blob: 4c1ddbd5caf9d9449efd2be0b3f0e0dd67658f16 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_MIPS
#include "codegen.h"
#include "code-stubs.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm,
Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ Branch(global_object, eq, type, Operand(JS_GLOBAL_OBJECT_TYPE));
__ Branch(global_object, eq, type, Operand(JS_BUILTINS_OBJECT_TYPE));
__ Branch(global_object, eq, type, Operand(JS_GLOBAL_PROXY_TYPE));
}
// Generated code falls through if the receiver is a regular non-global
// JS object with slow properties and no interceptors.
static void GenerateNameDictionaryReceiverCheck(MacroAssembler* masm,
Register receiver,
Register elements,
Register scratch0,
Register scratch1,
Label* miss) {
// Register usage:
// receiver: holds the receiver on entry and is unchanged.
// elements: holds the property dictionary on fall through.
// Scratch registers:
// scratch0: used to holds the receiver map.
// scratch1: used to holds the receiver instance type, receiver bit mask
// and elements map.
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the receiver is a valid JS object.
__ GetObjectType(receiver, scratch0, scratch1);
__ Branch(miss, lt, scratch1, Operand(FIRST_SPEC_OBJECT_TYPE));
// If this assert fails, we have to check upper bound too.
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
GenerateGlobalInstanceTypeCheck(masm, scratch1, miss);
// Check that the global object does not require access checks.
__ lbu(scratch1, FieldMemOperand(scratch0, Map::kBitFieldOffset));
__ And(scratch1, scratch1, Operand((1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasNamedInterceptor)));
__ Branch(miss, ne, scratch1, Operand(zero_reg));
__ lw(elements, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ lw(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(scratch0, Heap::kHashTableMapRootIndex);
__ Branch(miss, ne, scratch1, Operand(scratch0));
}
// Helper function used from LoadIC/CallIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// result: Register for the result. It is only updated if a jump to the miss
// label is not done. Can be the same as elements or name clobbering
// one of these in the case of not jumping to the miss label.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
static void GenerateDictionaryLoad(MacroAssembler* masm,
Label* miss,
Register elements,
Register name,
Register result,
Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm,
miss,
&done,
elements,
name,
scratch1,
scratch2);
// If probing finds an entry check that the value is a normal
// property.
__ bind(&done); // scratch2 == elements + 4 * index.
const int kElementsStartOffset = NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ lw(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ And(at,
scratch1,
Operand(PropertyDetails::TypeField::kMask << kSmiTagSize));
__ Branch(miss, ne, at, Operand(zero_reg));
// Get the value at the masked, scaled index and return.
__ lw(result,
FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}
// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// value: The value to store.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
static void GenerateDictionaryStore(MacroAssembler* masm,
Label* miss,
Register elements,
Register name,
Register value,
Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm,
miss,
&done,
elements,
name,
scratch1,
scratch2);
// If probing finds an entry in the dictionary check that the value
// is a normal property that is not read only.
__ bind(&done); // scratch2 == elements + 4 * index.
const int kElementsStartOffset = NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask =
(PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize;
__ lw(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ And(at, scratch1, Operand(kTypeAndReadOnlyMask));
__ Branch(miss, ne, at, Operand(zero_reg));
// Store the value at the masked, scaled index and return.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ Addu(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
__ sw(value, MemOperand(scratch2));
// Update the write barrier. Make sure not to clobber the value.
__ mov(scratch1, value);
__ RecordWrite(
elements, scratch2, scratch1, kRAHasNotBeenSaved, kDontSaveFPRegs);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver,
Register map,
Register scratch,
int interceptor_bit,
Label* slow) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, slow);
// Get the map of the receiver.
__ lw(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ lbu(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
__ And(at, scratch, Operand(KeyedLoadIC::kSlowCaseBitFieldMask));
__ Branch(slow, ne, at, Operand(zero_reg));
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing into string
// objects work as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(slow, lt, scratch, Operand(JS_OBJECT_TYPE));
}
// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
static void GenerateFastArrayLoad(MacroAssembler* masm,
Register receiver,
Register key,
Register elements,
Register scratch1,
Register scratch2,
Register result,
Label* not_fast_array,
Label* out_of_range) {
// Register use:
//
// receiver - holds the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// elements - holds the elements of the receiver on exit.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the the same as 'receiver' or 'key'.
// Unchanged on bailout so 'receiver' and 'key' can be safely
// used by further computation.
//
// Scratch registers:
//
// scratch1 - used to hold elements map and elements length.
// Holds the elements map if not_fast_array branch is taken.
//
// scratch2 - used to hold the loaded value.
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
if (not_fast_array != NULL) {
// Check that the object is in fast mode (not dictionary).
__ lw(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
__ Branch(not_fast_array, ne, scratch1, Operand(at));
} else {
__ AssertFastElements(elements);
}
// Check that the key (index) is within bounds.
__ lw(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(out_of_range, hs, key, Operand(scratch1));
// Fast case: Do the load.
__ Addu(scratch1, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// The key is a smi.
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ sll(at, key, kPointerSizeLog2 - kSmiTagSize);
__ addu(at, at, scratch1);
__ lw(scratch2, MemOperand(at));
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ Branch(out_of_range, eq, scratch2, Operand(at));
__ mov(result, scratch2);
}
// Checks whether a key is an array index string or a unique name.
// Falls through if a key is a unique name.
static void GenerateKeyNameCheck(MacroAssembler* masm,
Register key,
Register map,
Register hash,
Label* index_string,
Label* not_unique) {
// The key is not a smi.
Label unique;
// Is it a name?
__ GetObjectType(key, map, hash);
__ Branch(not_unique, hi, hash, Operand(LAST_UNIQUE_NAME_TYPE));
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
__ Branch(&unique, eq, hash, Operand(LAST_UNIQUE_NAME_TYPE));
// Is the string an array index, with cached numeric value?
__ lw(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ And(at, hash, Operand(Name::kContainsCachedArrayIndexMask));
__ Branch(index_string, eq, at, Operand(zero_reg));
// Is the string internalized? We know it's a string, so a single
// bit test is enough.
// map: key map
__ lbu(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0);
__ And(at, hash, Operand(kIsNotInternalizedMask));
__ Branch(not_unique, ne, at, Operand(zero_reg));
__ bind(&unique);
}
// Defined in ic.cc.
Object* CallIC_Miss(Arguments args);
// The generated code does not accept smi keys.
// The generated code falls through if both probes miss.
void CallICBase::GenerateMonomorphicCacheProbe(MacroAssembler* masm,
int argc,
Code::Kind kind,
ExtraICState extra_state) {
// ----------- S t a t e -------------
// -- a1 : receiver
// -- a2 : name
// -----------------------------------
Label number, non_number, non_string, boolean, probe, miss;
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(kind,
MONOMORPHIC,
extra_state,
Code::NORMAL,
argc);
masm->isolate()->stub_cache()->GenerateProbe(
masm, flags, a1, a2, a3, t0, t1, t2);
// If the stub cache probing failed, the receiver might be a value.
// For value objects, we use the map of the prototype objects for
// the corresponding JSValue for the cache and that is what we need
// to probe.
//
// Check for number.
__ JumpIfSmi(a1, &number, t1);
__ GetObjectType(a1, a3, a3);
__ Branch(&non_number, ne, a3, Operand(HEAP_NUMBER_TYPE));
__ bind(&number);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::NUMBER_FUNCTION_INDEX, a1);
__ Branch(&probe);
// Check for string.
__ bind(&non_number);
__ Branch(&non_string, Ugreater_equal, a3, Operand(FIRST_NONSTRING_TYPE));
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::STRING_FUNCTION_INDEX, a1);
__ Branch(&probe);
// Check for boolean.
__ bind(&non_string);
__ LoadRoot(t0, Heap::kTrueValueRootIndex);
__ Branch(&boolean, eq, a1, Operand(t0));
__ LoadRoot(t1, Heap::kFalseValueRootIndex);
__ Branch(&miss, ne, a1, Operand(t1));
__ bind(&boolean);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::BOOLEAN_FUNCTION_INDEX, a1);
// Probe the stub cache for the value object.
__ bind(&probe);
masm->isolate()->stub_cache()->GenerateProbe(
masm, flags, a1, a2, a3, t0, t1, t2);
__ bind(&miss);
}
static void GenerateFunctionTailCall(MacroAssembler* masm,
int argc,
Label* miss,
Register scratch) {
// a1: function
// Check that the value isn't a smi.
__ JumpIfSmi(a1, miss);
// Check that the value is a JSFunction.
__ GetObjectType(a1, scratch, scratch);
__ Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(a1, actual, JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
void CallICBase::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
// Get the receiver of the function from the stack into a1.
__ lw(a1, MemOperand(sp, argc * kPointerSize));
GenerateNameDictionaryReceiverCheck(masm, a1, a0, a3, t0, &miss);
// a0: elements
// Search the dictionary - put result in register a1.
GenerateDictionaryLoad(masm, &miss, a0, a2, a1, a3, t0);
GenerateFunctionTailCall(masm, argc, &miss, t0);
// Cache miss: Jump to runtime.
__ bind(&miss);
}
void CallICBase::GenerateMiss(MacroAssembler* masm,
int argc,
IC::UtilityId id,
ExtraICState extra_state) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
Isolate* isolate = masm->isolate();
if (id == IC::kCallIC_Miss) {
__ IncrementCounter(isolate->counters()->call_miss(), 1, a3, t0);
} else {
__ IncrementCounter(isolate->counters()->keyed_call_miss(), 1, a3, t0);
}
// Get the receiver of the function from the stack.
__ lw(a3, MemOperand(sp, argc*kPointerSize));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the receiver and the name of the function.
__ Push(a3, a2);
// Call the entry.
__ PrepareCEntryArgs(2);
__ PrepareCEntryFunction(ExternalReference(IC_Utility(id), isolate));
CEntryStub stub(1);
__ CallStub(&stub);
// Move result to a1 and leave the internal frame.
__ mov(a1, v0);
}
// Check if the receiver is a global object of some sort.
// This can happen only for regular CallIC but not KeyedCallIC.
if (id == IC::kCallIC_Miss) {
Label invoke, global;
__ lw(a2, MemOperand(sp, argc * kPointerSize));
__ JumpIfSmi(a2, &invoke);
__ GetObjectType(a2, a3, a3);
__ Branch(&global, eq, a3, Operand(JS_GLOBAL_OBJECT_TYPE));
__ Branch(&invoke, ne, a3, Operand(JS_BUILTINS_OBJECT_TYPE));
// Patch the receiver on the stack.
__ bind(&global);
__ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
__ sw(a2, MemOperand(sp, argc * kPointerSize));
__ bind(&invoke);
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_state)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
ParameterCount actual(argc);
__ InvokeFunction(a1,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
call_kind);
}
void CallIC::GenerateMegamorphic(MacroAssembler* masm,
int argc,
ExtraICState extra_ic_state) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
// Get the receiver of the function from the stack into a1.
__ lw(a1, MemOperand(sp, argc * kPointerSize));
GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC, extra_ic_state);
GenerateMiss(masm, argc, extra_ic_state);
}
void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
// Get the receiver of the function from the stack into a1.
__ lw(a1, MemOperand(sp, argc * kPointerSize));
Label do_call, slow_call, slow_load, slow_reload_receiver;
Label check_number_dictionary, check_name, lookup_monomorphic_cache;
Label index_smi, index_name;
// Check that the key is a smi.
__ JumpIfNotSmi(a2, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, a1, a0, a3, Map::kHasIndexedInterceptor, &slow_call);
GenerateFastArrayLoad(
masm, a1, a2, t0, a3, a0, a1, &check_number_dictionary, &slow_load);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_call_generic_smi_fast(), 1, a0, a3);
__ bind(&do_call);
// receiver in a1 is not used after this point.
// a2: key
// a1: function
GenerateFunctionTailCall(masm, argc, &slow_call, a0);
__ bind(&check_number_dictionary);
// a2: key
// a3: elements map
// t0: elements pointer
// Check whether the elements is a number dictionary.
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&slow_load, ne, a3, Operand(at));
__ sra(a0, a2, kSmiTagSize);
// a0: untagged index
__ LoadFromNumberDictionary(&slow_load, t0, a2, a1, a0, a3, t1);
__ IncrementCounter(counters->keyed_call_generic_smi_dict(), 1, a0, a3);
__ jmp(&do_call);
__ bind(&slow_load);
// This branch is taken when calling KeyedCallIC_Miss is neither required
// nor beneficial.
__ IncrementCounter(counters->keyed_call_generic_slow_load(), 1, a0, a3);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(a2, a1, a2); // Save the key and pass the receiver and the key.
__ CallRuntime(Runtime::kKeyedGetProperty, 2);
__ pop(a2); // Restore the key.
}
__ mov(a1, v0);
__ jmp(&do_call);
__ bind(&check_name);
GenerateKeyNameCheck(masm, a2, a0, a3, &index_name, &slow_call);
// The key is known to be a unique name.
// If the receiver is a regular JS object with slow properties then do
// a quick inline probe of the receiver's dictionary.
// Otherwise do the monomorphic cache probe.
GenerateKeyedLoadReceiverCheck(
masm, a1, a0, a3, Map::kHasNamedInterceptor, &lookup_monomorphic_cache);
__ lw(a0, FieldMemOperand(a1, JSObject::kPropertiesOffset));
__ lw(a3, FieldMemOperand(a0, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&lookup_monomorphic_cache, ne, a3, Operand(at));
GenerateDictionaryLoad(masm, &slow_load, a0, a2, a1, a3, t0);
__ IncrementCounter(counters->keyed_call_generic_lookup_dict(), 1, a0, a3);
__ jmp(&do_call);
__ bind(&lookup_monomorphic_cache);
__ IncrementCounter(counters->keyed_call_generic_lookup_cache(), 1, a0, a3);
GenerateMonomorphicCacheProbe(masm,
argc,
Code::KEYED_CALL_IC,
kNoExtraICState);
// Fall through on miss.
__ bind(&slow_call);
// This branch is taken if:
// - the receiver requires boxing or access check,
// - the key is neither smi nor a unique name,
// - the value loaded is not a function,
// - there is hope that the runtime will create a monomorphic call stub,
// that will get fetched next time.
__ IncrementCounter(counters->keyed_call_generic_slow(), 1, a0, a3);
GenerateMiss(masm, argc);
__ bind(&index_name);
__ IndexFromHash(a3, a2);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -----------------------------------
// Check if the name is really a name.
Label miss;
__ JumpIfSmi(a2, &miss);
__ IsObjectNameType(a2, a0, &miss);
CallICBase::GenerateNormal(masm, argc);
__ bind(&miss);
GenerateMiss(masm, argc);
}
void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -- a0 : receiver
// -----------------------------------
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(
Code::HANDLER, MONOMORPHIC, kNoExtraICState,
Code::NORMAL, Code::LOAD_IC);
masm->isolate()->stub_cache()->GenerateProbe(
masm, flags, a0, a2, a3, t0, t1, t2);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a2 : name
// -- lr : return address
// -- a0 : receiver
// -----------------------------------
Label miss;
GenerateNameDictionaryReceiverCheck(masm, a0, a1, a3, t0, &miss);
// a1: elements
GenerateDictionaryLoad(masm, &miss, a1, a2, v0, a3, t0);
__ Ret();
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a2 : name
// -- ra : return address
// -- a0 : receiver
// -----------------------------------
Isolate* isolate = masm->isolate();
__ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a3, t0);
__ mov(a3, a0);
__ Push(a3, a2);
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate);
__ TailCallExternalReference(ref, 2, 1);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- a2 : name
// -- ra : return address
// -- a0 : receiver
// -----------------------------------
__ mov(a3, a0);
__ Push(a3, a2);
__ TailCallRuntime(Runtime::kGetProperty, 2, 1);
}
static MemOperand GenerateMappedArgumentsLookup(MacroAssembler* masm,
Register object,
Register key,
Register scratch1,
Register scratch2,
Register scratch3,
Label* unmapped_case,
Label* slow_case) {
// Check that the receiver is a JSObject. Because of the map check
// later, we do not need to check for interceptors or whether it
// requires access checks.
__ JumpIfSmi(object, slow_case);
// Check that the object is some kind of JSObject.
__ GetObjectType(object, scratch1, scratch2);
__ Branch(slow_case, lt, scratch2, Operand(FIRST_JS_RECEIVER_TYPE));
// Check that the key is a positive smi.
__ And(scratch1, key, Operand(0x80000001));
__ Branch(slow_case, ne, scratch1, Operand(zero_reg));
// Load the elements into scratch1 and check its map.
__ lw(scratch1, FieldMemOperand(object, JSObject::kElementsOffset));
__ CheckMap(scratch1,
scratch2,
Heap::kNonStrictArgumentsElementsMapRootIndex,
slow_case,
DONT_DO_SMI_CHECK);
// Check if element is in the range of mapped arguments. If not, jump
// to the unmapped lookup with the parameter map in scratch1.
__ lw(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset));
__ Subu(scratch2, scratch2, Operand(Smi::FromInt(2)));
__ Branch(unmapped_case, Ugreater_equal, key, Operand(scratch2));
// Load element index and check whether it is the hole.
const int kOffset =
FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag;
__ li(scratch3, Operand(kPointerSize >> 1));
__ Mul(scratch3, key, scratch3);
__ Addu(scratch3, scratch3, Operand(kOffset));
__ Addu(scratch2, scratch1, scratch3);
__ lw(scratch2, MemOperand(scratch2));
__ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
__ Branch(unmapped_case, eq, scratch2, Operand(scratch3));
// Load value from context and return it. We can reuse scratch1 because
// we do not jump to the unmapped lookup (which requires the parameter
// map in scratch1).
__ lw(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
__ li(scratch3, Operand(kPointerSize >> 1));
__ Mul(scratch3, scratch2, scratch3);
__ Addu(scratch3, scratch3, Operand(Context::kHeaderSize - kHeapObjectTag));
__ Addu(scratch2, scratch1, scratch3);
return MemOperand(scratch2);
}
static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
Register key,
Register parameter_map,
Register scratch,
Label* slow_case) {
// Element is in arguments backing store, which is referenced by the
// second element of the parameter_map. The parameter_map register
// must be loaded with the parameter map of the arguments object and is
// overwritten.
const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
Register backing_store = parameter_map;
__ lw(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset));
__ CheckMap(backing_store,
scratch,
Heap::kFixedArrayMapRootIndex,
slow_case,
DONT_DO_SMI_CHECK);
__ lw(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset));
__ Branch(slow_case, Ugreater_equal, key, Operand(scratch));
__ li(scratch, Operand(kPointerSize >> 1));
__ Mul(scratch, key, scratch);
__ Addu(scratch,
scratch,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ Addu(scratch, backing_store, scratch);
return MemOperand(scratch);
}
void KeyedLoadIC::GenerateNonStrictArguments(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label slow, notin;
MemOperand mapped_location =
GenerateMappedArgumentsLookup(masm, a1, a0, a2, a3, t0, &notin, &slow);
__ Ret(USE_DELAY_SLOT);
__ lw(v0, mapped_location);
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in a2.
MemOperand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, a0, a2, a3, &slow);
__ lw(a2, unmapped_location);
__ LoadRoot(a3, Heap::kTheHoleValueRootIndex);
__ Branch(&slow, eq, a2, Operand(a3));
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a2);
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateNonStrictArguments(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- lr : return address
// -----------------------------------
Label slow, notin;
// Store address is returned in register (of MemOperand) mapped_location.
