blob: e945a13c8788df96de7bf578fab5957ccd6f1d75 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/arm/lithium-codegen-arm.h"
#include "src/arm/lithium-gap-resolver-arm.h"
#include "src/base/bits.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/hydrogen-osr.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
class SafepointGenerator FINAL : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) { }
virtual ~SafepointGenerator() {}
virtual void BeforeCall(int call_size) const OVERRIDE {}
virtual void AfterCall() const OVERRIDE {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
DCHECK(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// NONE indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::NONE);
return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
GenerateJumpTable() && GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
DCHECK(is_done());
code->set_stack_slots(GetStackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
PopulateDeoptimizationData(code);
}
void LCodeGen::SaveCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Save clobbered callee double registers");
int count = 0;
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
while (!save_iterator.Done()) {
__ vstr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
void LCodeGen::RestoreCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Restore clobbered callee double registers");
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
int count = 0;
while (!save_iterator.Done()) {
__ vldr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
bool LCodeGen::GeneratePrologue() {
DCHECK(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop_at");
}
#endif
// r1: Callee's JS function.
// cp: Callee's context.
// pp: Callee's constant pool pointer (if FLAG_enable_ool_constant_pool)
// fp: Caller's frame pointer.
// lr: Caller's pc.
// Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
if (info_->this_has_uses() &&
info_->strict_mode() == SLOPPY &&
!info_->is_native()) {
Label ok;
int receiver_offset = info_->scope()->num_parameters() * kPointerSize;
__ ldr(r2, MemOperand(sp, receiver_offset));
__ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
__ b(ne, &ok);
__ ldr(r2, GlobalObjectOperand());
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalProxyOffset));
__ str(r2, MemOperand(sp, receiver_offset));
__ bind(&ok);
}
}
info()->set_prologue_offset(masm_->pc_offset());
if (NeedsEagerFrame()) {
if (info()->IsStub()) {
__ StubPrologue();
} else {
__ Prologue(info()->IsCodePreAgingActive());
}
frame_is_built_ = true;
info_->AddNoFrameRange(0, masm_->pc_offset());
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ sub(sp, sp, Operand(slots * kPointerSize));
__ push(r0);
__ push(r1);
__ add(r0, sp, Operand(slots * kPointerSize));
__ mov(r1, Operand(kSlotsZapValue));
Label loop;
__ bind(&loop);
__ sub(r0, r0, Operand(kPointerSize));
__ str(r1, MemOperand(r0, 2 * kPointerSize));
__ cmp(r0, sp);
__ b(ne, &loop);
__ pop(r1);
__ pop(r0);
} else {
__ sub(sp, sp, Operand(slots * kPointerSize));
}
}
if (info()->saves_caller_doubles()) {
SaveCallerDoubles();
}
// Possibly allocate a local context.
int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is in r1.
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), heap_slots);
__ CallStub(&stub);
// Result of FastNewContextStub is always in new space.
need_write_barrier = false;
} else {
__ push(r1);
__ CallRuntime(Runtime::kNewFunctionContext, 1);
}
RecordSafepoint(Safepoint::kNoLazyDeopt);
// Context is returned in both r0 and cp. It replaces the context
// passed to us. It's saved in the stack and kept live in cp.
__ mov(cp, r0);
__ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ ldr(r0, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextOperand(cp, var->index());
__ str(r0, target);
// Update the write barrier. This clobbers r3 and r0.
if (need_write_barrier) {
__ RecordWriteContextSlot(
cp,
target.offset(),
r0,
r3,
GetLinkRegisterState(),
kSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(cp, r0, &done);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
// Trace the call.
if (FLAG_trace && info()->IsOptimizing()) {
// We have not executed any compiled code yet, so cp still holds the
// incoming context.
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
DCHECK(slots >= 0);
__ sub(sp, sp, Operand(slots * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
}
bool LCodeGen::GenerateDeferredCode() {
DCHECK(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(
chunk()->graph()->SourcePositionToScriptPosition(value->position()));
Comment(";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(),
code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
DCHECK(!frame_is_built_);
DCHECK(info()->IsStub());
frame_is_built_ = true;
__ PushFixedFrame();
__ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
__ push(scratch0());
__ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
Comment(";;; Destroy frame");
DCHECK(frame_is_built_);
__ pop(ip);
__ PopFixedFrame();
frame_is_built_ = false;
}
__ jmp(code->exit());
}
}
// Force constant pool emission at the end of the deferred code to make
// sure that no constant pools are emitted after.
masm()->CheckConstPool(true, false);
return !is_aborted();
}
bool LCodeGen::GenerateJumpTable() {
// Check that the jump table is accessible from everywhere in the function
// code, i.e. that offsets to the table can be encoded in the 24bit signed
// immediate of a branch instruction.
// To simplify we consider the code size from the first instruction to the
// end of the jump table. We also don't consider the pc load delta.
// Each entry in the jump table generates one instruction and inlines one
// 32bit data after it.
if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
jump_table_.length() * 7)) {
Abort(kGeneratedCodeIsTooLarge);
}
if (jump_table_.length() > 0) {
Label needs_frame, call_deopt_entry;
Comment(";;; -------------------- Jump table --------------------");
Address base = jump_table_[0].address;
Register entry_offset = scratch0();
int length = jump_table_.length();
for (int i = 0; i < length; i++) {
Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
__ bind(&table_entry->label);
DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
Address entry = table_entry->address;
DeoptComment(table_entry->reason);
// Second-level deopt table entries are contiguous and small, so instead
// of loading the full, absolute address of each one, load an immediate
// offset which will be added to the base address later.
__ mov(entry_offset, Operand(entry - base));
if (table_entry->needs_frame) {
DCHECK(!info()->saves_caller_doubles());
if (needs_frame.is_bound()) {
__ b(&needs_frame);
} else {
__ bind(&needs_frame);
Comment(";;; call deopt with frame");
__ PushFixedFrame();
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
DCHECK(info()->IsStub());
__ mov(ip, Operand(Smi::FromInt(StackFrame::STUB)));
__ push(ip);
__ add(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
__ bind(&call_deopt_entry);
// Add the base address to the offset previously loaded in
// entry_offset.
__ add(entry_offset, entry_offset,
Operand(ExternalReference::ForDeoptEntry(base)));
__ blx(entry_offset);
}
masm()->CheckConstPool(false, false);
} else {
// The last entry can fall through into `call_deopt_entry`, avoiding a
// branch.
bool need_branch = ((i + 1) != length) || call_deopt_entry.is_bound();
if (need_branch) __ b(&call_deopt_entry);
masm()->CheckConstPool(false, !need_branch);
}
}
if (!call_deopt_entry.is_bound()) {
Comment(";;; call deopt");
__ bind(&call_deopt_entry);
if (info()->saves_caller_doubles()) {
DCHECK(info()->IsStub());
RestoreCallerDoubles();
}
// Add the base address to the offset previously loaded in entry_offset.
__ add(entry_offset, entry_offset,
Operand(ExternalReference::ForDeoptEntry(base)));
__ blx(entry_offset);
}
}
// Force constant pool emission at the end of the deopt jump table to make
// sure that no constant pools are emitted after.
masm()->CheckConstPool(true, false);
// The deoptimization jump table is the last part of the instruction
// sequence. Mark the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
DCHECK(is_done());
safepoints_.Emit(masm(), GetStackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
DwVfpRegister LCodeGen::ToDoubleRegister(int index) const {
return DwVfpRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
DCHECK(op->IsRegister());
return ToRegister(op->index());
}
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
if (op->IsRegister()) {
return ToRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk_->LookupConstant(const_op);
Handle<Object> literal = constant->handle(isolate());
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
DCHECK(literal->IsNumber());
__ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
} else if (r.IsDouble()) {
Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
} else {
DCHECK(r.IsSmiOrTagged());
__ Move(scratch, literal);
}
return scratch;
} else if (op->IsStackSlot()) {
__ ldr(scratch, ToMemOperand(op));
return scratch;
}
UNREACHABLE();
return scratch;
}
DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
DCHECK(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
SwVfpRegister flt_scratch,
DwVfpRegister dbl_scratch) {
if (op->IsDoubleRegister()) {
return ToDoubleRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk_->LookupConstant(const_op);
Handle<Object> literal = constant->handle(isolate());
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
DCHECK(literal->IsNumber());
__ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
__ vmov(flt_scratch, ip);
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
return dbl_scratch;
} else if (r.IsDouble()) {
Abort(kUnsupportedDoubleImmediate);
} else if (r.IsTagged()) {
Abort(kUnsupportedTaggedImmediate);
}
} else if (op->IsStackSlot()) {
// TODO(regis): Why is vldr not taking a MemOperand?
// __ vldr(dbl_scratch, ToMemOperand(op));
MemOperand mem_op = ToMemOperand(op);
__ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
return dbl_scratch;
}
UNREACHABLE();
return dbl_scratch;
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsSmi(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
DCHECK(r.IsSmiOrTagged());
return reinterpret_cast<int32_t>(Smi::FromInt(value));
}
Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
return Smi::FromInt(constant->Integer32Value());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasDoubleValue());
return constant->DoubleValue();
}
Operand LCodeGen::ToOperand(LOperand* op) {
if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk()->LookupConstant(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsSmi()) {
DCHECK(constant->HasSmiValue());
return Operand(Smi::FromInt(constant->Integer32Value()));
} else if (r.IsInteger32()) {
DCHECK(constant->HasInteger32Value());
return Operand(constant->Integer32Value());
} else if (r.IsDouble()) {
Abort(kToOperandUnsupportedDoubleImmediate);
}
DCHECK(r.IsTagged());
return Operand(constant->handle(isolate()));
} else if (op->IsRegister()) {
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
Abort(kToOperandIsDoubleRegisterUnimplemented);
return Operand::Zero();
}
// Stack slots not implemented, use ToMemOperand instead.
UNREACHABLE();
return Operand::Zero();
}
static int ArgumentsOffsetWithoutFrame(int index) {
DCHECK(index < 0);
return -(index + 1) * kPointerSize;
}
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, StackSlotOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
DCHECK(op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(
sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
bool has_closure_id = !info()->closure().is_null() &&
!info()->closure().is_identical_to(environment->closure());
int closure_id = has_closure_id
? DefineDeoptimizationLiteral(environment->closure())
: Translation::kSelfLiteralId;
switch (environment->frame_type()) {
case JS_FUNCTION:
translation->BeginJSFrame(environment->ast_id(), closure_id, height);
break;
case JS_CONSTRUCT:
translation->BeginConstructStubFrame(closure_id, translation_size);
break;
case JS_GETTER:
DCHECK(translation_size == 1);
DCHECK(height == 0);
translation->BeginGetterStubFrame(closure_id);
break;
case JS_SETTER:
DCHECK(translation_size == 2);
DCHECK(height == 0);
translation->BeginSetterStubFrame(closure_id);
break;
case STUB:
translation->BeginCompiledStubFrame();
break;
case ARGUMENTS_ADAPTOR:
translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
break;
}
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i),
&object_index,
&dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer,
dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else if (is_uint32) {
translation->StoreUint32StackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
DoubleRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
int LCodeGen::CallCodeSize(Handle<Code> code, RelocInfo::Mode mode) {
int size = masm()->CallSize(code, mode);
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
size += Assembler::kInstrSize; // extra nop() added in CallCodeGeneric.
}
return size;
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
TargetAddressStorageMode storage_mode) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode);
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode,
TargetAddressStorageMode storage_mode) {
DCHECK(instr != NULL);
// Block literal pool emission to ensure nop indicating no inlined smi code
// is in the correct position.
Assembler::BlockConstPoolScope block_const_pool(masm());
__ Call(code, mode, TypeFeedbackId::None(), al, storage_mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr,
SaveFPRegsMode save_doubles) {
DCHECK(instr != NULL);
__ CallRuntime(function, num_arguments, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
__ Move(cp, ToRegister(context));
} else if (context->IsStackSlot()) {
__ ldr(cp, ToMemOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, zone());
}
}
void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
const char* detail,
Deoptimizer::BailoutType bailout_type) {
LEnvironment* environment = instr->environment();
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
DCHECK(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
DCHECK(info()->IsOptimizing() || info()->IsStub());
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
Register scratch = scratch0();
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
// Store the condition on the stack if necessary
if (condition != al) {
__ mov(scratch, Operand::Zero(), LeaveCC, NegateCondition(condition));
__ mov(scratch, Operand(1), LeaveCC, condition);
__ push(scratch);
}
__ push(r1);
__ mov(scratch, Operand(count));
__ ldr(r1, MemOperand(scratch));
__ sub(r1, r1, Operand(1), SetCC);
__ mov(r1, Operand(FLAG_deopt_every_n_times), LeaveCC, eq);
__ str(r1, MemOperand(scratch));
__ pop(r1);
if (condition != al) {
// Clean up the stack before the deoptimizer call
__ pop(scratch);
}
__ Call(entry, RelocInfo::RUNTIME_ENTRY, eq);
// 'Restore' the condition in a slightly hacky way. (It would be better
// to use 'msr' and 'mrs' instructions here, but they are not supported by
// our ARM simulator).
if (condition != al) {
condition = ne;
__ cmp(scratch, Operand::Zero());
}
}
if (info()->ShouldTrapOnDeopt()) {
__ stop("trap_on_deopt", condition);
}
Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(),
instr->Mnemonic(), detail);
DCHECK(info()->IsStub() || frame_is_built_);
// Go through jump table if we need to handle condition, build frame, or
// restore caller doubles.
if (condition == al && frame_is_built_ &&
!info()->saves_caller_doubles()) {
DeoptComment(reason);
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
Deoptimizer::JumpTableEntry table_entry(entry, reason, bailout_type,
!frame_is_built_);
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (jump_table_.is_empty() ||
!table_entry.IsEquivalentTo(jump_table_.last())) {
jump_table_.Add(table_entry, zone());
}
__ b(condition, &jump_table_.last().label);
}
}
void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
const char* detail) {
Deoptimizer::BailoutType bailout_type = info()->IsStub()
? Deoptimizer::LAZY
: Deoptimizer::EAGER;
DeoptimizeIf(condition, instr, detail, bailout_type);
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
Handle<DeoptimizationInputData> data =
DeoptimizationInputData::New(isolate(), length, TENURED);
Handle<ByteArray> translations =
translations_.CreateByteArray(isolate()->factory());
data->SetTranslationByteArray(*translations);
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
if (info_->IsOptimizing()) {
// Reference to shared function info does not change between phases.
AllowDeferredHandleDereference allow_handle_dereference;
data->SetSharedFunctionInfo(*info_->shared_info());
} else {
data->SetSharedFunctionInfo(Smi::FromInt(0));
}
Handle<FixedArray> literals =
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
{ AllowDeferredHandleDereference copy_handles;
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
}
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, env->ast_id());
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
data->SetPc(i, Smi::FromInt(env->pc_offset()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal, zone());
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
DCHECK(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
DCHECK(expected_safepoint_kind_ == kind);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
if (FLAG_enable_ool_constant_pool && (kind & Safepoint::kWithRegisters)) {
// Register pp always contains a pointer to the constant pool.
safepoint.DefinePointerRegister(pp, zone());
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(
pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
void LCodeGen::RecordAndWritePosition(int position) {
if (position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
masm()->positions_recorder()->WriteRecordedPositions();
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_,
label->hydrogen_value()->id(),
label->block_id(),
LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->result()).is(r0));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpExec: {
RegExpExecStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ cmp(dividend, Operand::Zero());
__ b(pl, &dividend_is_not_negative);
// Note that this is correct even for kMinInt operands.
__ rsb(dividend, dividend, Operand::Zero());
__ and_(dividend, dividend, Operand(mask));
__ rsb(dividend, dividend, Operand::Zero(), SetCC);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, "minus zero");
}
__ b(&done);
}
__ bind(&dividend_is_not_negative);
__ and_(dividend, dividend, Operand(mask));
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, "division by zero");
return;
}
__ TruncatingDiv(result, dividend, Abs(divisor));
__ mov(ip, Operand(Abs(divisor)));
__ smull(result, ip, result, ip);
__ sub(result, dividend, result, SetCC);
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ b(ne, &remainder_not_zero);
__ cmp(dividend, Operand::Zero());
DeoptimizeIf(lt, instr, "minus zero");
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
if (CpuFeatures::IsSupported(SUDIV)) {
CpuFeatureScope scope(masm(), SUDIV);
Register left_reg = ToRegister(instr->left());
Register right_reg = ToRegister(instr->right());
Register result_reg = ToRegister(instr->result());
Label done;
// Check for x % 0, sdiv might signal an exception. We have to deopt in this
// case because we can't return a NaN.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(right_reg, Operand::Zero());
DeoptimizeIf(eq, instr, "division by zero");
}
// Check for kMinInt % -1, sdiv will return kMinInt, which is not what we
// want. We have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ cmp(left_reg, Operand(kMinInt));
__ b(ne, &no_overflow_possible);
__ cmp(right_reg, Operand(-1));
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, "minus zero");
} else {
__ b(ne, &no_overflow_possible);
__ mov(result_reg, Operand::Zero());
__ jmp(&done);
}
__ bind(&no_overflow_possible);
}
// For 'r3 = r1 % r2' we can have the following ARM code:
// sdiv r3, r1, r2
// mls r3, r3, r2, r1
__ sdiv(result_reg, left_reg, right_reg);
__ Mls(result_reg, result_reg, right_reg, left_reg);
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ cmp(result_reg, Operand::Zero());
__ b(ne, &done);
__ cmp(left_reg, Operand::Zero());
DeoptimizeIf(lt, instr, "minus zero");
}
__ bind(&done);
} else {
// General case, without any SDIV support.
Register left_reg = ToRegister(instr->left());
Register right_reg = ToRegister(instr->right());
Register result_reg = ToRegister(instr->result());
Register scratch = scratch0();
DCHECK(!scratch.is(left_reg));
DCHECK(!scratch.is(right_reg));
DCHECK(!scratch.is(result_reg));
DwVfpRegister dividend = ToDoubleRegister(instr->temp());
DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
DCHECK(!divisor.is(dividend));
LowDwVfpRegister quotient = double_scratch0();
DCHECK(!quotient.is(dividend));
DCHECK(!quotient.is(divisor));
Label done;
// Check for x % 0, we have to deopt in this case because we can't return a
// NaN.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(right_reg, Operand::Zero());
DeoptimizeIf(eq, instr, "division by zero");
}
__ Move(result_reg, left_reg);
// Load the arguments in VFP registers. The divisor value is preloaded
// before. Be careful that 'right_reg' is only live on entry.
// TODO(svenpanne) The last comments seems to be wrong nowadays.
__ vmov(double_scratch0().low(), left_reg);
__ vcvt_f64_s32(dividend, double_scratch0().low());
__ vmov(double_scratch0().low(), right_reg);
__ vcvt_f64_s32(divisor, double_scratch0().low());
// We do not care about the sign of the divisor. Note that we still handle
// the kMinInt % -1 case correctly, though.
__ vabs(divisor, divisor);
// Compute the quotient and round it to a 32bit integer.
__ vdiv(quotient, dividend, divisor);
__ vcvt_s32_f64(quotient.low(), quotient);
__ vcvt_f64_s32(quotient, quotient.low());
// Compute the remainder in result.
__ vmul(double_scratch0(), divisor, quotient);
__ vcvt_s32_f64(double_scratch0().low(), double_scratch0());
__ vmov(scratch, double_scratch0().low());
__ sub(result_reg, left_reg, scratch, SetCC);
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ b(ne, &done);
__ cmp(left_reg, Operand::Zero());
DeoptimizeIf(mi, instr, "minus zero");
}
__ bind(&done);
}
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
DCHECK(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ cmp(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
__ cmp(dividend, Operand(kMinInt));
DeoptimizeIf(eq, instr, "overflow");
}
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
divisor != 1 && divisor != -1) {
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
__ tst(dividend, Operand(mask));
DeoptimizeIf(ne, instr, "lost precision");
}
if (divisor == -1) { // Nice shortcut, not needed for correctness.
__ rsb(result, dividend, Operand(0));
return;
}
int32_t shift = WhichPowerOf2Abs(divisor);
if (shift == 0) {
__ mov(result, dividend);
} else if (shift == 1) {
__ add(result, dividend, Operand(dividend, LSR, 31));
} else {
__ mov(result, Operand(dividend, ASR, 31));
__ add(result, dividend, Operand(result, LSR, 32 - shift));
}
if (shift > 0) __ mov(result, Operand(result, ASR, shift));
if (divisor < 0) __ rsb(result, result, Operand(0));
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, "division by zero");
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ cmp(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
}
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ rsb(result, result, Operand::Zero());
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
__ mov(ip, Operand(divisor));
__ smull(scratch0(), ip, result, ip);
__ sub(scratch0(), scratch0(), dividend, SetCC);
DeoptimizeIf(ne, instr, "lost precision");
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register result = ToRegister(instr->result());
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(divisor, Operand::Zero());
DeoptimizeIf(eq, instr, "division by zero");
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive;
if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
// Do the test only if it hadn't be done above.
__ cmp(divisor, Operand::Zero());
}
__ b(pl, &positive);
__ cmp(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
__ bind(&positive);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) &&
(!CpuFeatures::IsSupported(SUDIV) ||
!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
// We don't need to check for overflow when truncating with sdiv
// support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
__ cmp(dividend, Operand(kMinInt));
__ cmp(divisor, Operand(-1), eq);
DeoptimizeIf(eq, instr, "overflow");
}
if (CpuFeatures::IsSupported(SUDIV)) {
CpuFeatureScope scope(masm(), SUDIV);
__ sdiv(result, dividend, divisor);
} else {
DoubleRegister vleft = ToDoubleRegister(instr->temp());
DoubleRegister vright = double_scratch0();
__ vmov(double_scratch0().low(), dividend);
__ vcvt_f64_s32(vleft, double_scratch0().low());
__ vmov(double_scratch0().low(), divisor);
__ vcvt_f64_s32(vright, double_scratch0().low());
__ vdiv(vleft, vleft, vright); // vleft now contains the result.
__ vcvt_s32_f64(double_scratch0().low(), vleft);
__ vmov(result, double_scratch0().low());
}
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
// Compute remainder and deopt if it's not zero.
Register remainder = scratch0();
__ Mls(remainder, result, divisor, dividend);
__ cmp(remainder, Operand::Zero());
DeoptimizeIf(ne, instr, "lost precision");
}
}
void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
DwVfpRegister addend = ToDoubleRegister(instr->addend());
DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
// This is computed in-place.
DCHECK(addend.is(ToDoubleRegister(instr->result())));
__ vmla(addend, multiplier, multiplicand);
}
void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
DwVfpRegister minuend = ToDoubleRegister(instr->minuend());
DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
// This is computed in-place.
DCHECK(minuend.is(ToDoubleRegister(instr->result())));
__ vmls(minuend, multiplier, multiplicand);
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
Register result = ToRegister(instr->result());
int32_t divisor = instr->divisor();
// If the divisor is 1, return the dividend.
if (divisor == 1) {
__ Move(result, dividend);
return;
}
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
int32_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 1) {
__ mov(result, Operand(dividend, ASR, shift));
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
__ rsb(result, dividend, Operand::Zero(), SetCC);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, "minus zero");
}
// Dividing by -1 is basically negation, unless we overflow.
if (divisor == -1) {
if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
DeoptimizeIf(vs, instr, "overflow");
}
return;
}
// If the negation could not overflow, simply shifting is OK.
if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ mov(result, Operand(result, ASR, shift));
return;
}
__ mov(result, Operand(kMinInt / divisor), LeaveCC, vs);
__ mov(result, Operand(result, ASR, shift), LeaveCC, vc);
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, "division by zero");
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ cmp(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ rsb(result, result, Operand::Zero());
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp());
DCHECK(!temp.is(dividend) && !temp.is(result));
Label needs_adjustment, done;
__ cmp(dividend, Operand::Zero());
__ b(divisor > 0 ? lt : gt, &needs_adjustment);
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ rsb(result, result, Operand::Zero());
__ jmp(&done);
__ bind(&needs_adjustment);
__ add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
__ TruncatingDiv(result, temp, Abs(divisor));
if (divisor < 0) __ rsb(result, result, Operand::Zero());
__ sub(result, result, Operand(1));
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register left = ToRegister(instr->dividend());
Register right = ToRegister(instr->divisor());
Register result = ToRegister(instr->result());
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(right, Operand::Zero());
DeoptimizeIf(eq, instr, "division by zero");
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive;
if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) {
// Do the test only if it hadn't be done above.
__ cmp(right, Operand::Zero());
}
__ b(pl, &positive);
__ cmp(left, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
__ bind(&positive);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) &&
(!CpuFeatures::IsSupported(SUDIV) ||
!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) {
// We don't need to check for overflow when truncating with sdiv
// support because, on ARM, sdiv kMinInt, -1 -> kMinInt.
__ cmp(left, Operand(kMinInt));
__ cmp(right, Operand(-1), eq);
DeoptimizeIf(eq, instr, "overflow");
}
if (CpuFeatures::IsSupported(SUDIV)) {
CpuFeatureScope scope(masm(), SUDIV);
__ sdiv(result, left, right);
} else {
DoubleRegister vleft = ToDoubleRegister(instr->temp());
DoubleRegister vright = double_scratch0();
__ vmov(double_scratch0().low(), left);
__ vcvt_f64_s32(vleft, double_scratch0().low());
__ vmov(double_scratch0().low(), right);
__ vcvt_f64_s32(vright, double_scratch0().low());
__ vdiv(vleft, vleft, vright); // vleft now contains the result.
__ vcvt_s32_f64(double_scratch0().low(), vleft);
__ vmov(result, double_scratch0().low());
}
Label done;
Register remainder = scratch0();
__ Mls(remainder, result, right, left);
__ cmp(remainder, Operand::Zero());
__ b(eq, &done);
__ eor(remainder, remainder, Operand(right));
__ add(result, result, Operand(remainder, ASR, 31));
__ bind(&done);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register result = ToRegister(instr->result());
// Note that result may alias left.
Register left = ToRegister(instr->left());
LOperand* right_op = instr->right();
bool bailout_on_minus_zero =
instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (right_op->IsConstantOperand()) {
int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
if (bailout_on_minus_zero && (constant < 0)) {
// The case of a null constant will be handled separately.
// If constant is negative and left is null, the result should be -0.
__ cmp(left, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
}
switch (constant) {
case -1:
if (overflow) {
__ rsb(result, left, Operand::Zero(), SetCC);
DeoptimizeIf(vs, instr, "overflow");
} else {
__ rsb(result, left, Operand::Zero());
}
break;
case 0:
if (bailout_on_minus_zero) {
// If left is strictly negative and the constant is null, the
// result is -0. Deoptimize if required, otherwise return 0.
__ cmp(left, Operand::Zero());
DeoptimizeIf(mi, instr, "minus zero");
}
__ mov(result, Operand::Zero());
break;
case 1:
__ Move(result, left);
break;
default:
// Multiplying by powers of two and powers of two plus or minus
// one can be done faster with shifted operands.
// For other constants we emit standard code.
int32_t mask = constant >> 31;
uint32_t constant_abs = (constant + mask) ^ mask;
if (base::bits::IsPowerOfTwo32(constant_abs)) {
int32_t shift = WhichPowerOf2(constant_abs);
__ mov(result, Operand(left, LSL, shift));
// Correct the sign of the result is the constant is negative.
if (constant < 0) __ rsb(result, result, Operand::Zero());
} else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
int32_t shift = WhichPowerOf2(constant_abs - 1);
__ add(result, left, Operand(left, LSL, shift));
// Correct the sign of the result is the constant is negative.
if (constant < 0) __ rsb(result, result, Operand::Zero());
} else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
int32_t shift = WhichPowerOf2(constant_abs + 1);
__ rsb(result, left, Operand(left, LSL, shift));
// Correct the sign of the result is the constant is negative.
if (constant < 0) __ rsb(result, result, Operand::Zero());
} else {
// Generate standard code.
__ mov(ip, Operand(constant));
__ mul(result, left, ip);
}
}
} else {
DCHECK(right_op->IsRegister());
Register right = ToRegister(right_op);
if (overflow) {
Register scratch = scratch0();
// scratch:result = left * right.
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ smull(result, scratch, result, right);
} else {
__ smull(result, scratch, left, right);
}
__ cmp(scratch, Operand(result, ASR, 31));
DeoptimizeIf(ne, instr, "overflow");
} else {
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ mul(result, result, right);
} else {
__ mul(result, left, right);
}
}
if (bailout_on_minus_zero) {
Label done;
__ teq(left, Operand(right));
__ b(pl, &done);
// Bail out if the result is minus zero.
__ cmp(result, Operand::Zero());
DeoptimizeIf(eq, instr, "minus zero");
__ bind(&done);
}
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left_op = instr->left();
LOperand* right_op = instr->right();
DCHECK(left_op->IsRegister());
Register left = ToRegister(left_op);
Register result = ToRegister(instr->result());
Operand right(no_reg);
if (right_op->IsStackSlot()) {
right = Operand(EmitLoadRegister(right_op, ip));
} else {
DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
right = ToOperand(right_op);
}
switch (instr->op()) {
case Token::BIT_AND:
__ and_(result, left, right);
break;
case Token::BIT_OR:
__ orr(result, left, right);
break;
case Token::BIT_XOR:
if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
__ mvn(result, Operand(left));
} else {
__ eor(result, left, right);
}
break;
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
// Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
// result may alias either of them.
LOperand* right_op = instr->right();
Register left = ToRegister(instr->left());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
if (right_op->IsRegister()) {
// Mask the right_op operand.
__ and_(scratch, ToRegister(right_op), Operand(0x1F));
switch (instr->op()) {
case Token::ROR:
__ mov(result, Operand(left, ROR, scratch));
break;
case Token::SAR:
__ mov(result, Operand(left, ASR, scratch));
break;
case Token::SHR:
if (instr->can_deopt()) {
__ mov(result, Operand(left, LSR, scratch), SetCC);
DeoptimizeIf(mi, instr, "negative value");
} else {
__ mov(result, Operand(left, LSR, scratch));
}
break;
case Token::SHL:
__ mov(result, Operand(left, LSL, scratch));
break;
default:
UNREACHABLE();
break;
}
} else {
// Mask the right_op operand.
int value = ToInteger32(LConstantOperand::cast(right_op));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count != 0) {
__ mov(result, Operand(left, ROR, shift_count));
} else {
__ Move(result, left);
}
break;
case Token::SAR:
if (shift_count != 0) {
__ mov(result, Operand(left, ASR, shift_count));
} else {
__ Move(result, left);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ mov(result, Operand(left, LSR, shift_count));
} else {
if (instr->can_deopt()) {
__ tst(left, Operand(0x80000000));
DeoptimizeIf(ne, instr, "negative value");
}
__ Move(result, left);
}
break;
case Token::SHL:
if (shift_count != 0) {
if (instr->hydrogen_value()->representation().IsSmi() &&
instr->can_deopt()) {
if (shift_count != 1) {
__ mov(result, Operand(left, LSL, shift_count - 1));
__ SmiTag(result, result, SetCC);
} else {
__ SmiTag(result, left, SetCC);
}
DeoptimizeIf(vs, instr, "overflow");
} else {
__ mov(result, Operand(left, LSL, shift_count));
}
} else {
__ Move(result, left);
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot()) {
Register right_reg = EmitLoadRegister(right, ip);
__ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
} else {
DCHECK(right->IsRegister() || right->IsConstantOperand());
__ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr, "overflow");
}
}
void LCodeGen::DoRSubI(LRSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot()) {
Register right_reg = EmitLoadRegister(right, ip);
__ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
} else {
DCHECK(right->IsRegister() || right->IsConstantOperand());
__ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr, "overflow");
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
DCHECK(instr->result()->IsDoubleRegister());
DwVfpRegister result = ToDoubleRegister(instr->result());
double v = instr->value();
__ Vmov(result, v, scratch0());
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ Move(ToRegister(instr->result()), object);
}
void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->value());
__ EnumLength(result, map);
}
void LCodeGen::DoDateField(LDateField* instr) {
Register object = ToRegister(instr->date());
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->temp());
Smi* index = instr->index();
Label runtime, done;
DCHECK(object.is(result));
DCHECK(object.is(r0));
DCHECK(!scratch.is(scratch0()));
DCHECK(!scratch.is(object));
__ SmiTst(object);
DeoptimizeIf(eq, instr, "Smi");
__ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE);
DeoptimizeIf(ne, instr, "not a date object");
if (index->value() == 0) {
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch, Operand(stamp));
__ ldr(scratch, MemOperand(scratch));
__ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
__ cmp(scratch, scratch0());
__ b(ne, &runtime);
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch);
__ mov(r1, Operand(index));
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ bind(&done);
}
}
MemOperand LCodeGen::BuildSeqStringOperand(Register string,
LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToInteger32(LConstantOperand::cast(index));
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldMemOperand(string, SeqString::kHeaderSize + offset);
}
Register scratch = scratch0();
DCHECK(!scratch.is(string));
DCHECK(!scratch.is(ToRegister(index)));
if (encoding == String::ONE_BYTE_ENCODING) {
__ add(scratch, string, Operand(ToRegister(index)));
} else {
STATIC_ASSERT(kUC16Size == 2);
__ add(scratch, string, Operand(ToRegister(index), LSL, 1));
}
return FieldMemOperand(scratch, SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
if (FLAG_debug_code) {
Register scratch = scratch0();
__ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ and_(scratch, scratch,
Operand(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type));
__ Check(eq, kUnexpectedStringType);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ ldrb(result, operand);
} else {
__ ldrh(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register value = ToRegister(instr->value());
if (FLAG_debug_code) {
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ strb(value, operand);
} else {
__ strh(value, operand);
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot()) {
Register right_reg = EmitLoadRegister(right, ip);
__ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
} else {
DCHECK(right->IsRegister() || right->IsConstantOperand());
__ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr, "overflow");
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
HMathMinMax::Operation operation = instr->hydrogen()->operation();
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
Register left_reg = ToRegister(left);
Operand right_op = (right->IsRegister() || right->IsConstantOperand())
? ToOperand(right)
: Operand(EmitLoadRegister(right, ip));
Register result_reg = ToRegister(instr->result());
__ cmp(left_reg, right_op);
__ Move(result_reg, left_reg, condition);
__ mov(result_reg, right_op, LeaveCC, NegateCondition(condition));
} else {
DCHECK(instr->hydrogen()->representation().IsDouble());
DwVfpRegister left_reg = ToDoubleRegister(left);
DwVfpRegister right_reg = ToDoubleRegister(right);
DwVfpRegister result_reg = ToDoubleRegister(instr->result());
Label result_is_nan, return_left, return_right, check_zero, done;
__ VFPCompareAndSetFlags(left_reg, right_reg);
if (operation == HMathMinMax::kMathMin) {
__ b(mi, &return_left);
__ b(gt, &return_right);
} else {
__ b(mi, &return_right);
__ b(gt, &return_left);
}
__ b(vs, &result_is_nan);
// Left equals right => check for -0.
__ VFPCompareAndSetFlags(left_reg, 0.0);
if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
__ b(ne, &done); // left == right != 0.
} else {
__ b(ne, &return_left); // left == right != 0.
}
// At this point, both left and right are either 0 or -0.
if (operation == HMathMinMax::kMathMin) {
// We could use a single 'vorr' instruction here if we had NEON support.
__ vneg(left_reg, left_reg);
__ vsub(result_reg, left_reg, right_reg);
__ vneg(result_reg, result_reg);
} else {
// Since we operate on +0 and/or -0, vadd and vand have the same effect;
// the decision for vadd is easy because vand is a NEON instruction.
__ vadd(result_reg, left_reg, right_reg);
}
__ b(&done);
__ bind(&result_is_nan);
__ vadd(result_reg, left_reg, right_reg);
__ b(&done);
__ bind(&return_right);
__ Move(result_reg, right_reg);
if (!left_reg.is(result_reg)) {
__ b(&done);
}
__ bind(&return_left);
__ Move(result_reg, left_reg);
__ bind(&done);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DwVfpRegister left = ToDoubleRegister(instr->left());
DwVfpRegister right = ToDoubleRegister(instr->right());
DwVfpRegister result = ToDoubleRegister(instr->result());
switch (instr->op()) {
case Token::ADD:
__ vadd(result, left, right);
break;
case Token::SUB:
__ vsub(result, left, right);
break;
case Token::MUL:
__ vmul(result, left, right);
break;
case Token::DIV:
__ vdiv(result, left, right);
break;
case Token::MOD: {
__ PrepareCallCFunction(0, 2, scratch0());
__ MovToFloatParameters(left, right);
__ CallCFunction(
ExternalReference::mod_two_doubles_operation(isolate()),
0, 2);
// Move the result in the double result register.
__ MovFromFloatResult(result);
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->left()).is(r1));
DCHECK(ToRegister(instr->right()).is(r0));
DCHECK(ToRegister(instr->result()).is(r0));
Handle<Code> code =
CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code();
// Block literal pool emission to ensure nop indicating no inlined smi code
// is in the correct position.
Assembler::BlockConstPoolScope block_const_pool(masm());
CallCode(code, RelocInfo::CODE_TARGET, instr);
}
template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || condition == al) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ b(condition, chunk_->GetAssemblyLabel(left_block));
} else {
__ b(condition, chunk_->GetAssemblyLabel(left_block));
__ b(chunk_->GetAssemblyLabel(right_block));
}
}
template<class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) {
int false_block = instr->FalseDestination(chunk_);
__ b(condition, chunk_->GetAssemblyLabel(false_block));
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
__ stop("LBreak");
}
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
if (r.IsInteger32() || r.IsSmi()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ cmp(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (r.IsDouble()) {
DCHECK(!info()->IsStub());
DwVfpRegister reg = ToDoubleRegister(instr->value());
// Test the double value. Zero and NaN are false.
__ VFPCompareAndSetFlags(reg, 0.0);
__ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN -> false)
EmitBranch(instr, ne);
} else {
DCHECK(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
DCHECK(!info()->IsStub());
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
EmitBranch(instr, eq);
} else if (type.IsSmi()) {
DCHECK(!info()->IsStub());
__ cmp(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (type.IsJSArray()) {
DCHECK(!info()->IsStub());
EmitBranch(instr, al);
} else if (type.IsHeapNumber()) {
DCHECK(!info()->IsStub());
DwVfpRegister dbl_scratch = double_scratch0();
__ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
// Test the double value. Zero and NaN are false.
__ VFPCompareAndSetFlags(dbl_scratch, 0.0);
__ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN)
EmitBranch(instr, ne);
} else if (type.IsString()) {
DCHECK(!info()->IsStub());
__ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
__ cmp(ip, Operand::Zero());
EmitBranch(instr, ne);
} else {
ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
if (expected.Contains(ToBooleanStub::UNDEFINED)) {
// undefined -> false.
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
__ b(eq, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::BOOLEAN)) {
// Boolean -> its value.
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
__ b(eq, instr->TrueLabel(chunk_));
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
__ b(eq, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
// 'null' -> false.
__ CompareRoot(reg, Heap::kNullValueRootIndex);
__ b(eq, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::SMI)) {
// Smis: 0 -> false, all other -> true.
__ cmp(reg, Operand::Zero());
__ b(eq, instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected.NeedsMap()) {
// If we need a map later and have a Smi -> deopt.
__ SmiTst(reg);
DeoptimizeIf(eq, instr, "Smi");
}
const Register map = scratch0();
if (expected.NeedsMap()) {
__ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
if (expected.CanBeUndetectable()) {
// Undetectable -> false.
__ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
__ b(ne, instr->FalseLabel(chunk_));
}
}
if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
// spec object -> true.
__ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::STRING)) {
// String value -> false iff empty.
Label not_string;
__ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
__ b(ge, &not_string);
__ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
__ cmp(ip, Operand::Zero());
__ b(ne, instr->TrueLabel(chunk_));
__ b(instr->FalseLabel(chunk_));
__ bind(&not_string);
}
if (expected.Contains(ToBooleanStub::SYMBOL)) {
// Symbol value -> true.
__ CompareInstanceType(map, ip, SYMBOL_TYPE);
__ b(eq, instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
DwVfpRegister dbl_scratch = double_scratch0();
Label not_heap_number;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ b(ne, &not_heap_number);
__ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
__ VFPCompareAndSetFlags(dbl_scratch, 0.0);
__ cmp(r0, r0, vs); // NaN -> false.
__ b(eq, instr->FalseLabel(chunk_)); // +0, -0 -> false.
__ b(instr->TrueLabel(chunk_));
__ bind(&not_heap_number);
}
if (!expected.IsGeneric()) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(al, instr, "unexpected object");
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
}
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = kNoCondition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = eq;
break;
case Token::NE:
case Token::NE_STRICT:
cond = ne;
break;
case Token::LT:
cond = is_unsigned ? lo : lt;
break;
case Token::GT:
cond = is_unsigned ? hi : gt;
break;
case Token::LTE:
cond = is_unsigned ? ls : le;
break;
case Token::GTE:
cond = is_unsigned ? hs : ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cond = TokenToCondition(instr->op(), is_unsigned);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = EvalComparison(instr->op(), left_val, right_val) ?
instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Compare left and right operands as doubles and load the
// resulting flags into the normal status register.
__ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
// If a NaN is involved, i.e. the result is unordered (V set),
// jump to false block label.
__ b(vs, instr->FalseLabel(chunk_));
} else {
if (right->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(right));
if (instr->hydrogen_value()->representation().IsSmi()) {
__ cmp(ToRegister(left), Operand(Smi::FromInt(value)));
} else {
__ cmp(ToRegister(left), Operand(value));
}
} else if (left->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(left));
if (instr->hydrogen_value()->representation().IsSmi()) {
__ cmp(ToRegister(right), Operand(Smi::FromInt(value)));
} else {
__ cmp(ToRegister(right), Operand(value));
}
// We commuted the operands, so commute the condition.
cond = CommuteCondition(cond);
} else {
__ cmp(ToRegister(left), ToRegister(right));
}
}
EmitBranch(instr, cond);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
__ cmp(left, Operand(right));
EmitBranch(instr, eq);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ mov(ip, Operand(factory()->the_hole_value()));
__ cmp(input_reg, ip);
EmitBranch(instr, eq);
return;
}
DwVfpRegister input_reg = ToDoubleRegister(instr->object());
__ VFPCompareAndSetFlags(input_reg, input_reg);
EmitFalseBranch(instr, vc);
Register scratch = scratch0();
__ VmovHigh(scratch, input_reg);
__ cmp(scratch, Operand(kHoleNanUpper32));
EmitBranch(instr, eq);
}
void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
Representation rep = instr->hydrogen()->value()->representation();
DCHECK(!rep.IsInteger32());
Register scratch = ToRegister(instr->temp());
if (rep.IsDouble()) {
DwVfpRegister value = ToDoubleRegister(instr->value());
__ VFPCompareAndSetFlags(value, 0.0);
EmitFalseBranch(instr, ne);
__ VmovHigh(scratch, value);
__ cmp(scratch, Operand(0x80000000));
} else {
Register value = ToRegister(instr->value());
__ CheckMap(value,
scratch,
Heap::kHeapNumberMapRootIndex,
instr->FalseLabel(chunk()),