blob: 91b7638ed1cf7144e4dd69799d9acb652baa195b [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_ARM64
#define ARM64_DEFINE_REG_STATICS
#include "arm64/assembler-arm64-inl.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// CpuFeatures utilities (for V8 compatibility).
ExternalReference ExternalReference::cpu_features() {
return ExternalReference(&CpuFeatures::supported_);
}
// -----------------------------------------------------------------------------
// CPURegList utilities.
CPURegister CPURegList::PopLowestIndex() {
ASSERT(IsValid());
if (IsEmpty()) {
return NoCPUReg;
}
int index = CountTrailingZeros(list_, kRegListSizeInBits);
ASSERT((1 << index) & list_);
Remove(index);
return CPURegister::Create(index, size_, type_);
}
CPURegister CPURegList::PopHighestIndex() {
ASSERT(IsValid());
if (IsEmpty()) {
return NoCPUReg;
}
int index = CountLeadingZeros(list_, kRegListSizeInBits);
index = kRegListSizeInBits - 1 - index;
ASSERT((1 << index) & list_);
Remove(index);
return CPURegister::Create(index, size_, type_);
}
void CPURegList::RemoveCalleeSaved() {
if (type() == CPURegister::kRegister) {
Remove(GetCalleeSaved(RegisterSizeInBits()));
} else if (type() == CPURegister::kFPRegister) {
Remove(GetCalleeSavedFP(RegisterSizeInBits()));
} else {
ASSERT(type() == CPURegister::kNoRegister);
ASSERT(IsEmpty());
// The list must already be empty, so do nothing.
}
}
CPURegList CPURegList::GetCalleeSaved(unsigned size) {
return CPURegList(CPURegister::kRegister, size, 19, 29);
}
CPURegList CPURegList::GetCalleeSavedFP(unsigned size) {
return CPURegList(CPURegister::kFPRegister, size, 8, 15);
}
CPURegList CPURegList::GetCallerSaved(unsigned size) {
// Registers x0-x18 and lr (x30) are caller-saved.
CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
list.Combine(lr);
return list;
}
CPURegList CPURegList::GetCallerSavedFP(unsigned size) {
// Registers d0-d7 and d16-d31 are caller-saved.
CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
return list;
}
// This function defines the list of registers which are associated with a
// safepoint slot. Safepoint register slots are saved contiguously on the stack.
// MacroAssembler::SafepointRegisterStackIndex handles mapping from register
// code to index in the safepoint register slots. Any change here can affect
// this mapping.
CPURegList CPURegList::GetSafepointSavedRegisters() {
CPURegList list = CPURegList::GetCalleeSaved();
list.Combine(
CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
// Note that unfortunately we can't use symbolic names for registers and have
// to directly use register codes. This is because this function is used to
// initialize some static variables and we can't rely on register variables
// to be initialized due to static initialization order issues in C++.
// Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
// preserved outside of the macro assembler.
list.Remove(16);
list.Remove(17);
// Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
// is a caller-saved register according to the procedure call standard.
list.Combine(18);
// Drop jssp as the stack pointer doesn't need to be included.
list.Remove(28);
// Add the link register (x30) to the safepoint list.
list.Combine(30);
return list;
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
const int RelocInfo::kApplyMask = 0;
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially coded. Being
// specially coded on ARM64 means that it is a movz/movk sequence. We don't
// generate those for relocatable pointers.
return false;
}
bool RelocInfo::IsInConstantPool() {
Instruction* instr = reinterpret_cast<Instruction*>(pc_);
return instr->IsLdrLiteralX();
}
void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
// Patch the code at the current address with the supplied instructions.
Instr* pc = reinterpret_cast<Instr*>(pc_);
Instr* instr = reinterpret_cast<Instr*>(instructions);
for (int i = 0; i < instruction_count; i++) {
*(pc + i) = *(instr + i);
}
// Indicate that code has changed.
CPU::FlushICache(pc_, instruction_count * kInstructionSize);
}
// Patch the code at the current PC with a call to the target address.
// Additional guard instructions can be added if required.
void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
UNIMPLEMENTED();
}
Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
Register reg3, Register reg4) {
CPURegList regs(reg1, reg2, reg3, reg4);
for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
Register candidate = Register::FromAllocationIndex(i);
if (regs.IncludesAliasOf(candidate)) continue;
return candidate;
}
UNREACHABLE();
return NoReg;
}
bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3, const CPURegister& reg4,
const CPURegister& reg5, const CPURegister& reg6,
const CPURegister& reg7, const CPURegister& reg8) {
int number_of_valid_regs = 0;
int number_of_valid_fpregs = 0;
RegList unique_regs = 0;
RegList unique_fpregs = 0;
const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) {
if (regs[i].IsRegister()) {
number_of_valid_regs++;
unique_regs |= regs[i].Bit();
} else if (regs[i].IsFPRegister()) {
number_of_valid_fpregs++;
unique_fpregs |= regs[i].Bit();
} else {
ASSERT(!regs[i].IsValid());
}
}
int number_of_unique_regs =
CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
int number_of_unique_fpregs =
CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
ASSERT(number_of_valid_regs >= number_of_unique_regs);
ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs);
return (number_of_valid_regs != number_of_unique_regs) ||
(number_of_valid_fpregs != number_of_unique_fpregs);
}
bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
const CPURegister& reg3, const CPURegister& reg4,
const CPURegister& reg5, const CPURegister& reg6,
const CPURegister& reg7, const CPURegister& reg8) {
ASSERT(reg1.IsValid());
bool match = true;
match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
return match;
}
void Operand::initialize_handle(Handle<Object> handle) {
AllowDeferredHandleDereference using_raw_address;
// Verify all Objects referred by code are NOT in new space.
Object* obj = *handle;
if (obj->IsHeapObject()) {
ASSERT(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
immediate_ = reinterpret_cast<intptr_t>(handle.location());
rmode_ = RelocInfo::EMBEDDED_OBJECT;
} else {
STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
immediate_ = reinterpret_cast<intptr_t>(obj);
rmode_ = RelocInfo::NONE64;
}
}
bool Operand::NeedsRelocation() const {
if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
return Serializer::enabled();
}
return !RelocInfo::IsNone(rmode_);
}
// Assembler
Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
: AssemblerBase(isolate, buffer, buffer_size),
recorded_ast_id_(TypeFeedbackId::None()),
unresolved_branches_(),
positions_recorder_(this) {
const_pool_blocked_nesting_ = 0;
veneer_pool_blocked_nesting_ = 0;
Reset();
}
Assembler::~Assembler() {
ASSERT(num_pending_reloc_info_ == 0);
ASSERT(const_pool_blocked_nesting_ == 0);
ASSERT(veneer_pool_blocked_nesting_ == 0);
}
void Assembler::Reset() {
#ifdef DEBUG
ASSERT((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
ASSERT(const_pool_blocked_nesting_ == 0);
ASSERT(veneer_pool_blocked_nesting_ == 0);
ASSERT(unresolved_branches_.empty());
memset(buffer_, 0, pc_ - buffer_);
#endif
pc_ = buffer_;
reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
reinterpret_cast<byte*>(pc_));
num_pending_reloc_info_ = 0;
next_constant_pool_check_ = 0;
next_veneer_pool_check_ = kMaxInt;
no_const_pool_before_ = 0;
first_const_pool_use_ = -1;
ClearRecordedAstId();
}
void Assembler::GetCode(CodeDesc* desc) {
// Emit constant pool if necessary.
CheckConstPool(true, false);
ASSERT(num_pending_reloc_info_ == 0);
// Set up code descriptor.
if (desc) {
desc->buffer = reinterpret_cast<byte*>(buffer_);
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
desc->reloc_size = (reinterpret_cast<byte*>(buffer_) + buffer_size_) -
reloc_info_writer.pos();
desc->origin = this;
}
}
void Assembler::Align(int m) {
ASSERT(m >= 4 && IsPowerOf2(m));
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::CheckLabelLinkChain(Label const * label) {
#ifdef DEBUG
if (label->is_linked()) {
int linkoffset = label->pos();
bool end_of_chain = false;
while (!end_of_chain) {
Instruction * link = InstructionAt(linkoffset);
int linkpcoffset = link->ImmPCOffset();
int prevlinkoffset = linkoffset + linkpcoffset;
end_of_chain = (linkoffset == prevlinkoffset);
linkoffset = linkoffset + linkpcoffset;
}
}
#endif
}
void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
Label* label,
Instruction* label_veneer) {
ASSERT(label->is_linked());
CheckLabelLinkChain(label);
Instruction* link = InstructionAt(label->pos());
Instruction* prev_link = link;
Instruction* next_link;
bool end_of_chain = false;
while (link != branch && !end_of_chain) {
next_link = link->ImmPCOffsetTarget();
end_of_chain = (link == next_link);
prev_link = link;
link = next_link;
}
ASSERT(branch == link);
next_link = branch->ImmPCOffsetTarget();
if (branch == prev_link) {
// The branch is the first instruction in the chain.
if (branch == next_link) {
// It is also the last instruction in the chain, so it is the only branch
// currently referring to this label.
label->Unuse();
} else {
label->link_to(reinterpret_cast<byte*>(next_link) - buffer_);
}
} else if (branch == next_link) {
// The branch is the last (but not also the first) instruction in the chain.
prev_link->SetImmPCOffsetTarget(prev_link);
} else {
// The branch is in the middle of the chain.
if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
prev_link->SetImmPCOffsetTarget(next_link);
} else if (label_veneer != NULL) {
// Use the veneer for all previous links in the chain.
prev_link->SetImmPCOffsetTarget(prev_link);
end_of_chain = false;
link = next_link;
while (!end_of_chain) {
next_link = link->ImmPCOffsetTarget();
end_of_chain = (link == next_link);
link->SetImmPCOffsetTarget(label_veneer);
link = next_link;
}
} else {
// The assert below will fire.
// Some other work could be attempted to fix up the chain, but it would be
// rather complicated. If we crash here, we may want to consider using an
// other mechanism than a chain of branches.
//
// Note that this situation currently should not happen, as we always call
// this function with a veneer to the target label.
// However this could happen with a MacroAssembler in the following state:
// [previous code]
// B(label);
// [20KB code]
// Tbz(label); // First tbz. Pointing to unconditional branch.
// [20KB code]
// Tbz(label); // Second tbz. Pointing to the first tbz.
// [more code]
// and this function is called to remove the first tbz from the label link
// chain. Since tbz has a range of +-32KB, the second tbz cannot point to
// the unconditional branch.
CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
UNREACHABLE();
}
}
CheckLabelLinkChain(label);
}
void Assembler::bind(Label* label) {
// Bind label to the address at pc_. All instructions (most likely branches)
// that are linked to this label will be updated to point to the newly-bound
// label.
ASSERT(!label->is_near_linked());
ASSERT(!label->is_bound());
DeleteUnresolvedBranchInfoForLabel(label);
// If the label is linked, the link chain looks something like this:
//
// |--I----I-------I-------L
// |---------------------->| pc_offset
// |-------------->| linkoffset = label->pos()
// |<------| link->ImmPCOffset()
// |------>| prevlinkoffset = linkoffset + link->ImmPCOffset()
//
// On each iteration, the last link is updated and then removed from the
// chain until only one remains. At that point, the label is bound.
//
// If the label is not linked, no preparation is required before binding.
while (label->is_linked()) {
int linkoffset = label->pos();
Instruction* link = InstructionAt(linkoffset);
int prevlinkoffset = linkoffset + link->ImmPCOffset();
CheckLabelLinkChain(label);
ASSERT(linkoffset >= 0);
ASSERT(linkoffset < pc_offset());
ASSERT((linkoffset > prevlinkoffset) ||
(linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
ASSERT(prevlinkoffset >= 0);
// Update the link to point to the label.
link->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_));
// Link the label to the previous link in the chain.
if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
// We hit kStartOfLabelLinkChain, so the chain is fully processed.
label->Unuse();
} else {
// Update the label for the next iteration.
label->link_to(prevlinkoffset);
}
}
label->bind_to(pc_offset());
ASSERT(label->is_bound());
ASSERT(!label->is_linked());
}
int Assembler::LinkAndGetByteOffsetTo(Label* label) {
ASSERT(sizeof(*pc_) == 1);
CheckLabelLinkChain(label);
int offset;
if (label->is_bound()) {
// The label is bound, so it does not need to be updated. Referring
// instructions must link directly to the label as they will not be
// updated.
//
// In this case, label->pos() returns the offset of the label from the
// start of the buffer.
//
// Note that offset can be zero for self-referential instructions. (This
// could be useful for ADR, for example.)
offset = label->pos() - pc_offset();
ASSERT(offset <= 0);
} else {
if (label->is_linked()) {
// The label is linked, so the referring instruction should be added onto
// the end of the label's link chain.
//
// In this case, label->pos() returns the offset of the last linked
// instruction from the start of the buffer.
offset = label->pos() - pc_offset();
ASSERT(offset != kStartOfLabelLinkChain);
// Note that the offset here needs to be PC-relative only so that the
// first instruction in a buffer can link to an unbound label. Otherwise,
// the offset would be 0 for this case, and 0 is reserved for
// kStartOfLabelLinkChain.
} else {
// The label is unused, so it now becomes linked and the referring
// instruction is at the start of the new link chain.
offset = kStartOfLabelLinkChain;
}
// The instruction at pc is now the last link in the label's chain.
label->link_to(pc_offset());
}
return offset;
}
void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
ASSERT(label->is_linked());
CheckLabelLinkChain(label);
int link_offset = label->pos();
int link_pcoffset;
bool end_of_chain = false;
while (!end_of_chain) {
Instruction * link = InstructionAt(link_offset);
link_pcoffset = link->ImmPCOffset();
// ADR instructions are not handled by veneers.
if (link->IsImmBranch()) {
int max_reachable_pc = InstructionOffset(link) +
Instruction::ImmBranchRange(link->BranchType());
typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
std::pair<unresolved_info_it, unresolved_info_it> range;
range = unresolved_branches_.equal_range(max_reachable_pc);
unresolved_info_it it;
for (it = range.first; it != range.second; ++it) {
if (it->second.pc_offset_ == link_offset) {
unresolved_branches_.erase(it);
break;
}
}
}
end_of_chain = (link_pcoffset == 0);
link_offset = link_offset + link_pcoffset;
}
}
void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
if (unresolved_branches_.empty()) {
ASSERT(next_veneer_pool_check_ == kMaxInt);
return;
}
if (label->is_linked()) {
// Branches to this label will be resolved when the label is bound, normally
// just after all the associated info has been deleted.
DeleteUnresolvedBranchInfoForLabelTraverse(label);
}
if (unresolved_branches_.empty()) {
next_veneer_pool_check_ = kMaxInt;
} else {
next_veneer_pool_check_ =
unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
}
}
void Assembler::StartBlockConstPool() {
if (const_pool_blocked_nesting_++ == 0) {
// Prevent constant pool checks happening by setting the next check to
// the biggest possible offset.
next_constant_pool_check_ = kMaxInt;
}
}
void Assembler::EndBlockConstPool() {
if (--const_pool_blocked_nesting_ == 0) {
// Check the constant pool hasn't been blocked for too long.
ASSERT((num_pending_reloc_info_ == 0) ||
(pc_offset() < (first_const_pool_use_ + kMaxDistToConstPool)));
// Two cases:
// * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
// still blocked
// * no_const_pool_before_ < next_constant_pool_check_ and the next emit
// will trigger a check.
next_constant_pool_check_ = no_const_pool_before_;
}
}
bool Assembler::is_const_pool_blocked() const {
return (const_pool_blocked_nesting_ > 0) ||
(pc_offset() < no_const_pool_before_);
}
bool Assembler::IsConstantPoolAt(Instruction* instr) {
// The constant pool marker is made of two instructions. These instructions
// will never be emitted by the JIT, so checking for the first one is enough:
// 0: ldr xzr, #<size of pool>
bool result = instr->IsLdrLiteralX() && (instr->Rt() == xzr.code());
// It is still worth asserting the marker is complete.
// 4: blr xzr
ASSERT(!result || (instr->following()->IsBranchAndLinkToRegister() &&
instr->following()->Rn() == xzr.code()));
return result;
}
int Assembler::ConstantPoolSizeAt(Instruction* instr) {
#ifdef USE_SIMULATOR
// Assembler::debug() embeds constants directly into the instruction stream.
// Although this is not a genuine constant pool, treat it like one to avoid
// disassembling the constants.
if ((instr->Mask(ExceptionMask) == HLT) &&
(instr->ImmException() == kImmExceptionIsDebug)) {
const char* message =
reinterpret_cast<const char*>(
instr->InstructionAtOffset(kDebugMessageOffset));
int size = kDebugMessageOffset + strlen(message) + 1;
return RoundUp(size, kInstructionSize) / kInstructionSize;
}
// Same for printf support, see MacroAssembler::CallPrintf().
if ((instr->Mask(ExceptionMask) == HLT) &&
(instr->ImmException() == kImmExceptionIsPrintf)) {
return kPrintfLength / kInstructionSize;
}
#endif
if (IsConstantPoolAt(instr)) {
return instr->ImmLLiteral();
} else {
return -1;
}
}
void Assembler::ConstantPoolMarker(uint32_t size) {
ASSERT(is_const_pool_blocked());
// + 1 is for the crash guard.
Emit(LDR_x_lit | ImmLLiteral(size + 1) | Rt(xzr));
}
void Assembler::EmitPoolGuard() {
// We must generate only one instruction as this is used in scopes that
// control the size of the code generated.
Emit(BLR | Rn(xzr));
}
void Assembler::ConstantPoolGuard() {
#ifdef DEBUG
// Currently this is only used after a constant pool marker.
ASSERT(is_const_pool_blocked());
Instruction* instr = reinterpret_cast<Instruction*>(pc_);
ASSERT(instr->preceding()->IsLdrLiteralX() &&
instr->preceding()->Rt() == xzr.code());
#endif
EmitPoolGuard();
}
void Assembler::StartBlockVeneerPool() {
++veneer_pool_blocked_nesting_;
}
void Assembler::EndBlockVeneerPool() {
if (--veneer_pool_blocked_nesting_ == 0) {
// Check the veneer pool hasn't been blocked for too long.
ASSERT(unresolved_branches_.empty() ||
(pc_offset() < unresolved_branches_first_limit()));
}
}
void Assembler::br(const Register& xn) {
positions_recorder()->WriteRecordedPositions();
ASSERT(xn.Is64Bits());
Emit(BR | Rn(xn));
}
void Assembler::blr(const Register& xn) {
positions_recorder()->WriteRecordedPositions();
ASSERT(xn.Is64Bits());
// The pattern 'blr xzr' is used as a guard to detect when execution falls
// through the constant pool. It should not be emitted.
ASSERT(!xn.Is(xzr));
Emit(BLR | Rn(xn));
}
void Assembler::ret(const Register& xn) {
positions_recorder()->WriteRecordedPositions();
ASSERT(xn.Is64Bits());
Emit(RET | Rn(xn));
}
void Assembler::b(int imm26) {
Emit(B | ImmUncondBranch(imm26));
}
void Assembler::b(Label* label) {
positions_recorder()->WriteRecordedPositions();
b(LinkAndGetInstructionOffsetTo(label));
}
void Assembler::b(int imm19, Condition cond) {
Emit(B_cond | ImmCondBranch(imm19) | cond);
}
void Assembler::b(Label* label, Condition cond) {
positions_recorder()->WriteRecordedPositions();
b(LinkAndGetInstructionOffsetTo(label), cond);
}
void Assembler::bl(int imm26) {
positions_recorder()->WriteRecordedPositions();
Emit(BL | ImmUncondBranch(imm26));
}
void Assembler::bl(Label* label) {
positions_recorder()->WriteRecordedPositions();
bl(LinkAndGetInstructionOffsetTo(label));
}
void Assembler::cbz(const Register& rt,
int imm19) {
positions_recorder()->WriteRecordedPositions();
Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
}
void Assembler::cbz(const Register& rt,
Label* label) {
positions_recorder()->WriteRecordedPositions();
cbz(rt, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::cbnz(const Register& rt,
int imm19) {
positions_recorder()->WriteRecordedPositions();
Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
}
void Assembler::cbnz(const Register& rt,
Label* label) {
positions_recorder()->WriteRecordedPositions();
cbnz(rt, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::tbz(const Register& rt,
unsigned bit_pos,
int imm14) {
positions_recorder()->WriteRecordedPositions();
ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
}
void Assembler::tbz(const Register& rt,
unsigned bit_pos,
Label* label) {
positions_recorder()->WriteRecordedPositions();
tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::tbnz(const Register& rt,
unsigned bit_pos,
int imm14) {
positions_recorder()->WriteRecordedPositions();
ASSERT(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
}
void Assembler::tbnz(const Register& rt,
unsigned bit_pos,
Label* label) {
positions_recorder()->WriteRecordedPositions();
tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
}
void Assembler::adr(const Register& rd, int imm21) {
ASSERT(rd.Is64Bits());
Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
}
void Assembler::adr(const Register& rd, Label* label) {
adr(rd, LinkAndGetByteOffsetTo(label));
}
void Assembler::add(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, LeaveFlags, ADD);
}
void Assembler::adds(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, SetFlags, ADD);
}
void Assembler::cmn(const Register& rn,
const Operand& operand) {
Register zr = AppropriateZeroRegFor(rn);
adds(zr, rn, operand);
}
void Assembler::sub(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, LeaveFlags, SUB);
}
void Assembler::subs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSub(rd, rn, operand, SetFlags, SUB);
}
void Assembler::cmp(const Register& rn, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rn);
subs(zr, rn, operand);
}
void Assembler::neg(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sub(rd, zr, operand);
}
void Assembler::negs(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
subs(rd, zr, operand);
}
void Assembler::adc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
}
void Assembler::adcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
}
void Assembler::sbc(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
}
void Assembler::sbcs(const Register& rd,
const Register& rn,
const Operand& operand) {
AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
}
void Assembler::ngc(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sbc(rd, zr, operand);
}
void Assembler::ngcs(const Register& rd, const Operand& operand) {
Register zr = AppropriateZeroRegFor(rd);
sbcs(rd, zr, operand);
}
// Logical instructions.
void Assembler::and_(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, AND);
}
void Assembler::ands(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ANDS);
}
void Assembler::tst(const Register& rn,
const Operand& operand) {
ands(AppropriateZeroRegFor(rn), rn, operand);
}
void Assembler::bic(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, BIC);
}
void Assembler::bics(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, BICS);
}
void Assembler::orr(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ORR);
}
void Assembler::orn(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, ORN);
}
void Assembler::eor(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, EOR);
}
void Assembler::eon(const Register& rd,
const Register& rn,
const Operand& operand) {
Logical(rd, rn, operand, EON);
}
void Assembler::lslv(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::lsrv(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::asrv(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::rorv(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
}
// Bitfield operations.
void Assembler::bfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | BFM | N |
ImmR(immr, rd.SizeInBits()) |
ImmS(imms, rn.SizeInBits()) |
Rn(rn) | Rd(rd));
}
void Assembler::sbfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
ASSERT(rd.Is64Bits() || rn.Is32Bits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | SBFM | N |
ImmR(immr, rd.SizeInBits()) |
ImmS(imms, rn.SizeInBits()) |
Rn(rn) | Rd(rd));
}
void Assembler::ubfm(const Register& rd,
const Register& rn,
unsigned immr,
unsigned imms) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | UBFM | N |
ImmR(immr, rd.SizeInBits()) |
ImmS(imms, rn.SizeInBits()) |
Rn(rn) | Rd(rd));
}
void Assembler::extr(const Register& rd,
const Register& rn,
const Register& rm,
unsigned lsb) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == rm.SizeInBits());
Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
Emit(SF(rd) | EXTR | N | Rm(rm) |
ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
}
void Assembler::csel(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSEL);
}
void Assembler::csinc(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSINC);
}
void Assembler::csinv(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSINV);
}
void Assembler::csneg(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond) {
ConditionalSelect(rd, rn, rm, cond, CSNEG);
}
void Assembler::cset(const Register &rd, Condition cond) {
ASSERT((cond != al) && (cond != nv));
Register zr = AppropriateZeroRegFor(rd);
csinc(rd, zr, zr, InvertCondition(cond));
}
void Assembler::csetm(const Register &rd, Condition cond) {
ASSERT((cond != al) && (cond != nv));
Register zr = AppropriateZeroRegFor(rd);
csinv(rd, zr, zr, InvertCondition(cond));
}
void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
ASSERT((cond != al) && (cond != nv));
csinc(rd, rn, rn, InvertCondition(cond));
}
void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
ASSERT((cond != al) && (cond != nv));
csinv(rd, rn, rn, InvertCondition(cond));
}
void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
ASSERT((cond != al) && (cond != nv));
csneg(rd, rn, rn, InvertCondition(cond));
}
void Assembler::ConditionalSelect(const Register& rd,
const Register& rn,
const Register& rm,
Condition cond,
ConditionalSelectOp op) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
}
void Assembler::ccmn(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
ConditionalCompare(rn, operand, nzcv, cond, CCMN);
}
void Assembler::ccmp(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond) {
ConditionalCompare(rn, operand, nzcv, cond, CCMP);
}
void Assembler::DataProcessing3Source(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra,
DataProcessing3SourceOp op) {
Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
}
void Assembler::mul(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(AreSameSizeAndType(rd, rn, rm));
Register zr = AppropriateZeroRegFor(rn);
DataProcessing3Source(rd, rn, rm, zr, MADD);
}
void Assembler::madd(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
ASSERT(AreSameSizeAndType(rd, rn, rm, ra));
DataProcessing3Source(rd, rn, rm, ra, MADD);
}
void Assembler::mneg(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(AreSameSizeAndType(rd, rn, rm));
Register zr = AppropriateZeroRegFor(rn);
DataProcessing3Source(rd, rn, rm, zr, MSUB);
}
void Assembler::msub(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
ASSERT(AreSameSizeAndType(rd, rn, rm, ra));
DataProcessing3Source(rd, rn, rm, ra, MSUB);
}
void Assembler::smaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
ASSERT(rd.Is64Bits() && ra.Is64Bits());
ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
}
void Assembler::smsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
ASSERT(rd.Is64Bits() && ra.Is64Bits());
ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
}
void Assembler::umaddl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
ASSERT(rd.Is64Bits() && ra.Is64Bits());
ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
}
void Assembler::umsubl(const Register& rd,
const Register& rn,
const Register& rm,
const Register& ra) {
ASSERT(rd.Is64Bits() && ra.Is64Bits());
ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
}
void Assembler::smull(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(rd.Is64Bits());
ASSERT(rn.Is32Bits() && rm.Is32Bits());
DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
}
void Assembler::smulh(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(AreSameSizeAndType(rd, rn, rm));
DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
}
void Assembler::sdiv(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::udiv(const Register& rd,
const Register& rn,
const Register& rm) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == rm.SizeInBits());
Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
}
void Assembler::rbit(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, RBIT);
}
void Assembler::rev16(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, REV16);
}
void Assembler::rev32(const Register& rd,
const Register& rn) {
ASSERT(rd.Is64Bits());
DataProcessing1Source(rd, rn, REV);
}
void Assembler::rev(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
}
void Assembler::clz(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, CLZ);
}
void Assembler::cls(const Register& rd,
const Register& rn) {
DataProcessing1Source(rd, rn, CLS);
}
void Assembler::ldp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src) {
LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
}
void Assembler::stp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst) {
LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
}
void Assembler::ldpsw(const Register& rt,
const Register& rt2,
const MemOperand& src) {
ASSERT(rt.Is64Bits());
LoadStorePair(rt, rt2, src, LDPSW_x);
}
void Assembler::LoadStorePair(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairOp op) {
// 'rt' and 'rt2' can only be aliased for stores.
ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
ASSERT(AreSameSizeAndType(rt, rt2));
Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
ImmLSPair(addr.offset(), CalcLSPairDataSize(op));
Instr addrmodeop;
if (addr.IsImmediateOffset()) {
addrmodeop = LoadStorePairOffsetFixed;
} else {
// Pre-index and post-index modes.
ASSERT(!rt.Is(addr.base()));
ASSERT(!rt2.Is(addr.base()));
ASSERT(addr.offset() != 0);
if (addr.IsPreIndex()) {
addrmodeop = LoadStorePairPreIndexFixed;
} else {
ASSERT(addr.IsPostIndex());
addrmodeop = LoadStorePairPostIndexFixed;
}
}
Emit(addrmodeop | memop);
}
void Assembler::ldnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& src) {
LoadStorePairNonTemporal(rt, rt2, src,
LoadPairNonTemporalOpFor(rt, rt2));
}
void Assembler::stnp(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& dst) {
LoadStorePairNonTemporal(rt, rt2, dst,
StorePairNonTemporalOpFor(rt, rt2));
}
void Assembler::LoadStorePairNonTemporal(const CPURegister& rt,
const CPURegister& rt2,
const MemOperand& addr,
LoadStorePairNonTemporalOp op) {
ASSERT(!rt.Is(rt2));
ASSERT(AreSameSizeAndType(rt, rt2));
ASSERT(addr.IsImmediateOffset());
LSDataSize size = CalcLSPairDataSize(
static_cast<LoadStorePairOp>(op & LoadStorePairMask));
Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
ImmLSPair(addr.offset(), size));
}
// Memory instructions.
void Assembler::ldrb(const Register& rt, const MemOperand& src) {
LoadStore(rt, src, LDRB_w);
}
void Assembler::strb(const Register& rt, const MemOperand& dst) {
LoadStore(rt, dst, STRB_w);
}
void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
}
void Assembler::ldrh(const Register& rt, const MemOperand& src) {
LoadStore(rt, src, LDRH_w);
}
void Assembler::strh(const Register& rt, const MemOperand& dst) {
LoadStore(rt, dst, STRH_w);
}
void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
}
void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
LoadStore(rt, src, LoadOpFor(rt));
}
void Assembler::str(const CPURegister& rt, const MemOperand& src) {
LoadStore(rt, src, StoreOpFor(rt));
}
void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
ASSERT(rt.Is64Bits());
LoadStore(rt, src, LDRSW_x);
}
void Assembler::ldr(const Register& rt, uint64_t imm) {
// TODO(all): Constant pool may be garbage collected. Hence we cannot store
// arbitrary values in them. Manually move it for now. Fix
// MacroAssembler::Fmov when this is implemented.
UNIMPLEMENTED();
}
void Assembler::ldr(const FPRegister& ft, double imm) {
// TODO(all): Constant pool may be garbage collected. Hence we cannot store
// arbitrary values in them. Manually move it for now. Fix
// MacroAssembler::Fmov when this is implemented.
UNIMPLEMENTED();
}
void Assembler::ldr(const FPRegister& ft, float imm) {
// TODO(all): Constant pool may be garbage collected. Hence we cannot store
// arbitrary values in them. Manually move it for now. Fix
// MacroAssembler::Fmov when this is implemented.
UNIMPLEMENTED();
}
void Assembler::mov(const Register& rd, const Register& rm) {
// Moves involving the stack pointer are encoded as add immediate with
// second operand of zero. Otherwise, orr with first operand zr is
// used.
if (rd.IsSP() || rm.IsSP()) {
add(rd, rm, 0);
} else {
orr(rd, AppropriateZeroRegFor(rd), rm);
}
}
void Assembler::mvn(const Register& rd, const Operand& operand) {
orn(rd, AppropriateZeroRegFor(rd), operand);
}
void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
ASSERT(rt.Is64Bits());
Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
}
void Assembler::msr(SystemRegister sysreg, const Register& rt) {
ASSERT(rt.Is64Bits());
Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
}
void Assembler::hint(SystemHint code) {
Emit(HINT | ImmHint(code) | Rt(xzr));
}
void Assembler::dmb(BarrierDomain domain, BarrierType type) {
Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
}
void Assembler::dsb(BarrierDomain domain, BarrierType type) {
Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
}
void Assembler::isb() {
Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
}
void Assembler::fmov(FPRegister fd, double imm) {
ASSERT(fd.Is64Bits());
ASSERT(IsImmFP64(imm));
Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
}
void Assembler::fmov(FPRegister fd, float imm) {
ASSERT(fd.Is32Bits());
ASSERT(IsImmFP32(imm));
Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
}
void Assembler::fmov(Register rd, FPRegister fn) {
ASSERT(rd.SizeInBits() == fn.SizeInBits());
FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
Emit(op | Rd(rd) | Rn(fn));
}
void Assembler::fmov(FPRegister fd, Register rn) {
ASSERT(fd.SizeInBits() == rn.SizeInBits());
FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
Emit(op | Rd(fd) | Rn(rn));
}
void Assembler::fmov(FPRegister fd, FPRegister fn) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
}
void Assembler::fadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FADD);
}
void Assembler::fsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FSUB);
}
void Assembler::fmul(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMUL);
}
void Assembler::fmadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa) {
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
}
void Assembler::fmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa) {
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
}
void Assembler::fnmadd(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa) {
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
}
void Assembler::fnmsub(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa) {
FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
}
void Assembler::fdiv(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FDIV);
}
void Assembler::fmax(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMAX);
}
void Assembler::fmaxnm(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMAXNM);
}
void Assembler::fmin(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMIN);
}
void Assembler::fminnm(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm) {
FPDataProcessing2Source(fd, fn, fm, FMINNM);
}
void Assembler::fabs(const FPRegister& fd,
const FPRegister& fn) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
FPDataProcessing1Source(fd, fn, FABS);
}
void Assembler::fneg(const FPRegister& fd,
const FPRegister& fn) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
FPDataProcessing1Source(fd, fn, FNEG);
}
void Assembler::fsqrt(const FPRegister& fd,
const FPRegister& fn) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
FPDataProcessing1Source(fd, fn, FSQRT);
}
void Assembler::frinta(const FPRegister& fd,
const FPRegister& fn) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
FPDataProcessing1Source(fd, fn, FRINTA);
}
void Assembler::frintm(const FPRegister& fd,
const FPRegister& fn) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
FPDataProcessing1Source(fd, fn, FRINTM);
}
void Assembler::frintn(const FPRegister& fd,
const FPRegister& fn) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
FPDataProcessing1Source(fd, fn, FRINTN);
}
void Assembler::frintz(const FPRegister& fd,
const FPRegister& fn) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
FPDataProcessing1Source(fd, fn, FRINTZ);
}
void Assembler::fcmp(const FPRegister& fn,
const FPRegister& fm) {
ASSERT(fn.SizeInBits() == fm.SizeInBits());
Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
}
void Assembler::fcmp(const FPRegister& fn,
double value) {
USE(value);
// Although the fcmp instruction can strictly only take an immediate value of
// +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
// affect the result of the comparison.
ASSERT(value == 0.0);
Emit(FPType(fn) | FCMP_zero | Rn(fn));
}
void Assembler::fccmp(const FPRegister& fn,
const FPRegister& fm,
StatusFlags nzcv,
Condition cond) {
ASSERT(fn.SizeInBits() == fm.SizeInBits());
Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
}
void Assembler::fcsel(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
Condition cond) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
ASSERT(fd.SizeInBits() == fm.SizeInBits());
Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
}
void Assembler::FPConvertToInt(const Register& rd,
const FPRegister& fn,
FPIntegerConvertOp op) {
Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
}
void Assembler::fcvt(const FPRegister& fd,
const FPRegister& fn) {
if (fd.Is64Bits()) {
// Convert float to double.
ASSERT(fn.Is32Bits());
FPDataProcessing1Source(fd, fn, FCVT_ds);
} else {
// Convert double to float.
ASSERT(fn.Is64Bits());
FPDataProcessing1Source(fd, fn, FCVT_sd);
}
}
void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTAU);
}
void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTAS);
}
void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTMU);
}
void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTMS);
}
void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTNU);
}
void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTNS);
}
void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTZU);
}
void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
FPConvertToInt(rd, fn, FCVTZS);
}
void Assembler::scvtf(const FPRegister& fd,
const Register& rn,
unsigned fbits) {
if (fbits == 0) {
Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
} else {
Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
Rd(fd));
}
}
void Assembler::ucvtf(const FPRegister& fd,
const Register& rn,
unsigned fbits) {
if (fbits == 0) {
Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
} else {
Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
Rd(fd));
}
}
// Note:
// Below, a difference in case for the same letter indicates a
// negated bit.
// If b is 1, then B is 0.
Instr Assembler::ImmFP32(float imm) {
ASSERT(IsImmFP32(imm));
// bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
uint32_t bits = float_to_rawbits(imm);
// bit7: a000.0000
uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
// bit6: 0b00.0000
uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
// bit5_to_0: 00cd.efgh
uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
}
Instr Assembler::ImmFP64(double imm) {
ASSERT(IsImmFP64(imm));
// bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000
uint64_t bits = double_to_rawbits(imm);
// bit7: a000.0000
uint32_t bit7 = ((bits >> 63) & 0x1) << 7;
// bit6: 0b00.0000
uint32_t bit6 = ((bits >> 61) & 0x1) << 6;
// bit5_to_0: 00cd.efgh
uint32_t bit5_to_0 = (bits >> 48) & 0x3f;
return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
}
// Code generation helpers.
void Assembler::MoveWide(const Register& rd,
uint64_t imm,
int shift,
MoveWideImmediateOp mov_op) {
if (shift >= 0) {
// Explicit shift specified.
ASSERT((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16));
shift /= 16;
} else {
// Calculate a new immediate and shift combination to encode the immediate
// argument.
shift = 0;
if ((imm & ~0xffffUL) == 0) {
// Nothing to do.
} else if ((imm & ~(0xffffUL << 16)) == 0) {
imm >>= 16;
shift = 1;
} else if ((imm & ~(0xffffUL << 32)) == 0) {
ASSERT(rd.Is64Bits());
imm >>= 32;
shift = 2;
} else if ((imm & ~(0xffffUL << 48)) == 0) {
ASSERT(rd.Is64Bits());
imm >>= 48;
shift = 3;
}
}
ASSERT(is_uint16(imm));
Emit(SF(rd) | MoveWideImmediateFixed | mov_op |
Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift));
}
void Assembler::AddSub(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubOp op) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(!operand.NeedsRelocation());
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
ASSERT(IsImmAddSub(immediate));
Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
ImmAddSub(immediate) | dest_reg | RnSP(rn));
} else if (operand.IsShiftedRegister()) {
ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
ASSERT(operand.shift() != ROR);
// For instructions of the form:
// add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
// add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
// add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
// adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
// or their 64-bit register equivalents, convert the operand from shifted to
// extended register mode, and emit an add/sub extended instruction.
if (rn.IsSP() || rd.IsSP()) {
ASSERT(!(rd.IsSP() && (S == SetFlags)));
DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
AddSubExtendedFixed | op);
} else {
DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
}
} else {
ASSERT(operand.IsExtendedRegister());
DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
}
}
void Assembler::AddSubWithCarry(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
AddSubWithCarryOp op) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(rd.SizeInBits() == operand.reg().SizeInBits());
ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
ASSERT(!operand.NeedsRelocation());
Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
}
void Assembler::hlt(int code) {
ASSERT(is_uint16(code));
Emit(HLT | ImmException(code));
}
void Assembler::brk(int code) {
ASSERT(is_uint16(code));
Emit(BRK | ImmException(code));
}
void Assembler::debug(const char* message, uint32_t code, Instr params) {
#ifdef USE_SIMULATOR
// Don't generate simulator specific code if we are building a snapshot, which
// might be run on real hardware.
if (!Serializer::enabled()) {
// The arguments to the debug marker need to be contiguous in memory, so
// make sure we don't try to emit pools.
BlockPoolsScope scope(this);
Label start;
bind(&start);
// Refer to instructions-arm64.h for a description of the marker and its
// arguments.
hlt(kImmExceptionIsDebug);
ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
dc32(code);
ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
dc32(params);
ASSERT(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
EmitStringData(message);
hlt(kImmExceptionIsUnreachable);
return;
}
// Fall through if Serializer is enabled.
#endif
if (params & BREAK) {
hlt(kImmExceptionIsDebug);
}
}
void Assembler::Logical(const Register& rd,
const Register& rn,
const Operand& operand,
LogicalOp op) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
ASSERT(!operand.NeedsRelocation());
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
unsigned reg_size = rd.SizeInBits();
ASSERT(immediate != 0);
ASSERT(immediate != -1);
ASSERT(rd.Is64Bits() || is_uint32(immediate));
// If the operation is NOT, invert the operation and immediate.
if ((op & NOT) == NOT) {
op = static_cast<LogicalOp>(op & ~NOT);
immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
}
unsigned n, imm_s, imm_r;
if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
// Immediate can be encoded in the instruction.
LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
} else {
// This case is handled in the macro assembler.
UNREACHABLE();
}
} else {
ASSERT(operand.IsShiftedRegister());
ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
}
}
void Assembler::LogicalImmediate(const Register& rd,
const Register& rn,
unsigned n,
unsigned imm_s,
unsigned imm_r,
LogicalOp op) {
unsigned reg_size = rd.SizeInBits();
Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
Rn(rn));
}
void Assembler::ConditionalCompare(const Register& rn,
const Operand& operand,
StatusFlags nzcv,
Condition cond,
ConditionalCompareOp op) {
Instr ccmpop;
ASSERT(!operand.NeedsRelocation());
if (operand.IsImmediate()) {
int64_t immediate = operand.immediate();
ASSERT(IsImmConditionalCompare(immediate));
ccmpop = ConditionalCompareImmediateFixed | op | ImmCondCmp(immediate);
} else {
ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
}
Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
}
void Assembler::DataProcessing1Source(const Register& rd,
const Register& rn,
DataProcessing1SourceOp op) {
ASSERT(rd.SizeInBits() == rn.SizeInBits());
Emit(SF(rn) | op | Rn(rn) | Rd(rd));
}
void Assembler::FPDataProcessing1Source(const FPRegister& fd,
const FPRegister& fn,
FPDataProcessing1SourceOp op) {
Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
}
void Assembler::FPDataProcessing2Source(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
FPDataProcessing2SourceOp op) {
ASSERT(fd.SizeInBits() == fn.SizeInBits());
ASSERT(fd.SizeInBits() == fm.SizeInBits());
Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
}
void Assembler::FPDataProcessing3Source(const FPRegister& fd,
const FPRegister& fn,
const FPRegister& fm,
const FPRegister& fa,
FPDataProcessing3SourceOp op) {
ASSERT(AreSameSizeAndType(fd, fn, fm, fa));
Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
}
void Assembler::EmitShift(const Register& rd,
const Register& rn,
Shift shift,
unsigned shift_amount) {
switch (shift) {
case LSL:
lsl(rd, rn, shift_amount);
break;
case LSR:
lsr(rd, rn, shift_amount);
break;
case ASR:
asr(rd, rn, shift_amount);
break;
case ROR:
ror(rd, rn, shift_amount);
break;
default:
UNREACHABLE();
}
}
void Assembler::EmitExtendShift(const Register& rd,
const Register& rn,
Extend extend,
unsigned left_shift) {
ASSERT(rd.SizeInBits() >= rn.SizeInBits());
unsigned reg_size = rd.SizeInBits();
// Use the correct size of register.
Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
// Bits extracted are high_bit:0.
unsigned high_bit = (8 << (extend & 0x3)) - 1;
// Number of bits left in the result that are not introduced by the shift.
unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
switch (extend) {
case UXTB:
case UXTH:
case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
case SXTB:
case SXTH:
case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
case UXTX:
case SXTX: {
ASSERT(rn.SizeInBits() == kXRegSizeInBits);
// Nothing to extend. Just shift.
lsl(rd, rn_, left_shift);
break;
}
default: UNREACHABLE();
}
} else {
// No need to extend as the extended bits would be shifted away.
lsl(rd, rn_, left_shift);
}
}
void Assembler::DataProcShiftedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op) {
ASSERT(operand.IsShiftedRegister());
ASSERT(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
ASSERT(!operand.NeedsRelocation());
Emit(SF(rd) | op | Flags(S) |
ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
Rm(operand.reg()) | Rn(rn) | Rd(rd));
}
void Assembler::DataProcExtendedRegister(const Register& rd,
const Register& rn,
const Operand& operand,
FlagsUpdate S,
Instr op) {
ASSERT(!operand.NeedsRelocation());
Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
dest_reg | RnSP(rn));
}
bool Assembler::IsImmAddSub(int64_t immediate) {
return is_uint12(immediate) ||
(is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
}
void Assembler::LoadStore(const CPURegister& rt,
const MemOperand& addr,
LoadStoreOp op) {
Instr memop = op | Rt(rt) | RnSP(addr.base());
ptrdiff_t offset = addr.offset();
if (addr.IsImmediateOffset()) {
LSDataSize size = CalcLSDataSize(op);
if (IsImmLSScaled(offset, size)) {
// Use the scaled addressing mode.
Emit(LoadStoreUnsignedOffsetFixed | memop |
ImmLSUnsigned(offset >> size));
} else if (IsImmLSUnscaled(offset)) {
// Use the unscaled addressing mode.
Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
} else {
// This case is handled in the macro assembler.
UNREACHABLE();
}
} else if (addr.IsRegisterOffset()) {
Extend ext = addr.extend();
Shift shift = addr.shift();
unsigned shift_amount = addr.shift_amount();
// LSL is encoded in the option field as UXTX.
if (shift == LSL) {
ext = UXTX;
}
// Shifts are encoded in one bit, indicating a left shift by the memory
// access size.
ASSERT((shift_amount == 0) ||
(shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
} else {
// Pre-index and post-index modes.
ASSERT(!rt.Is(addr.base()));
if (IsImmLSUnscaled(offset)) {
if (addr.IsPreIndex()) {
Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
} else {
ASSERT(addr.IsPostIndex());
Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
}
} else {
// This case is handled in the macro assembler.
UNREACHABLE();
}
}
}
bool Assembler::IsImmLSUnscaled(ptrdiff_t offset) {
return is_int9(offset);
}
bool Assembler::IsImmLSScaled(ptrdiff_t offset, LSDataSize size) {
bool offset_is_size_multiple = (((offset >> size) << size) == offset);
return offset_is_size_multiple && is_uint12(offset >> size);
}
void Assembler::LoadLiteral(const CPURegister& rt, int offset_from_pc) {
ASSERT((offset_from_pc & ((1 << kLiteralEntrySizeLog2) - 1)) == 0);
// The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
// constant pool. It should not be emitted.
ASSERT(!rt.Is(xzr));
Emit(LDR_x_lit |
ImmLLiteral(offset_from_pc >> kLiteralEntrySizeLog2) |
Rt(rt));
}
void Assembler::LoadRelocatedValue(const CPURegister& rt,
const Operand& operand,
LoadLiteralOp op) {
int64_t imm = operand.immediate();
ASSERT(is_int32(imm) || is_uint32(imm) || (rt.Is64Bits()));
RecordRelocInfo(operand.rmode(), imm);
BlockConstPoolFor(1);
Emit(op | ImmLLiteral(0) | Rt(rt));
}
// Test if a given value can be encoded in the immediate field of a logical
// instruction.
// If it can be encoded, the function returns true, and values pointed to by n,
// imm_s and imm_r are updated with immediates encoded in the format required
// by the corresponding fields in the logical instruction.
// If it can not be encoded, the function returns false, and the values pointed
// to by n, imm_s and imm_r are undefined.
bool Assembler::IsImmLogical(uint64_t value,
unsigned width,
unsigned* n,
unsigned* imm_s,
unsigned* imm_r) {
ASSERT((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
ASSERT((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1
// bits are set. The pattern is rotated right by R, and repeated across a
// 32 or 64-bit value, depending on destination register width.
//
// To test if an arbitary immediate can be encoded using this scheme, an
// iterative algorithm is used.
//
// TODO(mcapewel) This code does not consider using X/W register overlap to
// support 64-bit immediates where the top 32-bits are zero, and the bottom
// 32-bits are an encodable logical immediate.
// 1. If the value has all set or all clear bits, it can't be encoded.
if ((value == 0) || (value == 0xffffffffffffffffUL) ||
((width == kWRegSizeInBits) && (value == 0xffffffff))) {
return false;
}
unsigned lead_zero = CountLeadingZeros(value, width);
unsigned lead_one = CountLeadingZeros(~value, width);
unsigned trail_zero = CountTrailingZeros(value, width);
unsigned trail_one = CountTrailingZeros(~value, width);
unsigned set_bits = CountSetBits(value, width);
// The fixed bits in the immediate s field.
// If width == 64 (X reg), start at 0xFFFFFF80.
// If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit
// widths won't be executed.
int imm_s_fixed = (width == kXRegSizeInBits) ? -128 : -64;
int imm_s_mask = 0x3F;
for (;;) {
// 2. If the value is two bits wide, it can be encoded.
if (width == 2) {
*n = 0;
*imm_s = 0x3C;
*imm_r = (value & 3) - 1;
return true;
}
*n = (width == 64) ? 1 : 0;
*imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask);
if ((lead_zero + set_bits) == width) {
*imm_r = 0;
} else {
*imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one;
}
// 3. If the sum of leading zeros, trailing zeros and set bits is equal to
// the bit width of the value, it can be encoded.
if (lead_zero + trail_zero + set_bits == width) {
return true;
}
// 4. If the sum of leading ones, trailing ones and unset bits in the
// value is equal to the bit width of the value, it can be encoded.
if (lead_one + trail_one + (width - set_bits) == width) {
return true;
}
// 5. If the most-significant half of the bitwise value is equal to the
// least-significant half, return to step 2 using the least-significant
// half of the value.
uint64_t mask = (1UL << (width >> 1)) - 1;
if ((value & mask) == ((value >> (width >> 1)) & mask)) {
width >>= 1;
set_bits >>= 1;
imm_s_fixed >>= 1;
continue;
}
// 6. Otherwise, the value can't be encoded.
return false;
}
}
bool Assembler::IsImmConditionalCompare(int64_t immediate) {
return is_uint5(immediate);
}
bool Assembler::IsImmFP32(float imm) {
// Valid values will have the form:
// aBbb.bbbc.defg.h000.0000.0000.0000.0000
uint32_t bits = float_to_rawbits(imm);
// bits[19..0] are cleared.
if ((bits & 0x7ffff) != 0) {
return false;
}
// bits[29..25] are all set or all cleared.
uint32_t b_pattern = (bits >> 16) & 0x3e00;
if (b_pattern != 0 && b_pattern != 0x3e00) {
return false;
}
// bit[30] and bit[29] are opposite.
if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
return false;
}
return true;
}
bool Assembler::IsImmFP64(double imm) {
// Valid values will have the form:
// aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000
uint64_t bits = double_to_rawbits(imm);
// bits[47..0] are cleared.
if ((bits & 0xffffffffffffL) != 0) {
return false;
}
// bits[61..54] are all set or all cleared.
uint32_t b_pattern = (bits >> 48) & 0x3fc0;
if (b_pattern != 0 && b_pattern != 0x3fc0) {
return false;
}
// bit[62] and bit[61] are opposite.
if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
return false;
}
return true;
}
void Assembler::GrowBuffer() {
if (!own_buffer_) FATAL("external code buffer is too small");
// Compute new buffer size.
CodeDesc desc; // the new buffer
if (buffer_size_ < 4 * KB) {
desc.buffer_size = 4 * KB;
} else if (buffer_size_ < 1 * MB) {
desc.buffer_size = 2 * buffer_size_;
} else {
desc.buffer_size = buffer_size_ + 1 * MB;
}
CHECK_GT(desc.buffer_size, 0); // No overflow.
byte* buffer = reinterpret_cast<byte*>(buffer_);
// Set up new buffer.
desc.buffer = NewArray<byte>(desc.buffer_size);
desc.instr_size = pc_offset();
desc.reloc_size = (buffer + buffer_size_) - reloc_info_writer.pos();
// Copy the data.
intptr_t pc_delta = desc.buffer - buffer;
intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
(buffer + buffer_size_);
memmove(desc.buffer, buffer, desc.instr_size);
memmove(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.pos(), desc.reloc_size);
// Switch buffers.
DeleteArray(buffer_);
buffer_ = desc.buffer;
buffer_size_ = desc.buffer_size;
pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// None of our relocation types are pc relative pointing outside the code
// buffer nor pc absolute pointing inside the code buffer, so there is no need
// to relocate any emitted relocation entries.
// Relocate pending relocation entries.
for (int i = 0; i < num_pending_reloc_info_; i++) {
RelocInfo& rinfo = pending_reloc_info_[i];
ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
rinfo.rmode() != RelocInfo::POSITION);
if (rinfo.rmode() != RelocInfo::JS_RETURN) {
rinfo.set_pc(rinfo.pc() + pc_delta);
}
}
}
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
// We do not try to reuse pool constants.
RelocInfo rinfo(reinterpret_cast<byte*>(pc_), rmode, data, NULL);
if (((rmode >= RelocInfo::JS_RETURN) &&
(rmode <= RelocInfo::DEBUG_BREAK_SLOT)) ||
(rmode == RelocInfo::CONST_POOL) ||
(rmode == RelocInfo::VENEER_POOL)) {
// Adjust code for new modes.
ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
|| RelocInfo::IsJSReturn(rmode)
|| RelocInfo::IsComment(rmode)
|| RelocInfo::IsPosition(rmode)
|| RelocInfo::IsConstPool(rmode)
|| RelocInfo::IsVeneerPool(rmode));
// These modes do not need an entry in the constant pool.
} else {
ASSERT(num_pending_reloc_info_ < kMaxNumPendingRelocInfo);
if (num_pending_reloc_info_ == 0) {
first_const_pool_use_ = pc_offset();
}
pending_reloc_info_[num_pending_reloc_info_++] = rinfo;
// Make sure the constant pool is not emitted in place of the next
// instruction for which we just recorded relocation info.
BlockConstPoolFor(1);
}
if (!RelocInfo::IsNone(rmode)) {
// Don't record external references unless the heap will be serialized.
if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
if (!Serializer::enabled() && !emit_debug_code()) {
return;
}
}
ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
RelocInfo reloc_info_with_ast_id(
reinterpret_cast<byte*>(pc_), rmode, RecordedAstId().ToInt(), NULL);
ClearRecordedAstId();
reloc_info_writer.Write(&reloc_info_with_ast_id);
} else {
reloc_info_writer.Write(&rinfo);
}
}
}
void Assembler::BlockConstPoolFor(int instructions) {
int pc_limit = pc_offset() + instructions * kInstructionSize;
if (no_const_pool_before_ < pc_limit) {
// If there are some pending entries, the constant pool cannot be blocked
// further than first_const_pool_use_ + kMaxDistToConstPool
ASSERT((num_pending_reloc_info_ == 0) ||
(pc_limit < (first_const_pool_use_ + kMaxDistToConstPool)));
no_const_pool_before_ = pc_limit;
}
if (next_constant_pool_check_ < no_const_pool_before_) {
next_constant_pool_check_ = no_const_pool_before_;
}
}
void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
// Some short sequence of instruction mustn't be broken up by constant pool
// emission, such sequences are protected by calls to BlockConstPoolFor and
// BlockConstPoolScope.
if (is_const_pool_blocked()) {
// Something is wrong if emission is forced and blocked at the same time.
ASSERT(!force_emit);
return;
}
// There is nothing to do if there are no pending constant pool entries.
if (num_pending_reloc_info_ == 0) {
// Calculate the offset of the next check.
next_constant_pool_check_ = pc_offset() + kCheckConstPoolInterval;
return;
}
// We emit a constant pool when:
// * requested to do so by parameter force_emit (e.g. after each function).
// * the distance to the first instruction accessing the constant pool is
// kAvgDistToConstPool or more.
// * no jump is required and the distance to the first instruction accessing
// the constant pool is at least kMaxDistToPConstool / 2.
ASSERT(first_const_pool_use_ >= 0);
int dist = pc_offset() - first_const_pool_use_;
if (!force_emit && dist < kAvgDistToConstPool &&
(require_jump || (dist < (kMaxDistToConstPool / 2)))) {
return;
}
int jump_instr = require_jump ? kInstructionSize : 0;
int size_pool_marker = kInstructionSize;
int size_pool_guard = kInstructionSize;
int pool_size = jump_instr + size_pool_marker + size_pool_guard +
num_pending_reloc_info_ * kPointerSize;
int needed_space = pool_size + kGap;
// Emit veneers for branches that would go out of range during emission of the
// constant pool.
CheckVeneerPool(false, require_jump, kVeneerDistanceMargin + pool_size);
Label size_check;
bind(&size_check);
// Check that the code buffer is large enough before emitting the constant
// pool (include the jump over the pool, the constant pool marker, the
// constant pool guard, and the gap to the relocation information).
while (buffer_space() <= needed_space) {
GrowBuffer();
}
{
// Block recursive calls to CheckConstPool and protect from veneer pools.
BlockPoolsScope block_pools(this);
RecordConstPool(pool_size);
// Emit jump over constant pool if necessary.
Label after_pool;
if (require_jump) {
b(&after_pool);
}
// Emit a constant pool header. The header has two goals:
// 1) Encode the size of the constant pool, for use by the disassembler.
// 2) Terminate the program, to try to prevent execution from accidentally
// flowing into the constant pool.
// The header is therefore made of two arm64 instructions:
// ldr xzr, #<size of the constant pool in 32-bit words>
// blr xzr
// If executed the code will likely segfault and lr will point to the
// beginning of the constant pool.
// TODO(all): currently each relocated constant is 64 bits, consider adding
// support for 32-bit entries.
RecordComment("[ Constant Pool");
ConstantPoolMarker(2 * num_pending_reloc_info_);
ConstantPoolGuard();
// Emit constant pool entries.
for (int i = 0; i < num_pending_reloc_info_; i++) {
RelocInfo& rinfo = pending_reloc_info_[i];
ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
rinfo.rmode() != RelocInfo::POSITION &&
rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
rinfo.rmode() != RelocInfo::CONST_POOL &&
rinfo.rmode() != RelocInfo::VENEER_POOL);
Instruction* instr = reinterpret_cast<Instruction*>(rinfo.pc());
// Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
ASSERT(instr->IsLdrLiteral() &&
instr->ImmLLiteral() == 0);
instr->SetImmPCOffsetTarget(reinterpret_cast<Instruction*>(pc_));
dc64(rinfo.data());
}
num_pending_reloc_info_ = 0;
first_const_pool_use_ = -1;
RecordComment("]");
if (after_pool.is_linked()) {
bind(&after_pool);
}
}
// Since a constant pool was just emitted, move the check offset forward by
// the standard interval.
next_constant_pool_check_ = pc_offset() + kCheckConstPoolInterval;
ASSERT(SizeOfCodeGeneratedSince(&size_check) ==
static_cast<unsigned>(pool_size));
}
bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
// Account for the branch around the veneers and the guard.
int protection_offset = 2 * kInstructionSize;
return pc_offset() > max_reachable_pc - margin - protection_offset -
static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
}
void Assembler::RecordVeneerPool(int location_offset, int size) {
RelocInfo rinfo(buffer_ + location_offset,
RelocInfo::VENEER_POOL, static_cast<intptr_t>(size),
NULL);
reloc_info_writer.Write(&rinfo);
}
void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
BlockPoolsScope scope(this);
RecordComment("[ Veneers");
// The exact size of the veneer pool must be recorded (see the comment at the
// declaration site of RecordConstPool()), but computing the number of
// veneers that will be generated is not obvious. So instead we remember the
// current position and will record the size after the pool has been
// generated.
Label size_check;
bind(&size_check);
int veneer_pool_relocinfo_loc = pc_offset();
Label end;
if (need_protection) {
b(&end);
}
EmitVeneersGuard();
Label veneer_size_check;
std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
it = unresolved_branches_.begin();
while (it != unresolved_branches_.end()) {
if (force_emit || ShouldEmitVeneer(it->first, margin)) {
Instruction* branch = InstructionAt(it->second.pc_offset_);
Label* label = it->second.label_;
#ifdef DEBUG
bind(&veneer_size_check);
#endif
// Patch the branch to point to the current position, and emit a branch
// to the label.
Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
RemoveBranchFromLabelLinkChain(branch, label, veneer);
branch->SetImmPCOffsetTarget(veneer);
b(label);
#ifdef DEBUG
ASSERT(SizeOfCodeGeneratedSince(&veneer_size_check) <=
static_cast<uint64_t>(kMaxVeneerCodeSize));
veneer_size_check.Unuse();
#endif
it_to_delete = it++;
unresolved_branches_.erase(it_to_delete);
} else {
++it;
}
}
// Record the veneer pool size.
int pool_size = SizeOfCodeGeneratedSince(&size_check);
RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
if (unresolved_branches_.empty()) {
next_veneer_pool_check_ = kMaxInt;
} else {
next_veneer_pool_check_ =
unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
}
bind(&end);
RecordComment("]");
}
void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
int margin) {
// There is nothing to do if there are no pending veneer pool entries.
if (unresolved_branches_.empty()) {
ASSERT(next_veneer_pool_check_ == kMaxInt);
return;
}
ASSERT(pc_offset() < unresolved_branches_first_limit());
// Some short sequence of instruction mustn't be broken up by veneer pool
// emission, such sequences are protected by calls to BlockVeneerPoolFor and
// BlockVeneerPoolScope.
if (is_veneer_pool_blocked()) {
ASSERT(!force_emit);
return;
}
if (!require_jump) {
// Prefer emitting veneers protected by an existing instruction.
margin *= kVeneerNoProtectionFactor;
}
if (force_emit || ShouldEmitVeneers(margin)) {
EmitVeneers(force_emit, require_jump, margin);
} else {
next_veneer_pool_check_ =
unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
}
}
void Assembler::RecordComment(const char* msg) {
if (FLAG_code_comments) {
CheckBuffer();
RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
}
}
int Assembler::buffer_space() const {
return reloc_info_writer.pos() - reinterpret_cast<byte*>(pc_);
}
void Assembler::RecordJSReturn() {
positions_recorder()->WriteRecordedPositions();
CheckBuffer();
RecordRelocInfo(RelocInfo::JS_RETURN);
}
void Assembler::RecordDebugBreakSlot() {
positions_recorder()->WriteRecordedPositions();
CheckBuffer();
RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
}
void Assembler::RecordConstPool(int size) {
// We only need this for debugger support, to correctly compute offsets in the
// code.
RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
}
Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
// No out-of-line constant pool support.
ASSERT(!FLAG_enable_ool_constant_pool);
return isolate->factory()->empty_constant_pool_array();
}
void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
// No out-of-line constant pool support.
ASSERT(!FLAG_enable_ool_constant_pool);
return;
}
void PatchingAssembler::MovInt64(const Register& rd, int64_t imm) {
Label start;
bind(&start);
ASSERT(rd.Is64Bits());
ASSERT(!rd.IsSP());
for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
movk(rd, imm16, 16 * i);
}
ASSERT(SizeOfCodeGeneratedSince(&start) ==
kMovInt64NInstrs * kInstructionSize);
}
void PatchingAssembler::PatchAdrFar(Instruction* target) {
// The code at the current instruction should be:
// adr rd, 0
// nop (adr_far)
// nop (adr_far)
// nop (adr_far)
// movz scratch, 0
// add rd, rd, scratch
// Verify the expected code.
Instruction* expected_adr = InstructionAt(0);
CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
int rd_code = expected_adr->Rd();
for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
}
Instruction* expected_movz =
InstructionAt((kAdrFarPatchableNInstrs - 2) * kInstructionSize);
CHECK(expected_movz->IsMovz() &&
(expected_movz->ImmMoveWide() == 0) &&
(expected_movz->ShiftMoveWide() == 0));
int scratch_code = expected_movz->Rd();
Instruction* expected_add =
InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
CHECK(expected_add->IsAddSubShifted() &&
(expected_add->Mask(AddSubOpMask) == ADD) &&
expected_add->SixtyFourBits() &&
(expected_add->Rd() == rd_code) && (expected_add->Rn() == rd_code) &&
(expected_add->Rm() == scratch_code) &&
(static_cast<Shift>(expected_add->ShiftDP()) == LSL) &&
(expected_add->ImmDPShift() == 0));
// Patch to load the correct address.
Label start;
bind(&start);
Register rd = Register::XRegFromCode(rd_code);
// If the target is in range, we only patch the adr. Otherwise we patch the
// nops with fixup instructions.
int target_offset = expected_adr->DistanceTo(target);
if (Instruction::IsValidPCRelOffset(target_offset)) {
adr(rd, target_offset);
for (int i = 0; i < kAdrFarPatchableNInstrs - 2; ++i) {
nop(ADR_FAR_NOP);
}
} else {
Register scratch = Register::XRegFromCode(scratch_code);
adr(rd, 0);
MovInt64(scratch, target_offset);
add(rd, rd, scratch);
}
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM64