name, &miss);
if (!holder->HasFastProperties() && !holder->IsJSGlobalObject()) {
ASSERT(!reg.is(scratch2()));
ASSERT(!reg.is(scratch3()));
Register dictionary = scratch1();
bool must_preserve_dictionary_reg = reg.is(dictionary);
// Load the properties dictionary.
if (must_preserve_dictionary_reg) {
__ push(dictionary);
}
__ mov(dictionary, FieldOperand(reg, JSObject::kPropertiesOffset));
// Probe the dictionary.
Label probe_done, pop_and_miss;
NameDictionaryLookupStub::GeneratePositiveLookup(masm(),
&pop_and_miss,
&probe_done,
dictionary,
this->name(),
scratch2(),
scratch3());
__ bind(&pop_and_miss);
if (must_preserve_dictionary_reg) {
__ pop(dictionary);
}
__ jmp(&miss);
__ bind(&probe_done);
// If probing finds an entry in the dictionary, scratch2 contains the
// index into the dictionary. Check that the value is the callback.
Register index = scratch2();
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ mov(scratch3(),
Operand(dictionary, index, times_4, kValueOffset - kHeapObjectTag));
if (must_preserve_dictionary_reg) {
__ pop(dictionary);
}
__ cmp(scratch3(), callback);
__ j(not_equal, &miss);
}
HandlerFrontendFooter(name, success, &miss);
return reg;
}
void BaseLoadStubCompiler::NonexistentHandlerFrontend(
Handle<JSObject> object,
Handle<JSObject> last,
Handle<Name> name,
Label* success,
Handle<GlobalObject> global) {
Label miss;
HandlerFrontendHeader(object, receiver(), last, name, &miss);
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (!global.is_null()) {
GenerateCheckPropertyCell(masm(), global, name, scratch2(), &miss);
}
HandlerFrontendFooter(name, success, &miss);
}
void BaseLoadStubCompiler::GenerateLoadField(Register reg,
Handle<JSObject> holder,
PropertyIndex field,
Representation representation) {
if (!reg.is(receiver())) __ mov(receiver(), reg);
if (kind() == Code::LOAD_IC) {
LoadFieldStub stub(field.is_inobject(holder),
field.translate(holder),
representation);
GenerateTailCall(masm(), stub.GetCode(isolate()));
} else {
KeyedLoadFieldStub stub(field.is_inobject(holder),
field.translate(holder),
representation);
GenerateTailCall(masm(), stub.GetCode(isolate()));
}
}
void BaseLoadStubCompiler::GenerateLoadCallback(
const CallOptimization& call_optimization) {
GenerateFastApiCall(
masm(), call_optimization, receiver(), scratch3(), 0, NULL);
}
void BaseLoadStubCompiler::GenerateLoadCallback(
Register reg,
Handle<ExecutableAccessorInfo> callback) {
// Insert additional parameters into the stack frame above return address.
ASSERT(!scratch3().is(reg));
__ pop(scratch3()); // Get return address to place it below.
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == -1);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == -2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == -3);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == -4);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == -5);
__ push(receiver()); // receiver
__ mov(scratch2(), esp);
ASSERT(!scratch2().is(reg));
// Push data from ExecutableAccessorInfo.
if (isolate()->heap()->InNewSpace(callback->data())) {
Register scratch = reg.is(scratch1()) ? receiver() : scratch1();
__ mov(scratch, Immediate(callback));
__ push(FieldOperand(scratch, ExecutableAccessorInfo::kDataOffset));
} else {
__ push(Immediate(Handle<Object>(callback->data(), isolate())));
}
__ push(Immediate(isolate()->factory()->undefined_value())); // ReturnValue
// ReturnValue default value
__ push(Immediate(isolate()->factory()->undefined_value()));
__ push(Immediate(reinterpret_cast<int>(isolate())));
__ push(reg); // holder
// Save a pointer to where we pushed the arguments pointer. This will be
// passed as the const ExecutableAccessorInfo& to the C++ callback.
__ push(scratch2());
__ push(name()); // name
__ mov(ebx, esp); // esp points to reference to name (handler).
__ push(scratch3()); // Restore return address.
// array for v8::Arguments::values_, handler for name and pointer
// to the values (it considered as smi in GC).
const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
// Allocate space for opional callback address parameter in case
// CPU profiler is active.
const int kApiArgc = 2 + 1;
Address getter_address = v8::ToCData<Address>(callback->getter());
__ PrepareCallApiFunction(kApiArgc);
__ mov(ApiParameterOperand(0), ebx); // name.
__ add(ebx, Immediate(kPointerSize));
__ mov(ApiParameterOperand(1), ebx); // arguments pointer.
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
__ CallApiFunctionAndReturn(getter_address,
thunk_address,
ApiParameterOperand(2),
kStackSpace,
7);
}
void BaseLoadStubCompiler::GenerateLoadConstant(Handle<Object> value) {
// Return the constant value.
__ LoadObject(eax, value);
__ ret(0);
}
void BaseLoadStubCompiler::GenerateLoadInterceptor(
Register holder_reg,
Handle<JSObject> object,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Handle<Name> name) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsFound() && lookup->IsCacheable()) {
if (lookup->IsField()) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsExecutableAccessorInfo()) {
ExecutableAccessorInfo* callback =
ExecutableAccessorInfo::cast(lookup->GetCallbackObject());
compile_followup_inline = callback->getter() != NULL &&
callback->IsCompatibleReceiver(*object);
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
ASSERT(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
// Preserve the receiver register explicitly whenever it is different from
// the holder and it is needed should the interceptor return without any
// result. The CALLBACKS case needs the receiver to be passed into C++ code,
// the FIELD case might cause a miss during the prototype check.
bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder();
bool must_preserve_receiver_reg = !receiver().is(holder_reg) &&
(lookup->type() == CALLBACKS || must_perfrom_prototype_check);
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (must_preserve_receiver_reg) {
__ push(receiver());
}
__ push(holder_reg);
__ push(this->name());
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(masm(),
receiver(),
holder_reg,
this->name(),
interceptor_holder);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ cmp(eax, factory()->no_interceptor_result_sentinel());
__ j(equal, &interceptor_failed);
frame_scope.GenerateLeaveFrame();
__ ret(0);
// Clobber registers when generating debug-code to provoke errors.
__ bind(&interceptor_failed);
if (FLAG_debug_code) {
__ mov(receiver(), Immediate(BitCast<int32_t>(kZapValue)));
__ mov(holder_reg, Immediate(BitCast<int32_t>(kZapValue)));
__ mov(this->name(), Immediate(BitCast<int32_t>(kZapValue)));
}
__ pop(this->name());
__ pop(holder_reg);
if (must_preserve_receiver_reg) {
__ pop(receiver());
}
// Leave the internal frame.
}
GenerateLoadPostInterceptor(holder_reg, interceptor_holder, name, lookup);
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
__ pop(scratch2()); // save old return address
PushInterceptorArguments(masm(), receiver(), holder_reg,
this->name(), interceptor_holder);
__ push(scratch2()); // restore old return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForLoad),
isolate());
__ TailCallExternalReference(ref, StubCache::kInterceptorArgsLength, 1);
}
}
void CallStubCompiler::GenerateNameCheck(Handle<Name> name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ cmp(ecx, Immediate(name));
__ j(not_equal, miss);
}
}
void CallStubCompiler::GenerateGlobalReceiverCheck(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss) {
ASSERT(holder->IsGlobalObject());
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the maps haven't changed.
__ JumpIfSmi(edx, miss);
CheckPrototypes(object, edx, holder, ebx, eax, edi, name, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(
Handle<Cell> cell,
Handle<JSFunction> function,
Label* miss) {
// Get the value from the cell.
if (Serializer::enabled()) {
__ mov(edi, Immediate(cell));
__ mov(edi, FieldOperand(edi, Cell::kValueOffset));
} else {
__ mov(edi, Operand::ForCell(cell));
}
// Check that the cell contains the same function.
if (isolate()->heap()->InNewSpace(*function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
__ JumpIfSmi(edi, miss);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, miss);
// Check the shared function info. Make sure it hasn't changed.
__ cmp(FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset),
Immediate(Handle<SharedFunctionInfo>(function->shared())));
} else {
__ cmp(edi, Immediate(function));
}
__ j(not_equal, miss);
}
void CallStubCompiler::GenerateMissBranch() {
Handle<Code> code =
isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(),
kind_,
extra_state_);
__ jmp(code, RelocInfo::CODE_TARGET);
}
Handle<Code> CallStubCompiler::CompileCallField(Handle<JSObject> object,
Handle<JSObject> holder,
PropertyIndex index,
Handle<Name> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
// Do the right check and compute the holder register.
Register reg = CheckPrototypes(object, edx, holder, ebx, eax, edi,
name, &miss);
GenerateFastPropertyLoad(
masm(), edi, reg, index.is_inobject(holder),
index.translate(holder), Representation::Tagged());
// Check that the function really is a function.
__ JumpIfSmi(edi, &miss);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(edi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(Code::FIELD, name);
}
Handle<Code> CallStubCompiler::CompileArrayCodeCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
Label miss;
// Check that function is still array
const int argc = arguments().immediate();
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
Handle<AllocationSite> site = isolate()->factory()->NewAllocationSite();
site->set_transition_info(Smi::FromInt(GetInitialFastElementsKind()));
Handle<Cell> site_feedback_cell = isolate()->factory()->NewCell(site);
__ mov(eax, Immediate(argc));
__ mov(ebx, site_feedback_cell);
__ mov(edi, function);
ArrayConstructorStub stub(isolate());
__ TailCallStub(&stub);
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileArrayPushCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || !cell.is_null()) {
return Handle<Code>::null();
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
if (argc == 0) {
// Noop, return the length.
__ mov(eax, FieldOperand(edx, JSArray::kLengthOffset));
__ ret((argc + 1) * kPointerSize);
} else {
Label call_builtin;
if (argc == 1) { // Otherwise fall through to call builtin.
Label attempt_to_grow_elements, with_write_barrier, check_double;
// Get the elements array of the object.
__ mov(edi, FieldOperand(edx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ cmp(FieldOperand(edi, HeapObject::kMapOffset),
Immediate(factory()->fixed_array_map()));
__ j(not_equal, &check_double);
// Get the array's length into eax and calculate new length.
__ mov(eax, FieldOperand(edx, JSArray::kLengthOffset));
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ add(eax, Immediate(Smi::FromInt(argc)));
// Get the elements' length into ecx.
__ mov(ecx, FieldOperand(edi, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmp(eax, ecx);
__ j(greater, &attempt_to_grow_elements);
// Check if value is a smi.
__ mov(ecx, Operand(esp, argc * kPointerSize));
__ JumpIfNotSmi(ecx, &with_write_barrier);
// Save new length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
// Store the value.
__ mov(FieldOperand(edi,
eax,
times_half_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize),
ecx);
__ ret((argc + 1) * kPointerSize);
__ bind(&check_double);
// Check that the elements are in double mode.
__ cmp(FieldOperand(edi, HeapObject::kMapOffset),
Immediate(factory()->fixed_double_array_map()));
__ j(not_equal, &call_builtin);
// Get the array's length into eax and calculate new length.
__ mov(eax, FieldOperand(edx, JSArray::kLengthOffset));
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ add(eax, Immediate(Smi::FromInt(argc)));
// Get the elements' length into ecx.
__ mov(ecx, FieldOperand(edi, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmp(eax, ecx);
__ j(greater, &call_builtin);
__ mov(ecx, Operand(esp, argc * kPointerSize));
__ StoreNumberToDoubleElements(
ecx, edi, eax, ecx, xmm0, &call_builtin, true, argc * kDoubleSize);
// Save new length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
__ ret((argc + 1) * kPointerSize);
__ bind(&with_write_barrier);
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) {
Label fast_object, not_fast_object;
__ CheckFastObjectElements(ebx, &not_fast_object, Label::kNear);
__ jmp(&fast_object);
// In case of fast smi-only, convert to fast object, otherwise bail out.
__ bind(&not_fast_object);
__ CheckFastSmiElements(ebx, &call_builtin);
__ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
Immediate(factory()->heap_number_map()));
__ j(equal, &call_builtin);
// edi: elements array
// edx: receiver
// ebx: map
Label try_holey_map;
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS,
ebx,
edi,
&try_holey_map);
ElementsTransitionGenerator::
GenerateMapChangeElementsTransition(masm(),
DONT_TRACK_ALLOCATION_SITE,
NULL);
// Restore edi.
__ mov(edi, FieldOperand(edx, JSArray::kElementsOffset));
__ jmp(&fast_object);
__ bind(&try_holey_map);
__ LoadTransitionedArrayMapConditional(FAST_HOLEY_SMI_ELEMENTS,
FAST_HOLEY_ELEMENTS,
ebx,
edi,
&call_builtin);
ElementsTransitionGenerator::
GenerateMapChangeElementsTransition(masm(),
DONT_TRACK_ALLOCATION_SITE,
NULL);
// Restore edi.
__ mov(edi, FieldOperand(edx, JSArray::kElementsOffset));
__ bind(&fast_object);
} else {
__ CheckFastObjectElements(ebx, &call_builtin);
}
// Save new length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
// Store the value.
__ lea(edx, FieldOperand(edi,
eax, times_half_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ mov(Operand(edx, 0), ecx);
__ RecordWrite(edi, edx, ecx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ ret((argc + 1) * kPointerSize);
__ bind(&attempt_to_grow_elements);
if (!FLAG_inline_new) {
__ jmp(&call_builtin);
}
__ mov(ebx, Operand(esp, argc * kPointerSize));
// Growing elements that are SMI-only requires special handling in case
// the new element is non-Smi. For now, delegate to the builtin.
Label no_fast_elements_check;
__ JumpIfSmi(ebx, &no_fast_elements_check);
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
__ CheckFastObjectElements(ecx, &call_builtin, Label::kFar);
__ bind(&no_fast_elements_check);
// We could be lucky and the elements array could be at the top of
// new-space. In this case we can just grow it in place by moving the
// allocation pointer up.
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
const int kAllocationDelta = 4;
// Load top.
__ mov(ecx, Operand::StaticVariable(new_space_allocation_top));
// Check if it's the end of elements.
__ lea(edx, FieldOperand(edi,
eax, times_half_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ cmp(edx, ecx);
__ j(not_equal, &call_builtin);
__ add(ecx, Immediate(kAllocationDelta * kPointerSize));
__ cmp(ecx, Operand::StaticVariable(new_space_allocation_limit));
__ j(above, &call_builtin);
// We fit and could grow elements.
__ mov(Operand::StaticVariable(new_space_allocation_top), ecx);
// Push the argument...
__ mov(Operand(edx, 0), ebx);
// ... and fill the rest with holes.
for (int i = 1; i < kAllocationDelta; i++) {
__ mov(Operand(edx, i * kPointerSize),
Immediate(factory()->the_hole_value()));
}
// We know the elements array is in new space so we don't need the
// remembered set, but we just pushed a value onto it so we may have to
// tell the incremental marker to rescan the object that we just grew. We
// don't need to worry about the holes because they are in old space and
// already marked black.
__ RecordWrite(edi, edx, ebx, kDontSaveFPRegs, OMIT_REMEMBERED_SET);
// Restore receiver to edx as finish sequence assumes it's here.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Increment element's and array's sizes.
__ add(FieldOperand(edi, FixedArray::kLengthOffset),
Immediate(Smi::FromInt(kAllocationDelta)));
// NOTE: This only happen in new-space, where we don't
// care about the black-byte-count on pages. Otherwise we should
// update that too if the object is black.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
__ ret((argc + 1) * kPointerSize);
}
__ bind(&call_builtin);
__ TailCallExternalReference(
ExternalReference(Builtins::c_ArrayPush, isolate()),
argc + 1,
1);
}
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileArrayPopCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || !cell.is_null()) {
return Handle<Code>::null();
}
Label miss, return_undefined, call_builtin;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
// Get the elements array of the object.
__ mov(ebx, FieldOperand(edx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(factory()->fixed_array_map()));
__ j(not_equal, &call_builtin);
// Get the array's length into ecx and calculate new length.
__ mov(ecx, FieldOperand(edx, JSArray::kLengthOffset));
__ sub(ecx, Immediate(Smi::FromInt(1)));
__ j(negative, &return_undefined);
// Get the last element.
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ mov(eax, FieldOperand(ebx,
ecx, times_half_pointer_size,
FixedArray::kHeaderSize));
__ cmp(eax, Immediate(factory()->the_hole_value()));
__ j(equal, &call_builtin);
// Set the array's length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), ecx);
// Fill with the hole.
__ mov(FieldOperand(ebx,
ecx, times_half_pointer_size,
FixedArray::kHeaderSize),
Immediate(factory()->the_hole_value()));
__ ret((argc + 1) * kPointerSize);
__ bind(&return_undefined);
__ mov(eax, Immediate(factory()->undefined_value()));
__ ret((argc + 1) * kPointerSize);
__ bind(&call_builtin);
__ TailCallExternalReference(
ExternalReference(Builtins::c_ArrayPop, isolate()),
argc + 1,
1);
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileStringCharCodeAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) {
return Handle<Code>::null();
}
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
eax,
&miss);
ASSERT(!object.is_identical_to(holder));
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate()))),
eax, holder, ebx, edx, edi, name, &miss);
Register receiver = ebx;
Register index = edi;
Register result = eax;
__ mov(receiver, Operand(esp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ mov(index, Operand(esp, (argc - 0) * kPointerSize));
} else {
__ Set(index, Immediate(factory()->undefined_value()));
}
StringCharCodeAtGenerator generator(receiver,
index,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ Set(eax, Immediate(factory()->nan_value()));
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in ecx.
__ Set(ecx, Immediate(name));
__ bind(&name_miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileStringCharAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) {
return Handle<Code>::null();
}
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
eax,
&miss);
ASSERT(!object.is_identical_to(holder));
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate()))),
eax, holder, ebx, edx, edi, name, &miss);
Register receiver = eax;
Register index = edi;
Register scratch = edx;
Register result = eax;
__ mov(receiver, Operand(esp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ mov(index, Operand(esp, (argc - 0) * kPointerSize));
} else {
__ Set(index, Immediate(factory()->undefined_value()));
}
StringCharAtGenerator generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ Set(eax, Immediate(factory()->empty_string()));
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in ecx.
__ Set(ecx, Immediate(name));
__ bind(&name_miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileStringFromCharCodeCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return Handle<Code>::null();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = ebx;
__ mov(code, Operand(esp, 1 * kPointerSize));
// Check the code is a smi.
Label slow;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(code, &slow);
// Convert the smi code to uint16.
__ and_(code, Immediate(Smi::FromInt(0xffff)));
StringCharFromCodeGenerator generator(code, eax);
generator.GenerateFast(masm());
__ ret(2 * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
ParameterCount expected(function);
__ InvokeFunction(function, expected, arguments(),
JUMP_FUNCTION, NullCallWrapper(), call_kind);
__ bind(&miss);
// ecx: function name.
GenerateMissBranch();
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileMathFloorCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (!CpuFeatures::IsSupported(SSE2)) {
return Handle<Code>::null();
}
CpuFeatureScope use_sse2(masm(), SSE2);
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return Handle<Code>::null();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into eax.
__ mov(eax, Operand(esp, 1 * kPointerSize));
// Check if the argument is a smi.
Label smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(eax, &smi);
// Check if the argument is a heap number and load its value into xmm0.
Label slow;
__ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ movdbl(xmm0, FieldOperand(eax, HeapNumber::kValueOffset));
// Check if the argument is strictly positive. Note this also
// discards NaN.
__ xorpd(xmm1, xmm1);
__ ucomisd(xmm0, xmm1);
__ j(below_equal, &slow);
// Do a truncating conversion.
__ cvttsd2si(eax, Operand(xmm0));
// Check if the result fits into a smi. Note this also checks for
// 0x80000000 which signals a failed conversion.
Label wont_fit_into_smi;
__ test(eax, Immediate(0xc0000000));
__ j(not_zero, &wont_fit_into_smi);
// Smi tag and return.
__ SmiTag(eax);
__ bind(&smi);
__ ret(2 * kPointerSize);
// Check if the argument is < 2^kMantissaBits.
Label already_round;
__ bind(&wont_fit_into_smi);
__ LoadPowerOf2(xmm1, ebx, HeapNumber::kMantissaBits);
__ ucomisd(xmm0, xmm1);
__ j(above_equal, &already_round);
// Save a copy of the argument.
__ movaps(xmm2, xmm0);
// Compute (argument + 2^kMantissaBits) - 2^kMantissaBits.
__ addsd(xmm0, xmm1);
__ subsd(xmm0, xmm1);
// Compare the argument and the tentative result to get the right mask:
// if xmm2 < xmm0:
// xmm2 = 1...1
// else:
// xmm2 = 0...0
__ cmpltsd(xmm2, xmm0);
// Subtract 1 if the argument was less than the tentative result.
__ LoadPowerOf2(xmm1, ebx, 0);
__ andpd(xmm1, xmm2);
__ subsd(xmm0, xmm1);
// Return a new heap number.
__ AllocateHeapNumber(eax, ebx, edx, &slow);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
__ ret(2 * kPointerSize);
// Return the argument (when it's an already round heap number).
__ bind(&already_round);
__ mov(eax, Operand(esp, 1 * kPointerSize));
__ ret(2 * kPointerSize);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
ParameterCount expected(function);
__ InvokeFunction(function, expected, arguments(),
JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// ecx: function name.
GenerateMissBranch();
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileMathAbsCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return Handle<Code>::null();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into eax.
__ mov(eax, Operand(esp, 1 * kPointerSize));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(eax, &not_smi);
// Branchless abs implementation, refer to below:
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs
// Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0
// otherwise.
__ mov(ebx, eax);
__ sar(ebx, kBitsPerInt - 1);
// Do bitwise not or do nothing depending on ebx.
__ xor_(eax, ebx);
// Add 1 or do nothing depending on ebx.
__ sub(eax, ebx);
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ j(negative, &slow);
// Smi case done.
__ ret(2 * kPointerSize);
// Check if the argument is a heap number and load its exponent and
// sign into ebx.
__ bind(&not_smi);
__ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ mov(ebx, FieldOperand(eax, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
__ test(ebx, Immediate(HeapNumber::kSignMask));
__ j(not_zero, &negative_sign);
__ ret(2 * kPointerSize);
// If the argument is negative, clear the sign, and return a new
// number.
__ bind(&negative_sign);
__ and_(ebx, ~HeapNumber::kSignMask);
__ mov(ecx, FieldOperand(eax, HeapNumber::kMantissaOffset));
__ AllocateHeapNumber(eax, edi, edx, &slow);
__ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ebx);
__ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx);
__ ret(2 * kPointerSize);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
ParameterCount expected(function);
__ InvokeFunction(function, expected, arguments(),
JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// ecx: function name.
GenerateMissBranch();
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileFastApiCall(
const CallOptimization& optimization,
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name) {
ASSERT(optimization.is_simple_api_call());
// Bail out if object is a global object as we don't want to
// repatch it to global receiver.
if (object->IsGlobalObject()) return Handle<Code>::null();
if (!cell.is_null()) return Handle<Code>::null();
if (!object->IsJSObject()) return Handle<Code>::null();
int depth = optimization.GetPrototypeDepthOfExpectedType(
Handle<JSObject>::cast(object), holder);
if (depth == kInvalidProtoDepth) return Handle<Code>::null();
Label miss, miss_before_stack_reserved;
GenerateNameCheck(name, &miss_before_stack_reserved);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss_before_stack_reserved);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_const(), 1);
__ IncrementCounter(counters->call_const_fast_api(), 1);
// Allocate space for v8::Arguments implicit values. Must be initialized
// before calling any runtime function.
__ sub(esp, Immediate(kFastApiCallArguments * kPointerSize));
// Check that the maps haven't changed and find a Holder as a side effect.
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax, edi,
name, depth, &miss);
// Move the return address on top of the stack.
__ mov(eax, Operand(esp, kFastApiCallArguments * kPointerSize));
__ mov(Operand(esp, 0 * kPointerSize), eax);
// esp[2 * kPointerSize] is uninitialized, esp[3 * kPointerSize] contains
// duplicate of return address and will be overwritten.
GenerateFastApiCall(masm(), optimization, argc);
__ bind(&miss);
__ add(esp, Immediate(kFastApiCallArguments * kPointerSize));
__ bind(&miss_before_stack_reserved);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
void CallStubCompiler::CompileHandlerFrontend(Handle<Object> object,
Handle<JSObject> holder,
Handle<Name> name,
CheckType check,
Label* success) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ JumpIfSmi(edx, &miss);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(isolate()->counters()->call_const(), 1);
// Check that the maps haven't changed.
CheckPrototypes(Handle<JSObject>::cast(object), edx, holder, ebx, eax,
edi, name, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
break;
case STRING_CHECK:
// Check that the object is a string.
__ CmpObjectType(edx, FIRST_NONSTRING_TYPE, eax);
__ j(above_equal, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate()))),
eax, holder, ebx, edx, edi, name, &miss);
break;
case SYMBOL_CHECK:
// Check that the object is a symbol.
__ CmpObjectType(edx, SYMBOL_TYPE, eax);
__ j(not_equal, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::SYMBOL_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate()))),
eax, holder, ebx, edx, edi, name, &miss);
break;
case NUMBER_CHECK: {
Label fast;
// Check that the object is a smi or a heap number.
__ JumpIfSmi(edx, &fast);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, eax);
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate()))),
eax, holder, ebx, edx, edi, name, &miss);
break;
}
case BOOLEAN_CHECK: {
Label fast;
// Check that the object is a boolean.
__ cmp(edx, factory()->true_value());
__ j(equal, &fast);
__ cmp(edx, factory()->false_value());
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate()))),
eax, holder, ebx, edx, edi, name, &miss);
break;
}
}
__ jmp(success);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
}
void CallStubCompiler::CompileHandlerBackend(Handle<JSFunction> function) {
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
ParameterCount expected(function);
__ InvokeFunction(function, expected, arguments(),
JUMP_FUNCTION, NullCallWrapper(), call_kind);
}
Handle<Code> CallStubCompiler::CompileCallConstant(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Name> name,
CheckType check,
Handle<JSFunction> function) {
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(object, holder,
Handle<Cell>::null(),
function, Handle<String>::cast(name),
Code::CONSTANT);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label success;
CompileHandlerFrontend(object, holder, name, check, &success);
__ bind(&success);
CompileHandlerBackend(function);
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileCallInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), ecx, extra_state_);
compiler.Compile(masm(), object, holder, name, &lookup, edx, ebx, edi, eax,
&miss);
// Restore receiver.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the function really is a function.
__ JumpIfSmi(eax, &miss);
__ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
__ mov(edi, eax);
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(edi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle load cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(Code::INTERCEPTOR, name);
}
Handle<Code> CallStubCompiler::CompileCallGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<PropertyCell> cell,
Handle<JSFunction> function,
Handle<Name> name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(
object, holder, cell, function, Handle<String>::cast(name),
Code::NORMAL);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
GenerateGlobalReceiverCheck(object, holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
// Patch the receiver on the stack with the global proxy.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Set up the context (function already in edi).
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_global_inline(), 1);
ParameterCount expected(function->shared()->formal_parameter_count());
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
__ InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
expected, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(counters->call_global_inline_miss(), 1);
GenerateMissBranch();
// Return the generated code.
return GetCode(Code::NORMAL, name);
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<ExecutableAccessorInfo> callback) {
Label success;
HandlerFrontend(object, receiver(), holder, name, &success);
__ bind(&success);
__ pop(scratch1()); // remove the return address
__ push(receiver());
__ Push(callback);
__ Push(name);
__ push(value());
__ push(scratch1()); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 4, 1);
// Return the generated code.
return GetCode(kind(), Code::CALLBACKS, name);
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
const CallOptimization& call_optimization) {
Label success;
HandlerFrontend(object, receiver(), holder, name, &success);
__ bind(&success);
Register values[] = { value() };
GenerateFastApiCall(
masm(), call_optimization, receiver(), scratch1(), 1, values);
// Return the generated code.
return GetCode(kind(), Code::CALLBACKS, name);
}
#undef __
#define __ ACCESS_MASM(masm)
void StoreStubCompiler::GenerateStoreViaSetter(
MacroAssembler* masm,
Handle<JSFunction> setter) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save value register, so we can restore it later.
__ push(eax);
if (!setter.is_null()) {
// Call the JavaScript setter with receiver and value on the stack.
__ push(edx);
__ push(eax);
ParameterCount actual(1);
ParameterCount expected(setter);
__ InvokeFunction(setter, expected, actual,
CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
}
// We have to return the passed value, not the return value of the setter.
__ pop(eax);
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
#undef __
#define __ ACCESS_MASM(masm())
Handle<Code> StoreStubCompiler::CompileStoreInterceptor(
Handle<JSObject> object,
Handle<Name> name) {
__ pop(scratch1()); // remove the return address
__ push(receiver());
__ push(this->name());
__ push(value());
__ push(Immediate(Smi::FromInt(strict_mode())));
__ push(scratch1()); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate());
__ TailCallExternalReference(store_ic_property, 4, 1);
// Return the generated code.
return GetCode(kind(), Code::INTERCEPTOR, name);
}
Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps) {
Label miss;
__ JumpIfSmi(receiver(), &miss, Label::kNear);
__ mov(scratch1(), FieldOperand(receiver(), HeapObject::kMapOffset));
for (int i = 0; i < receiver_maps->length(); ++i) {
__ cmp(scratch1(), receiver_maps->at(i));
if (transitioned_maps->at(i).is_null()) {
__ j(equal, handler_stubs->at(i));
} else {
Label next_map;
__ j(not_equal, &next_map, Label::kNear);
__ mov(transition_map(), Immediate(transitioned_maps->at(i)));
__ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET);
__ bind(&next_map);
}
}
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
return GetICCode(
kind(), Code::NORMAL, factory()->empty_string(), POLYMORPHIC);
}
Handle<Code> LoadStubCompiler::CompileLoadNonexistent(
Handle<JSObject> object,
Handle<JSObject> last,
Handle<Name> name,
Handle<GlobalObject> global) {
Label success;
NonexistentHandlerFrontend(object, last, name, &success, global);
__ bind(&success);
// Return undefined if maps of the full prototype chain are still the
// same and no global property with this name contains a value.
__ mov(eax, isolate()->factory()->undefined_value());
__ ret(0);
// Return the generated code.
return GetCode(kind(), Code::NONEXISTENT, name);
}
Register* LoadStubCompiler::registers() {
// receiver, name, scratch1, scratch2, scratch3, scratch4.
static Register registers[] = { edx, ecx, ebx, eax, edi, no_reg };
return registers;
}
Register* KeyedLoadStubCompiler::registers() {
// receiver, name, scratch1, scratch2, scratch3, scratch4.
static Register registers[] = { edx, ecx, ebx, eax, edi, no_reg };
return registers;
}
Register* StoreStubCompiler::registers() {
// receiver, name, value, scratch1, scratch2, scratch3.
static Register registers[] = { edx, ecx, eax, ebx, edi, no_reg };
return registers;
}
Register* KeyedStoreStubCompiler::registers() {
// receiver, name, value, scratch1, scratch2, scratch3.
static Register registers[] = { edx, ecx, eax, ebx, edi, no_reg };
return registers;
}
void KeyedLoadStubCompiler::GenerateNameCheck(Handle<Name> name,
Register name_reg,
Label* miss) {
__ cmp(name_reg, Immediate(name));
__ j(not_equal, miss);
}
void KeyedStoreStubCompiler::GenerateNameCheck(Handle<Name> name,
Register name_reg,
Label* miss) {
__ cmp(name_reg, Immediate(name));
__ j(not_equal, miss);
}
#undef __
#define __ ACCESS_MASM(masm)
void LoadStubCompiler::GenerateLoadViaGetter(MacroAssembler* masm,
Handle<JSFunction> getter) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
if (!getter.is_null()) {
// Call the JavaScript getter with the receiver on the stack.
__ push(edx);
ParameterCount actual(0);
ParameterCount expected(getter);
__ InvokeFunction(getter, expected, actual,
CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
}
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
#undef __
#define __ ACCESS_MASM(masm())
Handle<Code> LoadStubCompiler::CompileLoadGlobal(
Handle<JSObject> object,
Handle<GlobalObject> global,
Handle<PropertyCell> cell,
Handle<Name> name,
bool is_dont_delete) {
Label success, miss;
__ CheckMap(receiver(), Handle<Map>(object->map()), &miss, DO_SMI_CHECK);
HandlerFrontendHeader(
object, receiver(), Handle<JSObject>::cast(global), name, &miss);
// Get the value from the cell.
if (Serializer::enabled()) {
__ mov(eax, Immediate(cell));
__ mov(eax, FieldOperand(eax, PropertyCell::kValueOffset));
} else {
__ mov(eax, Operand::ForCell(cell));
}
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ cmp(eax, factory()->the_hole_value());
__ j(equal, &miss);
} else if (FLAG_debug_code) {
__ cmp(eax, factory()->the_hole_value());
__ Check(not_equal, kDontDeleteCellsCannotContainTheHole);
}
HandlerFrontendFooter(name, &success, &miss);
__ bind(&success);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1);
// The code above already loads the result into the return register.
__ ret(0);
// Return the generated code.
return GetICCode(kind(), Code::NORMAL, name);
}
Handle<Code> BaseLoadStoreStubCompiler::CompilePolymorphicIC(
MapHandleList* receiver_maps,
CodeHandleList* handlers,
Handle<Name> name,
Code::StubType type,
IcCheckType check) {
Label miss;
if (check == PROPERTY) {
GenerateNameCheck(name, this->name(), &miss);
}
__ JumpIfSmi(receiver(), &miss);
Register map_reg = scratch1();
__ mov(map_reg, FieldOperand(receiver(), HeapObject::kMapOffset));
int receiver_count = receiver_maps->length();
int number_of_handled_maps = 0;
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map = receiver_maps->at(current);
if (!map->is_deprecated()) {
number_of_handled_maps++;
__ cmp(map_reg, map);
__ j(equal, handlers->at(current));
}
}
ASSERT(number_of_handled_maps != 0);
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
InlineCacheState state =
number_of_handled_maps > 1 ? POLYMORPHIC : MONOMORPHIC;
return GetICCode(kind(), type, name, state);
}
#undef __
#define __ ACCESS_MASM(masm)
void KeyedLoadStubCompiler::GenerateLoadDictionaryElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
__ JumpIfNotSmi(ecx, &miss_force_generic);
__ mov(ebx, ecx);
__ SmiUntag(ebx);
__ mov(eax, FieldOperand(edx, JSObject::kElementsOffset));
// Push receiver on the stack to free up a register for the dictionary
// probing.
__ push(edx);
__ LoadFromNumberDictionary(&slow, eax, ecx, ebx, edx, edi, eax);
// Pop receiver before returning.
__ pop(edx);
__ ret(0);
__ bind(&slow);
__ pop(edx);
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Slow);
__ bind(&miss_force_generic);
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
TailCallBuiltin(masm, Builtins::kKeyedLoadIC_MissForceGeneric);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32