MemOperand mapped_location =
GenerateMappedArgumentsLookup(masm, a2, a1, a3, t0, t1, &notin, &slow);
__ sw(a0, mapped_location);
__ mov(t5, a0);
ASSERT_EQ(mapped_location.offset(), 0);
__ RecordWrite(a3, mapped_location.rm(), t5,
kRAHasNotBeenSaved, kDontSaveFPRegs);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0); // (In delay slot) return the value stored in v0.
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in a3.
// Store address is returned in register (of MemOperand) unmapped_location.
MemOperand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, a1, a3, t0, &slow);
__ sw(a0, unmapped_location);
__ mov(t5, a0);
ASSERT_EQ(unmapped_location.offset(), 0);
__ RecordWrite(a3, unmapped_location.rm(), t5,
kRAHasNotBeenSaved, kDontSaveFPRegs);
__ Ret(USE_DELAY_SLOT);
__ mov(v0, a0); // (In delay slot) return the value stored in v0.
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedCallIC::GenerateNonStrictArguments(MacroAssembler* masm,
int argc) {
// ----------- S t a t e -------------
// -- a2 : name
// -- lr : return address
// -----------------------------------
Label slow, notin;
// Load receiver.
__ lw(a1, MemOperand(sp, argc * kPointerSize));
MemOperand mapped_location =
GenerateMappedArgumentsLookup(masm, a1, a2, a3, t0, t1, &notin, &slow);
__ lw(a1, mapped_location);
GenerateFunctionTailCall(masm, argc, &slow, a3);
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in a3.
MemOperand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, a2, a3, t0, &slow);
__ lw(a1, unmapped_location);
__ LoadRoot(a3, Heap::kTheHoleValueRootIndex);
__ Branch(&slow, eq, a1, Operand(a3));
GenerateFunctionTailCall(masm, argc, &slow, a3);
__ bind(&slow);
GenerateMiss(masm, argc);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Isolate* isolate = masm->isolate();
__ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a3, t0);
__ Push(a1, a0);
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate);
__ TailCallExternalReference(ref, 2, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
__ Push(a1, a0);
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label slow, check_name, index_smi, index_name, property_array_property;
Label probe_dictionary, check_number_dictionary;
Register key = a0;
Register receiver = a1;
Isolate* isolate = masm->isolate();
// Check that the key is a smi.
__ JumpIfNotSmi(key, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, receiver, a2, a3, Map::kHasIndexedInterceptor, &slow);
// Check the receiver's map to see if it has fast elements.
__ CheckFastElements(a2, a3, &check_number_dictionary);
GenerateFastArrayLoad(
masm, receiver, key, t0, a3, a2, v0, NULL, &slow);
__ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, a2, a3);
__ Ret();
__ bind(&check_number_dictionary);
__ lw(t0, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ lw(a3, FieldMemOperand(t0, JSObject::kMapOffset));
// Check whether the elements is a number dictionary.
// a0: key
// a3: elements map
// t0: elements
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&slow, ne, a3, Operand(at));
__ sra(a2, a0, kSmiTagSize);
__ LoadFromNumberDictionary(&slow, t0, a0, v0, a2, a3, t1);
__ Ret();
// Slow case, key and receiver still in a0 and a1.
__ bind(&slow);
__ IncrementCounter(isolate->counters()->keyed_load_generic_slow(),
1,
a2,
a3);
GenerateRuntimeGetProperty(masm);
__ bind(&check_name);
GenerateKeyNameCheck(masm, key, a2, a3, &index_name, &slow);
GenerateKeyedLoadReceiverCheck(
masm, receiver, a2, a3, Map::kHasIndexedInterceptor, &slow);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary.
__ lw(a3, FieldMemOperand(a1, JSObject::kPropertiesOffset));
__ lw(t0, FieldMemOperand(a3, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&probe_dictionary, eq, t0, Operand(at));
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the name hash.
__ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
__ sra(a3, a2, KeyedLookupCache::kMapHashShift);
__ lw(t0, FieldMemOperand(a0, Name::kHashFieldOffset));
__ sra(at, t0, Name::kHashShift);
__ xor_(a3, a3, at);
int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask;
__ And(a3, a3, Operand(mask));
// Load the key (consisting of map and unique name) from the cache and
// check for match.
Label load_in_object_property;
static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
Label hit_on_nth_entry[kEntriesPerBucket];
ExternalReference cache_keys =
ExternalReference::keyed_lookup_cache_keys(isolate);
__ li(t0, Operand(cache_keys));
__ sll(at, a3, kPointerSizeLog2 + 1);
__ addu(t0, t0, at);
for (int i = 0; i < kEntriesPerBucket - 1; i++) {
Label try_next_entry;
__ lw(t1, MemOperand(t0, kPointerSize * i * 2));
__ Branch(&try_next_entry, ne, a2, Operand(t1));
__ lw(t1, MemOperand(t0, kPointerSize * (i * 2 + 1)));
__ Branch(&hit_on_nth_entry[i], eq, a0, Operand(t1));
__ bind(&try_next_entry);
}
__ lw(t1, MemOperand(t0, kPointerSize * (kEntriesPerBucket - 1) * 2));
__ Branch(&slow, ne, a2, Operand(t1));
__ lw(t1, MemOperand(t0, kPointerSize * ((kEntriesPerBucket - 1) * 2 + 1)));
__ Branch(&slow, ne, a0, Operand(t1));
// Get field offset.
// a0 : key
// a1 : receiver
// a2 : receiver's map
// a3 : lookup cache index
ExternalReference cache_field_offsets =
ExternalReference::keyed_lookup_cache_field_offsets(isolate);
// Hit on nth entry.
for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
__ bind(&hit_on_nth_entry[i]);
__ li(t0, Operand(cache_field_offsets));
__ sll(at, a3, kPointerSizeLog2);
__ addu(at, t0, at);
__ lw(t1, MemOperand(at, kPointerSize * i));
__ lbu(t2, FieldMemOperand(a2, Map::kInObjectPropertiesOffset));
__ Subu(t1, t1, t2);
__ Branch(&property_array_property, ge, t1, Operand(zero_reg));
if (i != 0) {
__ Branch(&load_in_object_property);
}
}
// Load in-object property.
__ bind(&load_in_object_property);
__ lbu(t2, FieldMemOperand(a2, Map::kInstanceSizeOffset));
__ addu(t2, t2, t1); // Index from start of object.
__ Subu(a1, a1, Operand(kHeapObjectTag)); // Remove the heap tag.
__ sll(at, t2, kPointerSizeLog2);
__ addu(at, a1, at);
__ lw(v0, MemOperand(at));
__ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(),
1,
a2,
a3);
__ Ret();
// Load property array property.
__ bind(&property_array_property);
__ lw(a1, FieldMemOperand(a1, JSObject::kPropertiesOffset));
__ Addu(a1, a1, FixedArray::kHeaderSize - kHeapObjectTag);
__ sll(t0, t1, kPointerSizeLog2);
__ Addu(t0, t0, a1);
__ lw(v0, MemOperand(t0));
__ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(),
1,
a2,
a3);
__ Ret();
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
// a1: receiver
// a0: key
// a3: elements
__ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
__ lbu(a2, FieldMemOperand(a2, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, a2, &slow);
// Load the property to v0.
GenerateDictionaryLoad(masm, &slow, a3, a0, v0, a2, t0);
__ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(),
1,
a2,
a3);
__ Ret();
__ bind(&index_name);
__ IndexFromHash(a3, key);
// Now jump to the place where smi keys are handled.
__ Branch(&index_smi);
}
void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key (index)
// -- a1 : receiver
// -----------------------------------
Label miss;
Register receiver = a1;
Register index = a0;
Register scratch = a3;
Register result = v0;
StringCharAtGenerator char_at_generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
STRING_INDEX_IS_ARRAY_INDEX);
char_at_generator.GenerateFast(masm);
__ Ret();
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, call_helper);
__ bind(&miss);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(a2, a1, a0);
__ li(a1, Operand(Smi::FromInt(NONE))); // PropertyAttributes.
__ li(a0, Operand(Smi::FromInt(strict_mode))); // Strict mode.
__ Push(a1, a0);
__ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}
static void KeyedStoreGenerateGenericHelper(
MacroAssembler* masm,
Label* fast_object,
Label* fast_double,
Label* slow,
KeyedStoreCheckMap check_map,
KeyedStoreIncrementLength increment_length,
Register value,
Register key,
Register receiver,
Register receiver_map,
Register elements_map,
Register elements) {
Label transition_smi_elements;
Label finish_object_store, non_double_value, transition_double_elements;
Label fast_double_without_map_check;
// Fast case: Do the store, could be either Object or double.
__ bind(fast_object);
Register scratch_value = t0;
Register address = t1;
if (check_map == kCheckMap) {
__ lw(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Branch(fast_double, ne, elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
}
// HOLECHECK: guards "A[i] = V"
// We have to go to the runtime if the current value is the hole because
// there may be a callback on the element.
Label holecheck_passed1;
__ Addu(address, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ sll(at, key, kPointerSizeLog2 - kSmiTagSize);
__ addu(address, address, at);
__ lw(scratch_value, MemOperand(address));
__ Branch(&holecheck_passed1, ne, scratch_value,
Operand(masm->isolate()->factory()->the_hole_value()));
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
slow);
__ bind(&holecheck_passed1);
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(value, &non_smi_value);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Addu(scratch_value, key, Operand(Smi::FromInt(1)));
__ sw(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
// It's irrelevant whether array is smi-only or not when writing a smi.
__ Addu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ sll(scratch_value, key, kPointerSizeLog2 - kSmiTagSize);
__ Addu(address, address, scratch_value);
__ sw(value, MemOperand(address));
__ Ret();
__ bind(&non_smi_value);
// Escape to elements kind transition case.
__ CheckFastObjectElements(receiver_map, scratch_value,
&transition_smi_elements);
// Fast elements array, store the value to the elements backing store.
__ bind(&finish_object_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Addu(scratch_value, key, Operand(Smi::FromInt(1)));
__ sw(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Addu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ sll(scratch_value, key, kPointerSizeLog2 - kSmiTagSize);
__ Addu(address, address, scratch_value);
__ sw(value, MemOperand(address));
// Update write barrier for the elements array address.
__ mov(scratch_value, value); // Preserve the value which is returned.
__ RecordWrite(elements,
address,
scratch_value,
kRAHasNotBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Ret();
__ bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
__ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
__ Branch(slow, ne, elements_map, Operand(at));
}
// HOLECHECK: guards "A[i] double hole?"
// We have to see if the double version of the hole is present. If so
// go to the runtime.
__ Addu(address, elements,
Operand(FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32)
- kHeapObjectTag));
__ sll(at, key, kPointerSizeLog2);
__ addu(address, address, at);
__ lw(scratch_value, MemOperand(address));
__ Branch(&fast_double_without_map_check, ne, scratch_value,
Operand(kHoleNanUpper32));
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
slow);
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(value,
key,
elements, // Overwritten.
a3, // Scratch regs...
t0,
t1,
&transition_double_elements);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Addu(scratch_value, key, Operand(Smi::FromInt(1)));
__ sw(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Ret();
__ bind(&transition_smi_elements);
// Transition the array appropriately depending on the value type.
__ lw(t0, FieldMemOperand(value, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&non_double_value, ne, t0, Operand(at));
// Value is a double. Transition FAST_SMI_ELEMENTS ->
// FAST_DOUBLE_ELEMENTS and complete the store.
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS,
receiver_map,
t0,
slow);
ASSERT(receiver_map.is(a3)); // Transition code expects map in a3
AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, mode, slow);
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&fast_double_without_map_check);
__ bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS,
receiver_map,
t0,
slow);
ASSERT(receiver_map.is(a3)); // Transition code expects map in a3
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(masm, mode,
slow);
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
__ bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS,
FAST_ELEMENTS,
receiver_map,
t0,
slow);
ASSERT(receiver_map.is(a3)); // Transition code expects map in a3
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(masm, mode, slow);
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
Label slow, fast_object, fast_object_grow;
Label fast_double, fast_double_grow;
Label array, extra, check_if_double_array;
// Register usage.
Register value = a0;
Register key = a1;
Register receiver = a2;
Register receiver_map = a3;
Register elements_map = t2;
Register elements = t3; // Elements array of the receiver.
// t0 and t1 are used as general scratch registers.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &slow);
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, &slow);
// Get the map of the object.
__ lw(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks and is not observed.
// The generic stub does not perform map checks or handle observed objects.
__ lbu(t0, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
__ And(t0, t0, Operand(1 << Map::kIsAccessCheckNeeded |
1 << Map::kIsObserved));
__ Branch(&slow, ne, t0, Operand(zero_reg));
// Check if the object is a JS array or not.
__ lbu(t0, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
__ Branch(&array, eq, t0, Operand(JS_ARRAY_TYPE));
// Check that the object is some kind of JSObject.
__ Branch(&slow, lt, t0, Operand(FIRST_JS_OBJECT_TYPE));
// Object case: Check key against length in the elements array.
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check array bounds. Both the key and the length of FixedArray are smis.
__ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&fast_object, lo, key, Operand(t0));
// Slow case, handle jump to runtime.
__ bind(&slow);
// Entry registers are intact.
// a0: value.
// a1: key.
// a2: receiver.
GenerateRuntimeSetProperty(masm, strict_mode);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// Condition code from comparing key and array length is still available.
// Only support writing to array[array.length].
__ Branch(&slow, ne, key, Operand(t0));
// Check for room in the elements backing store.
// Both the key and the length of FixedArray are smis.
__ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&slow, hs, key, Operand(t0));
__ lw(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Branch(
&check_if_double_array, ne, elements_map, Heap::kFixedArrayMapRootIndex);
__ jmp(&fast_object_grow);
__ bind(&check_if_double_array);
__ Branch(&slow, ne, elements_map, Heap::kFixedDoubleArrayMapRootIndex);
__ jmp(&fast_double_grow);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check the key against the length in the array.
__ lw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Branch(&extra, hs, key, Operand(t0));
KeyedStoreGenerateGenericHelper(masm, &fast_object, &fast_double,
&slow, kCheckMap, kDontIncrementLength,
value, key, receiver, receiver_map,
elements_map, elements);
KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow,
&slow, kDontCheckMap, kIncrementLength,
value, key, receiver, receiver_map,
elements_map, elements);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- ra : return address
// -- a0 : key
// -- a1 : receiver
// -----------------------------------
Label slow;
// Check that the receiver isn't a smi.
__ JumpIfSmi(a1, &slow);
// Check that the key is an array index, that is Uint32.
__ And(t0, a0, Operand(kSmiTagMask | kSmiSignMask));
__ Branch(&slow, ne, t0, Operand(zero_reg));
// Get the map of the receiver.
__ lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
// Check that it has indexed interceptor and access checks
// are not enabled for this object.
__ lbu(a3, FieldMemOperand(a2, Map::kBitFieldOffset));
__ And(a3, a3, Operand(kSlowCaseBitFieldMask));
__ Branch(&slow, ne, a3, Operand(1 << Map::kHasIndexedInterceptor));
// Everything is fine, call runtime.
__ Push(a1, a0); // Receiver, key.
// Perform tail call to the entry.
__ TailCallExternalReference(ExternalReference(
IC_Utility(kKeyedLoadPropertyWithInterceptor), masm->isolate()), 2, 1);
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(a2, a1, a0);
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateSlow(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a2 : key
// -- a1 : receiver
// -- ra : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(a1, a2, a0);
// The slow case calls into the runtime to complete the store without causing
// an IC miss that would otherwise cause a transition to the generic stub.
ExternalReference ref =
ExternalReference(IC_Utility(kStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
// We can't use MultiPush as the order of the registers is important.
__ Push(a2, a1, a0);
// The slow case calls into the runtime to complete the store without causing
// an IC miss that would otherwise cause a transition to the generic stub.
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm,
ExtraICState extra_ic_state) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
// Get the receiver from the stack and probe the stub cache.
Code::Flags flags = Code::ComputeFlags(
Code::HANDLER, MONOMORPHIC, extra_ic_state,
Code::NORMAL, Code::STORE_IC);
masm->isolate()->stub_cache()->GenerateProbe(
masm, flags, a1, a2, a3, t0, t1, t2);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
__ Push(a1, a2, a0);
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss),
masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
Label miss;
GenerateNameDictionaryReceiverCheck(masm, a1, a3, t0, t1, &miss);
GenerateDictionaryStore(masm, &miss, a3, a2, a0, t0, t1);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->store_normal_hit(), 1, t0, t1);
__ Ret();
__ bind(&miss);
__ IncrementCounter(counters->store_normal_miss(), 1, t0, t1);
GenerateMiss(masm);
}
void StoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : receiver
// -- a2 : name
// -- ra : return address
// -----------------------------------
__ Push(a1, a2, a0);
__ li(a1, Operand(Smi::FromInt(NONE))); // PropertyAttributes.
__ li(a0, Operand(Smi::FromInt(strict_mode)));
__ Push(a1, a0);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address andi_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a andi at, rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(andi_instruction_address);
return Assembler::IsAndImmediate(instr) &&
Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code());
}
void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
Address andi_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a andi at, rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(andi_instruction_address);
if (!(Assembler::IsAndImmediate(instr) &&
Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code()))) {
return;
}
// The delta to the start of the map check instruction and the
// condition code uses at the patched jump.
int delta = Assembler::GetImmediate16(instr);
delta += Assembler::GetRs(instr) * kImm16Mask;
// If the delta is 0 the instruction is andi at, zero_reg, #0 which also
// signals that nothing was inlined.
if (delta == 0) {
return;
}
if (FLAG_trace_ic) {
PrintF("[ patching ic at %p, andi=%p, delta=%d\n",
address, andi_instruction_address, delta);
}
Address patch_address =
andi_instruction_address - delta * Instruction::kInstrSize;
Instr instr_at_patch = Assembler::instr_at(patch_address);
Instr branch_instr =
Assembler::instr_at(patch_address + Instruction::kInstrSize);
// This is patching a conditional "jump if not smi/jump if smi" site.
// Enabling by changing from
// andi at, rx, 0
// Branch <target>, eq, at, Operand(zero_reg)
// to:
// andi at, rx, #kSmiTagMask
// Branch <target>, ne, at, Operand(zero_reg)
// and vice-versa to be disabled again.
CodePatcher patcher(patch_address, 2);
Register reg = Register::from_code(Assembler::GetRs(instr_at_patch));
if (check == ENABLE_INLINED_SMI_CHECK) {
ASSERT(Assembler::IsAndImmediate(instr_at_patch));
ASSERT_EQ(0, Assembler::GetImmediate16(instr_at_patch));
patcher.masm()->andi(at, reg, kSmiTagMask);
} else {
ASSERT(check == DISABLE_INLINED_SMI_CHECK);
ASSERT(Assembler::IsAndImmediate(instr_at_patch));
patcher.masm()->andi(at, reg, 0);
}
ASSERT(Assembler::IsBranch(branch_instr));
if (Assembler::IsBeq(branch_instr)) {
patcher.ChangeBranchCondition(ne);
} else {
ASSERT(Assembler::IsBne(branch_instr));
patcher.ChangeBranchCondition(eq);
}
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS