blob: 9bf6e9f2fb34d2ec94d52a3067d33092ff7a2995 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_X64
#include "arguments.h"
#include "ic-inl.h"
#include "codegen.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register receiver,
Register name,
// The offset is scaled by 4, based on
// kHeapObjectTagSize, which is two bits
Register offset) {
// We need to scale up the pointer by 2 because the offset is scaled by less
// than the pointer size.
ASSERT(kPointerSizeLog2 == kHeapObjectTagSize + 1);
ScaleFactor scale_factor = times_2;
ASSERT_EQ(3 * kPointerSize, sizeof(StubCache::Entry));
// The offset register holds the entry offset times four (due to masking
// and shifting optimizations).
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
Label miss;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ lea(offset, Operand(offset, offset, times_2, 0));
__ LoadAddress(kScratchRegister, key_offset);
// Check that the key in the entry matches the name.
// Multiply entry offset by 16 to get the entry address. Since the
// offset register already holds the entry offset times four, multiply
// by a further four.
__ cmpl(name, Operand(kScratchRegister, offset, scale_factor, 0));
__ j(not_equal, &miss);
// Get the map entry from the cache.
// Use key_offset + kPointerSize * 2, rather than loading map_offset.
__ movq(kScratchRegister,
Operand(kScratchRegister, offset, scale_factor, kPointerSize * 2));
__ cmpq(kScratchRegister, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Get the code entry from the cache.
__ LoadAddress(kScratchRegister, value_offset);
__ movq(kScratchRegister,
Operand(kScratchRegister, offset, scale_factor, 0));
// Check that the flags match what we're looking for.
__ movl(offset, FieldOperand(kScratchRegister, Code::kFlagsOffset));
__ and_(offset, Immediate(~Code::kFlagsNotUsedInLookup));
__ cmpl(offset, Immediate(flags));
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ addq(kScratchRegister, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(kScratchRegister);
__ bind(&miss);
}
void StubCompiler::GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
Handle<Name> name,
Register scratch0,
Register scratch1) {
ASSERT(name->IsUniqueName());
ASSERT(!receiver.is(scratch0));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1);
__ IncrementCounter(counters->negative_lookups_miss(), 1);
__ movq(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ testb(FieldOperand(scratch0, Map::kBitFieldOffset),
Immediate(kInterceptorOrAccessCheckNeededMask));
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = scratch0;
__ movq(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, miss_label);
Label done;
NameDictionaryLookupStub::GenerateNegativeLookup(masm,
miss_label,
&done,
properties,
name,
scratch1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1);
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2,
Register extra3) {
Isolate* isolate = masm->isolate();
Label miss;
USE(extra); // The register extra is not used on the X64 platform.
USE(extra2); // The register extra2 is not used on the X64 platform.
USE(extra3); // The register extra2 is not used on the X64 platform.
// Make sure that code is valid. The multiplying code relies on the
// entry size being 3 * kPointerSize.
ASSERT(sizeof(Entry) == 3 * kPointerSize);
// Make sure the flags do not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
// Check scratch register is valid, extra and extra2 are unused.
ASSERT(!scratch.is(no_reg));
ASSERT(extra2.is(no_reg));
ASSERT(extra3.is(no_reg));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ movl(scratch, FieldOperand(name, Name::kHashFieldOffset));
// Use only the low 32 bits of the map pointer.
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, Immediate(flags));
// We mask out the last two bits because they are not part of the hash and
// they are always 01 for maps. Also in the two 'and' instructions below.
__ and_(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize));
// Probe the primary table.
ProbeTable(isolate, masm, flags, kPrimary, receiver, name, scratch);
// Primary miss: Compute hash for secondary probe.
__ movl(scratch, FieldOperand(name, Name::kHashFieldOffset));
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, Immediate(flags));
__ and_(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize));
__ subl(scratch, name);
__ addl(scratch, Immediate(flags));
__ and_(scratch, Immediate((kSecondaryTableSize - 1) << kHeapObjectTagSize));
// Probe the secondary table.
ProbeTable(isolate, masm, flags, kSecondary, receiver, name, scratch);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
// Load the global or builtins object from the current context.
__ movq(prototype,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
// Load the native context from the global or builtins object.
__ movq(prototype,
FieldOperand(prototype, GlobalObject::kNativeContextOffset));
// Load the function from the native context.
__ movq(prototype, Operand(prototype, Context::SlotOffset(index)));
// Load the initial map. The global functions all have initial maps.
__ movq(prototype,
FieldOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ movq(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm,
int index,
Register prototype,
Label* miss) {
Isolate* isolate = masm->isolate();
// Check we're still in the same context.
__ Move(prototype, isolate->global_object());
__ cmpq(Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)),
prototype);
__ j(not_equal, miss);
// Get the global function with the given index.
Handle<JSFunction> function(
JSFunction::cast(isolate->native_context()->get(index)));
// Load its initial map. The global functions all have initial maps.
__ Move(prototype, Handle<Map>(function->initial_map()));
// Load the prototype from the initial map.
__ movq(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, miss_label);
// Load length directly from the JS array.
__ movq(rax, FieldOperand(receiver, JSArray::kLengthOffset));
__ ret(0);
}
// Generate code to check if an object is a string. If the object is
// a string, the map's instance type is left in the scratch register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* smi,
Label* non_string_object) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, smi);
// Check that the object is a string.
__ movq(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzxbq(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ testl(scratch, Immediate(kNotStringTag));
__ j(not_zero, non_string_object);
}
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch register.
GenerateStringCheck(masm, receiver, scratch1, miss, &check_wrapper);
// Load length directly from the string.
__ movq(rax, FieldOperand(receiver, String::kLengthOffset));
__ ret(0);
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmpl(scratch1, Immediate(JS_VALUE_TYPE));
__ j(not_equal, miss);
// Check if the wrapped value is a string and load the length
// directly if it is.
__ movq(scratch2, FieldOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch2, scratch1, miss, miss);
__ movq(rax, FieldOperand(scratch2, String::kLengthOffset));
__ ret(0);
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register result,
Register scratch,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, result, miss_label);
if (!result.is(rax)) __ movq(rax, result);
__ ret(0);
}
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst,
Register src,
bool inobject,
int index,
Representation representation) {
ASSERT(!FLAG_track_double_fields || !representation.IsDouble());
int offset = index * kPointerSize;
if (!inobject) {
// Calculate the offset into the properties array.
offset = offset + FixedArray::kHeaderSize;
__ movq(dst, FieldOperand(src, JSObject::kPropertiesOffset));
src = dst;
}
__ movq(dst, FieldOperand(src, offset));
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
STATIC_ASSERT(StubCache::kInterceptorArgsNameIndex == 0);
STATIC_ASSERT(StubCache::kInterceptorArgsInfoIndex == 1);
STATIC_ASSERT(StubCache::kInterceptorArgsThisIndex == 2);
STATIC_ASSERT(StubCache::kInterceptorArgsHolderIndex == 3);
STATIC_ASSERT(StubCache::kInterceptorArgsLength == 4);
__ push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor));
__ Move(kScratchRegister, interceptor);
__ push(kScratchRegister);
__ push(receiver);
__ push(holder);
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj,
IC::UtilityId id) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallExternalReference(
ExternalReference(IC_Utility(id), masm->isolate()),
StubCache::kInterceptorArgsLength);
}
// Number of pointers to be reserved on stack for fast API call.
static const int kFastApiCallArguments = FunctionCallbackArguments::kArgsLength;
// Reserves space for the extra arguments to API function in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : last argument in the internal frame of the caller
// -----------------------------------
__ movq(scratch, StackOperandForReturnAddress(0));
__ subq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
__ movq(StackOperandForReturnAddress(0), scratch);
__ Move(scratch, Smi::FromInt(0));
StackArgumentsAccessor args(rsp, kFastApiCallArguments,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
for (int i = 0; i < kFastApiCallArguments; i++) {
__ movq(args.GetArgumentOperand(i), scratch);
}
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- rsp[0] : return address.
// -- rsp[8] : last fast api call extra argument.
// -- ...
// -- rsp[kFastApiCallArguments * 8] : first fast api call extra
// argument.
// -- rsp[kFastApiCallArguments * 8 + 8] : last argument in the internal
// frame.
// -----------------------------------
__ movq(scratch, StackOperandForReturnAddress(0));
__ movq(StackOperandForReturnAddress(kFastApiCallArguments * kPointerSize),
scratch);
__ addq(rsp, Immediate(kPointerSize * kFastApiCallArguments));
}
static void GenerateFastApiCallBody(MacroAssembler* masm,
const CallOptimization& optimization,
int argc,
bool restore_context);
// Generates call to API function.
static void GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc) {
typedef FunctionCallbackArguments FCA;
StackArgumentsAccessor args(rsp, argc + kFastApiCallArguments);
// Save calling context.
int offset = argc + kFastApiCallArguments;
__ movq(args.GetArgumentOperand(offset - FCA::kContextSaveIndex), rsi);
// Get the function and setup the context.
Handle<JSFunction> function = optimization.constant_function();
__ Move(rdi, function);
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Construct the FunctionCallbackInfo on the stack.
__ movq(args.GetArgumentOperand(offset - FCA::kCalleeIndex), rdi);
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data(api_call_info->data(), masm->isolate());
if (masm->isolate()->heap()->InNewSpace(*call_data)) {
__ Move(rcx, api_call_info);
__ movq(rbx, FieldOperand(rcx, CallHandlerInfo::kDataOffset));
__ movq(args.GetArgumentOperand(offset - FCA::kDataIndex), rbx);
} else {
__ Move(args.GetArgumentOperand(offset - FCA::kDataIndex), call_data);
}
__ Move(kScratchRegister,
ExternalReference::isolate_address(masm->isolate()));
__ movq(args.GetArgumentOperand(offset - FCA::kIsolateIndex),
kScratchRegister);
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ movq(args.GetArgumentOperand(offset - FCA::kReturnValueDefaultValueIndex),
kScratchRegister);
__ movq(args.GetArgumentOperand(offset - FCA::kReturnValueOffset),
kScratchRegister);
// Prepare arguments.
STATIC_ASSERT(kFastApiCallArguments == 7);
__ lea(rax, Operand(rsp, 1 * kPointerSize));
GenerateFastApiCallBody(masm, optimization, argc, false);
}
// Generate call to api function.
// This function uses push() to generate smaller, faster code than
// the version above. It is an optimization that should will be removed
// when api call ICs are generated in hydrogen.
static void GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
int argc,
Register* values) {
ASSERT(optimization.is_simple_api_call());
// Copy return value.
__ pop(scratch1);
// receiver
__ push(receiver);
// Write the arguments to stack frame.
for (int i = 0; i < argc; i++) {
Register arg = values[argc-1-i];
ASSERT(!receiver.is(arg));
ASSERT(!scratch1.is(arg));
ASSERT(!scratch2.is(arg));
ASSERT(!scratch3.is(arg));
__ push(arg);
}
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kHolderIndex == 0);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kCalleeIndex == 5);
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
STATIC_ASSERT(FCA::kArgsLength == 7);
// context save
__ push(rsi);
// Get the function and setup the context.
Handle<JSFunction> function = optimization.constant_function();
__ Move(scratch2, function);
__ push(scratch2);
Isolate* isolate = masm->isolate();
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data(api_call_info->data(), isolate);
// Push data from ExecutableAccessorInfo.
bool call_data_undefined = false;
if (isolate->heap()->InNewSpace(*call_data)) {
__ Move(scratch2, api_call_info);
__ movq(scratch3, FieldOperand(scratch2, CallHandlerInfo::kDataOffset));
} else if (call_data->IsUndefined()) {
call_data_undefined = true;
__ LoadRoot(scratch3, Heap::kUndefinedValueRootIndex);
} else {
__ Move(scratch3, call_data);
}
// call data
__ push(scratch3);
if (!call_data_undefined) {
__ LoadRoot(scratch3, Heap::kUndefinedValueRootIndex);
}
// return value
__ push(scratch3);
// return value default
__ push(scratch3);
// isolate
__ Move(scratch3,
ExternalReference::isolate_address(masm->isolate()));
__ push(scratch3);
// holder
__ push(receiver);
ASSERT(!scratch1.is(rax));
// store receiver address for GenerateFastApiCallBody
__ movq(rax, rsp);
// return address
__ push(scratch1);
GenerateFastApiCallBody(masm, optimization, argc, true);
}
static void GenerateFastApiCallBody(MacroAssembler* masm,
const CallOptimization& optimization,
int argc,
bool restore_context) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] - rsp[56] : FunctionCallbackInfo, incl.
// : object passing the type check
// (set by CheckPrototypes)
// -- rsp[64] : last argument
// -- ...
// -- rsp[(argc + 7) * 8] : first argument
// -- rsp[(argc + 8) * 8] : receiver
//
// rax : receiver address
// -----------------------------------
typedef FunctionCallbackArguments FCA;
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
// Function address is a foreign pointer outside V8's heap.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 4;
__ PrepareCallApiFunction(kApiStackSpace);
__ movq(StackSpaceOperand(0), rax); // FunctionCallbackInfo::implicit_args_.
__ addq(rax, Immediate((argc + kFastApiCallArguments - 1) * kPointerSize));
__ movq(StackSpaceOperand(1), rax); // FunctionCallbackInfo::values_.
__ Set(StackSpaceOperand(2), argc); // FunctionCallbackInfo::length_.
// FunctionCallbackInfo::is_construct_call_.
__ Set(StackSpaceOperand(3), 0);
#if defined(__MINGW64__) || defined(_WIN64)
Register arguments_arg = rcx;
Register callback_arg = rdx;
#else
Register arguments_arg = rdi;
Register callback_arg = rsi;
#endif
// v8::InvocationCallback's argument.
__ lea(arguments_arg, StackSpaceOperand(0));
Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
StackArgumentsAccessor args_from_rbp(rbp, kFastApiCallArguments,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
Operand context_restore_operand = args_from_rbp.GetArgumentOperand(
kFastApiCallArguments - 1 - FCA::kContextSaveIndex);
Operand return_value_operand = args_from_rbp.GetArgumentOperand(
kFastApiCallArguments - 1 - FCA::kReturnValueOffset);
__ CallApiFunctionAndReturn(
function_address,
thunk_address,
callback_arg,
argc + kFastApiCallArguments + 1,
return_value_operand,
restore_context ? &context_restore_operand : NULL);
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(CallStubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name,
ExtraICState extra_ic_state)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name),
extra_ic_state_(extra_ic_state) {}
void Compile(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3,
holder, lookup, name, optimization, miss);
} else {
CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3,
name, holder, miss);
}
}
private:
void CompileCacheable(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Handle<Name> name,
const CallOptimization& optimization,
Label* miss_label) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 = optimization.GetPrototypeDepthOfExpectedType(
object, interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 = optimization.GetPrototypeDepthOfExpectedType(
interceptor_holder, Handle<JSObject>(lookup->holder()));
}
can_do_fast_api_call =
depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth;
}
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->call_const_interceptor(), 1);
if (can_do_fast_api_call) {
__ IncrementCounter(counters->call_const_interceptor_fast_api(), 1);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(
IC::CurrentTypeOf(object, masm->isolate()), receiver,
interceptor_holder, scratch1, scratch2, scratch3,
name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (*interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(
IC::CurrentTypeOf(interceptor_holder, masm->isolate()), receiver,
handle(lookup->holder()), scratch1, scratch2, scratch3,
name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
GenerateFastApiCall(masm, optimization, arguments_.immediate());
} else {
Handle<JSFunction> fun = optimization.constant_function();
stub_compiler_->GenerateJumpFunctionIgnoreReceiver(fun);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm, scratch1);
__ jmp(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm, scratch1);
}
}
void CompileRegular(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<Name> name,
Handle<JSObject> interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(
IC::CurrentTypeOf(object, masm->isolate()), receiver,
interceptor_holder, scratch1, scratch2, scratch3, name, miss_label);
FrameScope scope(masm, StackFrame::INTERNAL);
// Save the name_ register across the call.
__ push(name_);
CompileCallLoadPropertyWithInterceptor(
masm, receiver, holder, name_, interceptor_holder,
IC::kLoadPropertyWithInterceptorForCall);
// Restore the name_ register.
__ pop(name_);
// Leave the internal frame.
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Handle<JSObject> holder_obj,
Label* interceptor_succeeded) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(holder); // Save the holder.
__ push(name_); // Save the name.
CompileCallLoadPropertyWithInterceptor(
masm, receiver, holder, name_, holder_obj,
IC::kLoadPropertyWithInterceptorOnly);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
// Leave the internal frame.
}
__ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
__ j(not_equal, interceptor_succeeded);
}
CallStubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
ExtraICState extra_ic_state_;
};
void StoreStubCompiler::GenerateRestoreName(MacroAssembler* masm,
Label* label,
Handle<Name> name) {
if (!label->is_unused()) {
__ bind(label);
__ Move(this->name(), name);
}
}
void StubCompiler::GenerateCheckPropertyCell(MacroAssembler* masm,
Handle<JSGlobalObject> global,
Handle<Name> name,
Register scratch,
Label* miss) {
Handle<PropertyCell> cell =
JSGlobalObject::EnsurePropertyCell(global, name);
ASSERT(cell->value()->IsTheHole());
__ Move(scratch, cell);
__ Cmp(FieldOperand(scratch, Cell::kValueOffset),
masm->isolate()->factory()->the_hole_value());
__ j(not_equal, miss);
}
void StoreStubCompiler::GenerateNegativeHolderLookup(
MacroAssembler* masm,
Handle<JSObject> holder,
Register holder_reg,
Handle<Name> name,
Label* miss) {
if (holder->IsJSGlobalObject()) {
GenerateCheckPropertyCell(
masm, Handle<JSGlobalObject>::cast(holder), name, scratch1(), miss);
} else if (!holder->HasFastProperties() && !holder->IsJSGlobalProxy()) {
GenerateDictionaryNegativeLookup(
masm, miss, holder_reg, name, scratch1(), scratch2());
}
}
// Receiver_reg is preserved on jumps to miss_label, but may be destroyed if
// store is successful.
void StoreStubCompiler::GenerateStoreTransition(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name,
Register receiver_reg,
Register storage_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Register unused,
Label* miss_label,
Label* slow) {
int descriptor = transition->LastAdded();
DescriptorArray* descriptors = transition->instance_descriptors();
PropertyDetails details = descriptors->GetDetails(descriptor);
Representation representation = details.representation();
ASSERT(!representation.IsNone());
if (details.type() == CONSTANT) {
Handle<Object> constant(descriptors->GetValue(descriptor), masm->isolate());
__ Cmp(value_reg, constant);
__ j(not_equal, miss_label);
} else if (FLAG_track_fields && representation.IsSmi()) {
__ JumpIfNotSmi(value_reg, miss_label);
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
__ JumpIfSmi(value_reg, miss_label);
} else if (FLAG_track_double_fields && representation.IsDouble()) {
Label do_store, heap_number;
__ AllocateHeapNumber(storage_reg, scratch1, slow);
__ JumpIfNotSmi(value_reg, &heap_number);
__ SmiToInteger32(scratch1, value_reg);
__ Cvtlsi2sd(xmm0, scratch1);
__ jmp(&do_store);
__ bind(&heap_number);
__ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(),
miss_label, DONT_DO_SMI_CHECK);
__ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset));
__ bind(&do_store);
__ movsd(FieldOperand(storage_reg, HeapNumber::kValueOffset), xmm0);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if (details.type() == FIELD &&
object->map()->unused_property_fields() == 0) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ PopReturnAddressTo(scratch1);
__ push(receiver_reg);
__ Push(transition);
__ push(value_reg);
__ PushReturnAddressFrom(scratch1);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
masm->isolate()),
3,
1);
return;
}
// Update the map of the object.
__ Move(scratch1, transition);
__ movq(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1);
// Update the write barrier for the map field.
__ RecordWriteField(receiver_reg,
HeapObject::kMapOffset,
scratch1,
scratch2,
kDontSaveFPRegs,
OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
if (details.type() == CONSTANT) {
ASSERT(value_reg.is(rax));
__ ret(0);
return;
}
int index = transition->instance_descriptors()->GetFieldIndex(
transition->LastAdded());
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
// TODO(verwaest): Share this code as a code stub.
SmiCheck smi_check = representation.IsTagged()
? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
if (FLAG_track_double_fields && representation.IsDouble()) {
__ movq(FieldOperand(receiver_reg, offset), storage_reg);
} else {
__ movq(FieldOperand(receiver_reg, offset), value_reg);
}
if (!FLAG_track_fields || !representation.IsSmi()) {
// Update the write barrier for the array address.
if (!FLAG_track_double_fields || !representation.IsDouble()) {
__ movq(storage_reg, value_reg);
}
__ RecordWriteField(
receiver_reg, offset, storage_reg, scratch1, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, smi_check);
}
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ movq(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
if (FLAG_track_double_fields && representation.IsDouble()) {
__ movq(FieldOperand(scratch1, offset), storage_reg);
} else {
__ movq(FieldOperand(scratch1, offset), value_reg);
}
if (!FLAG_track_fields || !representation.IsSmi()) {
// Update the write barrier for the array address.
if (!FLAG_track_double_fields || !representation.IsDouble()) {
__ movq(storage_reg, value_reg);
}
__ RecordWriteField(
scratch1, offset, storage_reg, receiver_reg, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, smi_check);
}
}
// Return the value (register rax).
ASSERT(value_reg.is(rax));
__ ret(0);
}
// Both name_reg and receiver_reg are preserved on jumps to miss_label,
// but may be destroyed if store is successful.
void StoreStubCompiler::GenerateStoreField(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Register receiver_reg,
Register name_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Label* miss_label) {
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
int index = lookup->GetFieldIndex().field_index();
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
Representation representation = lookup->representation();
ASSERT(!representation.IsNone());
if (FLAG_track_fields && representation.IsSmi()) {
__ JumpIfNotSmi(value_reg, miss_label);
} else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
__ JumpIfSmi(value_reg, miss_label);
} else if (FLAG_track_double_fields && representation.IsDouble()) {
// Load the double storage.
if (index < 0) {
int offset = object->map()->instance_size() + (index * kPointerSize);
__ movq(scratch1, FieldOperand(receiver_reg, offset));
} else {
__ movq(scratch1,
FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ movq(scratch1, FieldOperand(scratch1, offset));
}
// Store the value into the storage.
Label do_store, heap_number;
__ JumpIfNotSmi(value_reg, &heap_number);
__ SmiToInteger32(scratch2, value_reg);
__ Cvtlsi2sd(xmm0, scratch2);
__ jmp(&do_store);
__ bind(&heap_number);
__ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(),
miss_label, DONT_DO_SMI_CHECK);
__ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset));
__ bind(&do_store);
__ movsd(FieldOperand(scratch1, HeapNumber::kValueOffset), xmm0);
// Return the value (register rax).
ASSERT(value_reg.is(rax));
__ ret(0);
return;
}
// TODO(verwaest): Share this code as a code stub.
SmiCheck smi_check = representation.IsTagged()
? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ movq(FieldOperand(receiver_reg, offset), value_reg);
if (!FLAG_track_fields || !representation.IsSmi()) {
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ movq(name_reg, value_reg);
__ RecordWriteField(
receiver_reg, offset, name_reg, scratch1, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, smi_check);
}
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ movq(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ movq(FieldOperand(scratch1, offset), value_reg);
if (!FLAG_track_fields || !representation.IsSmi()) {
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ movq(name_reg, value_reg);
__ RecordWriteField(
scratch1, offset, name_reg, receiver_reg, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, smi_check);
}
}
// Return the value (register rax).
ASSERT(value_reg.is(rax));
__ ret(0);
}
void StubCompiler::GenerateTailCall(MacroAssembler* masm, Handle<Code> code) {
__ jmp(code, RelocInfo::CODE_TARGET);
}
#undef __
#define __ ACCESS_MASM((masm()))
Register StubCompiler::CheckPrototypes(Handle<Type> type,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<Name> name,
int save_at_depth,
Label* miss,
PrototypeCheckType check) {
Handle<Map> receiver_map(IC::TypeToMap(*type, isolate()));
// Make sure that the type feedback oracle harvests the receiver map.
// TODO(svenpanne) Remove this hack when all ICs are reworked.
__ Move(scratch1, receiver_map);
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg. On the first
// iteration, reg is an alias for object_reg, on later iterations,
// it is an alias for holder_reg.
Register reg = object_reg;
int depth = 0;
StackArgumentsAccessor args(rsp, kFastApiCallArguments,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
const int kHolderIndex = kFastApiCallArguments - 1 -
FunctionCallbackArguments::kHolderIndex;
if (save_at_depth == depth) {
__ movq(args.GetArgumentOperand(kHolderIndex), object_reg);
}
Handle<JSObject> current = Handle<JSObject>::null();
if (type->IsConstant()) current = Handle<JSObject>::cast(type->AsConstant());
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder->map());
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (!current_map.is_identical_to(holder_map)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
prototype = handle(JSObject::cast(current_map->prototype()));
if (current_map->is_dictionary_map() &&
!current_map->IsJSGlobalObjectMap() &&
!current_map->IsJSGlobalProxyMap()) {
if (!name->IsUniqueName()) {
ASSERT(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
ASSERT(current.is_null() ||
current->property_dictionary()->FindEntry(*name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
scratch1, scratch2);
__ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ movq(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
bool in_new_space = heap()->InNewSpace(*prototype);
if (in_new_space) {
// Save the map in scratch1 for later.
__ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
}
if (depth != 1 || check == CHECK_ALL_MAPS) {
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch2, miss);
} else if (current_map->IsJSGlobalObjectMap()) {
GenerateCheckPropertyCell(
masm(), Handle<JSGlobalObject>::cast(current), name,
scratch2, miss);
}
reg = holder_reg; // From now on the object will be in holder_reg.
if (in_new_space) {
// The prototype is in new space; we cannot store a reference to it
// in the code. Load it from the map.
__ movq(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
// The prototype is in old space; load it directly.
__ Move(reg, prototype);
}
}
if (save_at_depth == depth) {
__ movq(args.GetArgumentOperand(kHolderIndex), reg);
}
// Go to the next object in the prototype chain.
current = prototype;
current_map = handle(current->map());
}
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
if (depth != 0 || check == CHECK_ALL_MAPS) {
// Check the holder map.
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Perform security check for access to the global object.
ASSERT(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// Return the register containing the holder.
return reg;
}
void LoadStubCompiler::HandlerFrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ jmp(&success);
__ bind(miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
void StoreStubCompiler::HandlerFrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ jmp(&success);
GenerateRestoreName(masm(), miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
Register LoadStubCompiler::CallbackHandlerFrontend(
Handle<Type> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Handle<Object> callback) {
Label miss;
Register reg = HandlerFrontendHeader(type, object_reg, holder, name, &miss);
if (!holder->HasFastProperties() && !holder->IsJSGlobalObject()) {
ASSERT(!reg.is(scratch2()));
ASSERT(!reg.is(scratch3()));
ASSERT(!reg.is(scratch4()));
// Load the properties dictionary.
Register dictionary = scratch4();
__ movq(dictionary, FieldOperand(reg, JSObject::kPropertiesOffset));
// Probe the dictionary.
Label probe_done;
NameDictionaryLookupStub::GeneratePositiveLookup(masm(),
&miss,
&probe_done,
dictionary,
this->name(),
scratch2(),
scratch3());
__ bind(&probe_done);
// If probing finds an entry in the dictionary, scratch3 contains the
// index into the dictionary. Check that the value is the callback.
Register index = scratch3();
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ movq(scratch2(),
Operand(dictionary, index, times_pointer_size,
kValueOffset - kHeapObjectTag));
__ movq(scratch3(), callback, RelocInfo::EMBEDDED_OBJECT);
__ cmpq(scratch2(), scratch3());
__ j(not_equal, &miss);
}
HandlerFrontendFooter(name, &miss);
return reg;
}
void LoadStubCompiler::GenerateLoadField(Register reg,
Handle<JSObject> holder,
PropertyIndex field,
Representation representation) {
if (!reg.is(receiver())) __ movq(receiver(), reg);
if (kind() == Code::LOAD_IC) {
LoadFieldStub stub(field.is_inobject(holder),
field.translate(holder),
representation);
GenerateTailCall(masm(), stub.GetCode(isolate()));
} else {
KeyedLoadFieldStub stub(field.is_inobject(holder),
field.translate(holder),
representation);
GenerateTailCall(masm(), stub.GetCode(isolate()));
}
}
void LoadStubCompiler::GenerateLoadCallback(
const CallOptimization& call_optimization) {
GenerateFastApiCall(
masm(), call_optimization, receiver(),
scratch1(), scratch2(), name(), 0, NULL);
}
void LoadStubCompiler::GenerateLoadCallback(
Register reg,
Handle<ExecutableAccessorInfo> callback) {
// Insert additional parameters into the stack frame above return address.
ASSERT(!scratch4().is(reg));
__ PopReturnAddressTo(scratch4());
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6);
__ push(receiver()); // receiver
if (heap()->InNewSpace(callback->data())) {
ASSERT(!scratch2().is(reg));
__ Move(scratch2(), callback);
__ push(FieldOperand(scratch2(),
ExecutableAccessorInfo::kDataOffset)); // data
} else {
__ Push(Handle<Object>(callback->data(), isolate()));
}
ASSERT(!kScratchRegister.is(reg));
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ push(kScratchRegister); // return value
__ push(kScratchRegister); // return value default
__ PushAddress(ExternalReference::isolate_address(isolate()));
__ push(reg); // holder
__ push(name()); // name
// Save a pointer to where we pushed the arguments pointer. This will be
// passed as the const PropertyAccessorInfo& to the C++ callback.
Address getter_address = v8::ToCData<Address>(callback->getter());
#if defined(__MINGW64__) || defined(_WIN64)
Register getter_arg = r8;
Register accessor_info_arg = rdx;
Register name_arg = rcx;
#else
Register getter_arg = rdx;
Register accessor_info_arg = rsi;
Register name_arg = rdi;
#endif
ASSERT(!name_arg.is(scratch4()));
__ movq(name_arg, rsp);
__ PushReturnAddressFrom(scratch4());
// v8::Arguments::values_ and handler for name.
const int kStackSpace = PropertyCallbackArguments::kArgsLength + 1;
// Allocate v8::AccessorInfo in non-GCed stack space.
const int kArgStackSpace = 1;
__ PrepareCallApiFunction(kArgStackSpace);
__ lea(rax, Operand(name_arg, 1 * kPointerSize));
// v8::PropertyAccessorInfo::args_.
__ movq(StackSpaceOperand(0), rax);
// The context register (rsi) has been saved in PrepareCallApiFunction and
// could be used to pass arguments.
__ lea(accessor_info_arg, StackSpaceOperand(0));
Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
// The name handler is counted as an argument.
StackArgumentsAccessor args(rbp, PropertyCallbackArguments::kArgsLength);
Operand return_value_operand = args.GetArgumentOperand(
PropertyCallbackArguments::kArgsLength - 1 -
PropertyCallbackArguments::kReturnValueOffset);
__ CallApiFunctionAndReturn(getter_address,
thunk_address,
getter_arg,
kStackSpace,
return_value_operand,
NULL);
}
void LoadStubCompiler::GenerateLoadConstant(Handle<Object> value) {
// Return the constant value.
__ Move(rax, value);
__ ret(0);
}
void LoadStubCompiler::GenerateLoadInterceptor(
Register holder_reg,
Handle<Object> object,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Handle<Name> name) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsFound() && lookup->IsCacheable()) {
if (lookup->IsField()) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsExecutableAccessorInfo()) {
ExecutableAccessorInfo* callback =
ExecutableAccessorInfo::cast(lookup->GetCallbackObject());
compile_followup_inline = callback->getter() != NULL &&
callback->IsCompatibleReceiver(*object);
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
ASSERT(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
// Preserve the receiver register explicitly whenever it is different from
// the holder and it is needed should the interceptor return without any
// result. The CALLBACKS case needs the receiver to be passed into C++ code,
// the FIELD case might cause a miss during the prototype check.
bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder();
bool must_preserve_receiver_reg = !receiver().is(holder_reg) &&
(lookup->type() == CALLBACKS || must_perfrom_prototype_check);
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (must_preserve_receiver_reg) {
__ push(receiver());
}
__ push(holder_reg);
__ push(this->name());
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(
masm(), receiver(), holder_reg, this->name(), interceptor_holder,
IC::kLoadPropertyWithInterceptorOnly);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
__ j(equal, &interceptor_failed);
frame_scope.GenerateLeaveFrame();
__ ret(0);
__ bind(&interceptor_failed);
__ pop(this->name());
__ pop(holder_reg);
if (must_preserve_receiver_reg) {
__ pop(receiver());
}
// Leave the internal frame.
}
GenerateLoadPostInterceptor(holder_reg, interceptor_holder, name, lookup);
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
__ PopReturnAddressTo(scratch2());
PushInterceptorArguments(masm(), receiver(), holder_reg,
this->name(), interceptor_holder);
__ PushReturnAddressFrom(scratch2());
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), isolate());
__ TailCallExternalReference(ref, StubCache::kInterceptorArgsLength, 1);
}
}
void CallStubCompiler::GenerateNameCheck(Handle<Name> name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ Cmp(rcx, name);
__ j(not_equal, miss);
}
}
void CallStubCompiler::GenerateFunctionCheck(Register function,
Register scratch,
Label* miss) {
__ JumpIfSmi(function, miss);
__ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
__ j(not_equal, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(
Handle<Cell> cell,
Handle<JSFunction> function,
Label* miss) {
// Get the value from the cell.
__ Move(rdi, cell);
__ movq(rdi, FieldOperand(rdi, Cell::kValueOffset));
// Check that the cell contains the same function.
if (heap()->InNewSpace(*function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
GenerateFunctionCheck(rdi, rax, miss);
// Check the shared function info. Make sure it hasn't changed.
__ Move(rax, Handle<SharedFunctionInfo>(function->shared()));
__ cmpq(FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset), rax);
} else {
__ Cmp(rdi, function);
}
__ j(not_equal, miss);
}
void CallStubCompiler::GenerateMissBranch() {
Handle<Code> code =
isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(),
kind_,
extra_state());
__ Jump(code, RelocInfo::CODE_TARGET);
}
Handle<Code> CallStubCompiler::CompileCallField(Handle<JSObject> object,
Handle<JSObject> holder,
PropertyIndex index,
Handle<Name> name) {
Label miss;
Register reg = HandlerFrontendHeader(
object, holder, name, RECEIVER_MAP_CHECK, &miss);
GenerateFastPropertyLoad(masm(), rdi, reg, index.is_inobject(holder),
index.translate(holder), Representation::Tagged());
GenerateJumpFunction(object, rdi, &miss);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(Code::FAST, name);
}
Handle<Code> CallStubCompiler::CompileArrayCodeCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
Label miss;
HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss);
if (!cell.is_null()) {
ASSERT(cell->value() == *function);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
Handle<AllocationSite> site = isolate()->factory()->NewAllocationSite();
site->SetElementsKind(GetInitialFastElementsKind());
Handle<Cell> site_feedback_cell = isolate()->factory()->NewCell(site);
const int argc = arguments().immediate();
__ movq(rax, Immediate(argc));
__ Move(rbx, site_feedback_cell);
__ Move(rdi, function);
ArrayConstructorStub stub(isolate());
__ TailCallStub(&stub);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileArrayPushCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// If object is not an array or is observed or sealed, bail out to regular
// call.
if (!object->IsJSArray() ||
!cell.is_null() ||
Handle<JSArray>::cast(object)->map()->is_observed() ||
!Handle<JSArray>::cast(object)->map()->is_extensible()) {
return Handle<Code>::null();
}
Label miss;
HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss);
const int argc = arguments().immediate();
StackArgumentsAccessor args(rsp, argc);
if (argc == 0) {
// Noop, return the length.
__ movq(rax, FieldOperand(rdx, JSArray::kLengthOffset));
__ ret((argc + 1) * kPointerSize);
} else {
Label call_builtin;
if (argc == 1) { // Otherwise fall through to call builtin.
Label attempt_to_grow_elements, with_write_barrier, check_double;
// Get the elements array of the object.
__ movq(rdi, FieldOperand(rdx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ Cmp(FieldOperand(rdi, HeapObject::kMapOffset),
factory()->fixed_array_map());
__ j(not_equal, &check_double);
// Get the array's length into rax and calculate new length.
__ SmiToInteger32(rax, FieldOperand(rdx, JSArray::kLengthOffset));
STATIC_ASSERT(FixedArray::kMaxLength < Smi::kMaxValue);
__ addl(rax, Immediate(argc));
// Get the elements' length into rcx.
__ SmiToInteger32(rcx, FieldOperand(rdi, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmpl(rax, rcx);
__ j(greater, &attempt_to_grow_elements);
// Check if value is a smi.
__ movq(rcx, args.GetArgumentOperand(1));
__ JumpIfNotSmi(rcx, &with_write_barrier);
// Save new length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax);
// Store the value.
__ movq(FieldOperand(rdi,
rax,
times_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize),
rcx);
__ Integer32ToSmi(rax, rax); // Return new length as smi.
__ ret((argc + 1) * kPointerSize);
__ bind(&check_double);
// Check that the elements are in double mode.
__ Cmp(FieldOperand(rdi, HeapObject::kMapOffset),
factory()->fixed_double_array_map());
__ j(not_equal, &call_builtin);
// Get the array's length into rax and calculate new length.
__ SmiToInteger32(rax, FieldOperand(rdx, JSArray::kLengthOffset));
STATIC_ASSERT(FixedArray::kMaxLength < Smi::kMaxValue);
__ addl(rax, Immediate(argc));
// Get the elements' length into rcx.
__ SmiToInteger32(rcx, FieldOperand(rdi, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmpl(rax, rcx);
__ j(greater, &call_builtin);
__ movq(rcx, args.GetArgumentOperand(1));
__ StoreNumberToDoubleElements(
rcx, rdi, rax, xmm0, &call_builtin, argc * kDoubleSize);
// Save new length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax);
__ Integer32ToSmi(rax, rax); // Return new length as smi.
__ ret((argc + 1) * kPointerSize);
__ bind(&with_write_barrier);
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
if (FLAG_smi_only_arrays && !FLAG_trace_elements_transitions) {
Label fast_object, not_fast_object;
__ CheckFastObjectElements(rbx, &not_fast_object, Label::kNear);
__ jmp(&fast_object);
// In case of fast smi-only, convert to fast object, otherwise bail out.
__ bind(&not_fast_object);
__ CheckFastSmiElements(rbx, &call_builtin);
__ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(equal, &call_builtin);
// rdx: receiver
// rbx: map
Label try_holey_map;
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS,
rbx,
rdi,
&try_holey_map);
ElementsTransitionGenerator::
GenerateMapChangeElementsTransition(masm(),
DONT_TRACK_ALLOCATION_SITE,
NULL);
// Restore edi.
__ movq(rdi, FieldOperand(rdx, JSArray::kElementsOffset));
__ jmp(&fast_object);
__ bind(&try_holey_map);
__ LoadTransitionedArrayMapConditional(FAST_HOLEY_SMI_ELEMENTS,
FAST_HOLEY_ELEMENTS,
rbx,
rdi,
&call_builtin);
ElementsTransitionGenerator::
GenerateMapChangeElementsTransition(masm(),
DONT_TRACK_ALLOCATION_SITE,
NULL);
__ movq(rdi, FieldOperand(rdx, JSArray::kElementsOffset));
__ bind(&fast_object);
} else {
__ CheckFastObjectElements(rbx, &call_builtin);
}
// Save new length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax);
// Store the value.
__ lea(rdx, FieldOperand(rdi,
rax, times_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ movq(Operand(rdx, 0), rcx);
__ RecordWrite(rdi, rdx, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Integer32ToSmi(rax, rax); // Return new length as smi.
__ ret((argc + 1) * kPointerSize);
__ bind(&attempt_to_grow_elements);
if (!FLAG_inline_new) {
__ jmp(&call_builtin);
}
__ movq(rbx, args.GetArgumentOperand(1));
// Growing elements that are SMI-only requires special handling in case
// the new element is non-Smi. For now, delegate to the builtin.
Label no_fast_elements_check;
__ JumpIfSmi(rbx, &no_fast_elements_check);
__ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
__ CheckFastObjectElements(rcx, &call_builtin, Label::kFar);
__ bind(&no_fast_elements_check);
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
const int kAllocationDelta = 4;
// Load top.
__ Load(rcx, new_space_allocation_top);
// Check if it's the end of elements.
__ lea(rdx, FieldOperand(rdi,
rax, times_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ cmpq(rdx, rcx);
__ j(not_equal, &call_builtin);
__ addq(rcx, Immediate(kAllocationDelta * kPointerSize));
Operand limit_operand =
masm()->ExternalOperand(new_space_allocation_limit);
__ cmpq(rcx, limit_operand);
__ j(above, &call_builtin);
// We fit and could grow elements.
__ Store(new_space_allocation_top, rcx);
// Push the argument...
__ movq(Operand(rdx, 0), rbx);
// ... and fill the rest with holes.
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
for (int i = 1; i < kAllocationDelta; i++) {
__ movq(Operand(rdx, i * kPointerSize), kScratchRegister);
}
// We know the elements array is in new space so we don't need the
// remembered set, but we just pushed a value onto it so we may have to
// tell the incremental marker to rescan the object that we just grew. We
// don't need to worry about the holes because they are in old space and
// already marked black.
__ RecordWrite(rdi, rdx, rbx, kDontSaveFPRegs, OMIT_REMEMBERED_SET);
// Restore receiver to rdx as finish sequence assumes it's here.
__ movq(rdx, args.GetReceiverOperand());
// Increment element's and array's sizes.
__ SmiAddConstant(FieldOperand(rdi, FixedArray::kLengthOffset),
Smi::FromInt(kAllocationDelta));
// Make new length a smi before returning it.
__ Integer32ToSmi(rax, rax);
__ movq(FieldOperand(rdx, JSArray::kLengthOffset), rax);
__ ret((argc + 1) * kPointerSize);
}
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush,
isolate()),
argc + 1,
1);
}
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileArrayPopCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// If object is not an array or is observed or sealed, bail out to regular
// call.
if (!object->IsJSArray() ||
!cell.is_null() ||
Handle<JSArray>::cast(object)->map()->is_observed() ||
!Handle<JSArray>::cast(object)->map()->is_extensible()) {
return Handle<Code>::null();
}
Label miss, return_undefined, call_builtin;
HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss);
// Get the elements array of the object.
__ movq(rbx, FieldOperand(rdx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &call_builtin);
// Get the array's length into rcx and calculate new length.
__ SmiToInteger32(rcx, FieldOperand(rdx, JSArray::kLengthOffset));
__ subl(rcx, Immediate(1));
__ j(negative, &return_undefined);
// Get the last element.
__ LoadRoot(r9, Heap::kTheHoleValueRootIndex);
__ movq(rax, FieldOperand(rbx,
rcx, times_pointer_size,
FixedArray::kHeaderSize));
// Check if element is already the hole.
__ cmpq(rax, r9);
// If so, call slow-case to also check prototypes for value.
__ j(equal, &call_builtin);
// Set the array's length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rcx);
// Fill with the hole and return original value.
__ movq(FieldOperand(rbx,
rcx, times_pointer_size,
FixedArray::kHeaderSize),
r9);
const int argc = arguments().immediate();
__ ret((argc + 1) * kPointerSize);
__ bind(&return_undefined);
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ ret((argc + 1) * kPointerSize);
__ bind(&call_builtin);
__ TailCallExternalReference(
ExternalReference(Builtins::c_ArrayPop, isolate()),
argc + 1,
1);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileStringCharCodeAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) return Handle<Code>::null();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state()) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
HandlerFrontendHeader(object, holder, name, STRING_CHECK, &name_miss);
Register receiver = rbx;
Register index = rdi;
Register result = rax;
const int argc = arguments().immediate();
StackArgumentsAccessor args(rsp, argc);
__ movq(receiver, args.GetReceiverOperand());
if (argc > 0) {
__ movq(index, args.GetArgumentOperand(1));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharCodeAtGenerator generator(receiver,
index,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(rax, Heap::kNanValueRootIndex);
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in rcx.
__ Move(rcx, name);
HandlerFrontendFooter(&name_miss);
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileStringCharAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) return Handle<Code>::null();
const int argc = arguments().immediate();
StackArgumentsAccessor args(rsp, argc);
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state()) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
HandlerFrontendHeader(object, holder, name, STRING_CHECK, &name_miss);
Register receiver = rax;
Register index = rdi;
Register scratch = rdx;
Register result = rax;
__ movq(receiver, args.GetReceiverOperand());
if (argc > 0) {
__ movq(index, args.GetArgumentOperand(1));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharAtGenerator generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(rax, Heap::kempty_stringRootIndex);
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in rcx.
__ Move(rcx, name);
HandlerFrontendFooter(&name_miss);
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileStringFromCharCodeCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
const int argc = arguments().immediate();
StackArgumentsAccessor args(rsp, argc);
if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();
Label miss;
HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss);
if (!cell.is_null()) {
ASSERT(cell->value() == *function);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = rbx;
__ movq(code, args.GetArgumentOperand(1));
// Check the code is a smi.
Label slow;
__ JumpIfNotSmi(code, &slow);
// Convert the smi code to uint16.
__ SmiAndConstant(code, code, Smi::FromInt(0xffff));
StringCharFromCodeGenerator generator(code, rax);
generator.GenerateFast(masm());
__ ret(2 * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
__ bind(&slow);
// We do not have to patch the receiver because the function makes no use of
// it.
GenerateJumpFunctionIgnoreReceiver(function);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileMathFloorCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
const int argc = arguments().immediate();
StackArgumentsAccessor args(rsp, argc);
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return Handle<Code>::null();
}
Label miss, slow;
HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss);
if (!cell.is_null()) {
ASSERT(cell->value() == *function);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into rax.
__ movq(rax, args.GetArgumentOperand(1));
// Check if the argument is a smi.
Label smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(rax, &smi);
// Check if the argument is a heap number and load its value into xmm0.
__ CheckMap(rax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ movsd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
// Check if the argument is strictly positive. Note this also discards NaN.
__ xorpd(xmm1, xmm1);
__ ucomisd(xmm0, xmm1);
__ j(below_equal, &slow);
// Do a truncating conversion.
__ cvttsd2si(rax, xmm0);
// Checks for 0x80000000 which signals a failed conversion.
Label conversion_failure;
__ cmpl(rax, Immediate(0x80000000));
__ j(equal, &conversion_failure);
// Smi tag and return.
__ Integer32ToSmi(rax, rax);
__ bind(&smi);
__ ret(2 * kPointerSize);
// Check if the argument is < 2^kMantissaBits.
Label already_round;
__ bind(&conversion_failure);
int64_t kTwoMantissaBits= V8_INT64_C(0x4330000000000000);
__ movq(rbx, kTwoMantissaBits);
__ movq(xmm1, rbx);
__ ucomisd(xmm0, xmm1);
__ j(above_equal, &already_round);
// Save a copy of the argument.
__ movaps(xmm2, xmm0);
// Compute (argument + 2^kMantissaBits) - 2^kMantissaBits.
__ addsd(xmm0, xmm1);
__ subsd(xmm0, xmm1);
// Compare the argument and the tentative result to get the right mask:
// if xmm2 < xmm0:
// xmm2 = 1...1
// else:
// xmm2 = 0...0
__ cmpltsd(xmm2, xmm0);
// Subtract 1 if the argument was less than the tentative result.
int64_t kOne = V8_INT64_C(0x3ff0000000000000);
__ movq(rbx, kOne);
__ movq(xmm1, rbx);
__ andpd(xmm1, xmm2);
__ subsd(xmm0, xmm1);
// Return a new heap number.
__ AllocateHeapNumber(rax, rbx, &slow);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
__ ret(2 * kPointerSize);
// Return the argument (when it's an already round heap number).
__ bind(&already_round);
__ movq(rax, args.GetArgumentOperand(1));
__ ret(2 * kPointerSize);
__ bind(&slow);
// We do not have to patch the receiver because the function makes no use of
// it.
GenerateJumpFunctionIgnoreReceiver(function);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileMathAbsCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name,
Code::StubType type) {
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
const int argc = arguments().immediate();
StackArgumentsAccessor args(rsp, argc);
if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();
Label miss;
HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss);
if (!cell.is_null()) {
ASSERT(cell->value() == *function);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into rax.
__ movq(rax, args.GetArgumentOperand(1));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(rax, &not_smi);
// Branchless abs implementation, refer to below:
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs
// Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0
// otherwise.
__ movq(rbx, rax);
__ sar(rbx, Immediate(kBitsPerPointer - 1));
// Do bitwise not or do nothing depending on ebx.
__ xor_(rax, rbx);
// Add 1 or do nothing depending on ebx.
__ subq(rax, rbx);
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ j(negative, &slow);
__ ret(2 * kPointerSize);
// Check if the argument is a heap number and load its value.
__ bind(&not_smi);
__ CheckMap(rax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ MoveDouble(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
const int sign_mask_shift =
(HeapNumber::kExponentOffset - HeapNumber::kValueOffset) * kBitsPerByte;
__ Set(rdi, static_cast<int64_t>(HeapNumber::kSignMask) << sign_mask_shift);
__ testq(rbx, rdi);
__ j(not_zero, &negative_sign);
__ ret(2 * kPointerSize);
// If the argument is negative, clear the sign, and return a new
// number. We still have the sign mask in rdi.
__ bind(&negative_sign);
__ xor_(rbx, rdi);
__ AllocateHeapNumber(rax, rdx, &slow);
__ MoveDouble(FieldOperand(rax, HeapNumber::kValueOffset), rbx);
__ ret(2 * kPointerSize);
__ bind(&slow);
// We do not have to patch the receiver because the function makes no use of
// it.
GenerateJumpFunctionIgnoreReceiver(function);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(type, name);
}
Handle<Code> CallStubCompiler::CompileFastApiCall(
const CallOptimization& optimization,
Handle<Object> object,
Handle<JSObject> holder,
Handle<Cell> cell,
Handle<JSFunction> function,
Handle<String> name) {
ASSERT(optimization.is_simple_api_call());
// Bail out if object is a global object as we don't want to
// repatch it to global receiver.
if (object->IsGlobalObject()) return Handle<Code>::null();
if (!cell.is_null()) return Handle<Code>::null();
if (!object->IsJSObject()) return Handle<Code>::null();
int depth = optimization.GetPrototypeDepthOfExpectedType(
Handle<JSObject>::cast(object), holder);
if (depth == kInvalidProtoDepth) return Handle<Code>::null();
Label miss, miss_before_stack_reserved;
GenerateNameCheck(name, &miss_before_stack_reserved);
const int argc = arguments().immediate();
StackArgumentsAccessor args(rsp, argc);
__ movq(rdx, args.GetReceiverOperand());
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss_before_stack_reserved);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_const(), 1);
__ IncrementCounter(counters->call_const_fast_api(), 1);
// Allocate space for v8::Arguments implicit values. Must be initialized
// before calling any runtime function.
__ subq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
// Check that the maps haven't changed and find a Holder as a side effect.
CheckPrototypes(IC::CurrentTypeOf(object, isolate()), rdx, holder,
rbx, rax, rdi, name, depth, &miss);
// Move the return address on top of the stack.
__ movq(rax,
StackOperandForReturnAddress(kFastApiCallArguments * kPointerSize));
__ movq(StackOperandForReturnAddress(0), rax);
GenerateFastApiCall(masm(), optimization, argc);
__ bind(&miss);
__ addq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
HandlerFrontendFooter(&miss_before_stack_reserved);
// Return the generated code.
return GetCode(function);
}
void StubCompiler::GenerateBooleanCheck(Register object, Label* miss) {
Label success;
// Check that the object is a boolean.
__ CompareRoot(object, Heap::kTrueValueRootIndex);
__ j(equal, &success);
__ CompareRoot(object, Heap::kFalseValueRootIndex);
__ j(not_equal, miss);
__ bind(&success);
}
void CallStubCompiler::PatchGlobalProxy(Handle<Object> object) {
if (object->IsGlobalObject()) {
StackArgumentsAccessor args(rsp, arguments());
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(args.GetReceiverOperand(), rdx);
}
}
Register CallStubCompiler::HandlerFrontendHeader(Handle<Object> object,
Handle<JSObject> holder,
Handle<Name> name,
CheckType check,
Label* miss) {
GenerateNameCheck(name, miss);
Register reg = rdx;
StackArgumentsAccessor args(rsp, arguments());
__ movq(reg, args.GetReceiverOperand());
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ JumpIfSmi(reg, miss);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
Counters* counters = isolate()->counters();
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(counters->call_const(), 1);
// Check that the maps haven't changed.
reg = CheckPrototypes(IC::CurrentTypeOf(object, isolate()), reg, holder,
rbx, rax, rdi, name, miss);
break;
case STRING_CHECK: {
// Check that the object is a string.
__ CmpObjectType(reg, FIRST_NONSTRING_TYPE, rax);
__ j(above_equal, miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, rax, miss);
break;
}
case SYMBOL_CHECK: {
// Check that the object is a symbol.
__ CmpObjectType(reg, SYMBOL_TYPE, rax);
__ j(not_equal, miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::SYMBOL_FUNCTION_INDEX, rax, miss);
break;
}
case NUMBER_CHECK: {
Label fast;
// Check that the object is a smi or a heap number.
__ JumpIfSmi(reg, &fast);
__ CmpObjectType(reg, HEAP_NUMBER_TYPE, rax);
__ j(not_equal, miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, rax, miss);
break;
}
case BOOLEAN_CHECK: {
GenerateBooleanCheck(reg, miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, rax, miss);
break;
}
}
if (check != RECEIVER_MAP_CHECK) {
Handle<Object> prototype(object->GetPrototype(isolate()), isolate());
reg = CheckPrototypes(
IC::CurrentTypeOf(prototype, isolate()),
rax, holder, rbx, rdx, rdi, name, miss);
}
return reg;
}
void CallStubCompiler::GenerateJumpFunction(Handle<Object> object,
Register function,
Label* miss) {
// Check that the function really is a function.
GenerateFunctionCheck(function, rbx, miss);
if (!function.is(rdi)) __ movq(rdi, function);
PatchGlobalProxy(object);
// Invoke the function.
__ InvokeFunction(rdi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind());
}
Handle<Code> CallStubCompiler::CompileCallInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name) {
Label miss;
GenerateNameCheck(name, &miss);
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
StackArgumentsAccessor args(rsp, arguments());
__ movq(rdx, args.GetReceiverOperand());
CallInterceptorCompiler compiler(this, arguments(), rcx, extra_state());
compiler.Compile(masm(), object, holder, name, &lookup, rdx, rbx, rdi, rax,
&miss);
// Restore receiver.
__ movq(rdx, args.GetReceiverOperand());
GenerateJumpFunction(object, rax, &miss);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(Code::FAST, name);
}
Handle<Code> CallStubCompiler::CompileCallGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<PropertyCell> cell,
Handle<JSFunction> function,
Handle<Name> name) {
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(
object, holder, cell, function, Handle<String>::cast(name),
Code::NORMAL);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
HandlerFrontendHeader(object, holder, name, RECEIVER_MAP_CHECK, &miss);
// Potentially loads a closure that matches the shared function info of the
// function, rather than function.
GenerateLoadFunctionFromCell(cell, function, &miss);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_global_inline(), 1);
GenerateJumpFunction(object, rdi, function);
HandlerFrontendFooter(&miss);
// Return the generated code.
return GetCode(Code::NORMAL, name);
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<ExecutableAccessorInfo> callback) {
HandlerFrontend(IC::CurrentTypeOf(object, isolate()),
receiver(), holder, name);
__ PopReturnAddressTo(scratch1());
__ push(receiver());
__ Push(callback); // callback info
__ Push(name);
__ push(value());
__ PushReturnAddressFrom(scratch1());
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 4, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
const CallOptimization& call_optimization) {
HandlerFrontend(IC::CurrentTypeOf(object, isolate()),
receiver(), holder, name);
Register values[] = { value() };
GenerateFastApiCall(
masm(), call_optimization, receiver(), scratch1(),
scratch2(), this->name(), 1, values);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
#undef __
#define __ ACCESS_MASM(masm)
void StoreStubCompiler::GenerateStoreViaSetter(
MacroAssembler* masm,
Handle<JSFunction> setter) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save value register, so we can restore it later.
__ push(rax);
if (!setter.is_null()) {
// Call the JavaScript setter with receiver and value on the stack.
__ push(rdx);
__ push(rax);
ParameterCount actual(1);
ParameterCount expected(setter);
__ InvokeFunction(setter, expected, actual,
CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
}
// We have to return the passed value, not the return value of the setter.
__ pop(rax);
// Restore context register.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
#undef __
#define __ ACCESS_MASM(masm())
Handle<Code> StoreStubCompiler::CompileStoreInterceptor(
Handle<JSObject> object,
Handle<Name> name) {
__ PopReturnAddressTo(scratch1());
__ push(receiver());
__ push(this->name());
__ push(value());
__ PushReturnAddressFrom(scratch1());
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate());
__ TailCallExternalReference(store_ic_property, 3, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic