blob: cd92af11852c0f77c7140804cf6500e767087474 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/accessors.h"
#include "src/api.h"
#include "src/arguments.h"
#include "src/codegen.h"
#include "src/conversions.h"
#include "src/execution.h"
#include "src/ic-inl.h"
#include "src/runtime.h"
#include "src/stub-cache.h"
namespace v8 {
namespace internal {
#ifdef DEBUG
char IC::TransitionMarkFromState(IC::State state) {
switch (state) {
case UNINITIALIZED: return '0';
case PREMONOMORPHIC: return '.';
case MONOMORPHIC: return '1';
case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
case POLYMORPHIC: return 'P';
case MEGAMORPHIC: return 'N';
case GENERIC: return 'G';
// We never see the debugger states here, because the state is
// computed from the original code - not the patched code. Let
// these cases fall through to the unreachable code below.
case DEBUG_STUB: break;
}
UNREACHABLE();
return 0;
}
const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
return ".IGNORE_OOB";
}
if (IsGrowStoreMode(mode)) return ".GROW";
return "";
}
void IC::TraceIC(const char* type,
Handle<Object> name) {
if (FLAG_trace_ic) {
Code* new_target = raw_target();
State new_state = new_target->ic_state();
PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
StackFrameIterator it(isolate());
while (it.frame()->fp() != this->fp()) it.Advance();
StackFrame* raw_frame = it.frame();
if (raw_frame->is_internal()) {
Code* apply_builtin = isolate()->builtins()->builtin(
Builtins::kFunctionApply);
if (raw_frame->unchecked_code() == apply_builtin) {
PrintF("apply from ");
it.Advance();
raw_frame = it.frame();
}
}
JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
ExtraICState extra_state = new_target->extra_ic_state();
const char* modifier = "";
if (new_target->kind() == Code::KEYED_STORE_IC) {
modifier = GetTransitionMarkModifier(
KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
}
PrintF(" (%c->%c%s)",
TransitionMarkFromState(state()),
TransitionMarkFromState(new_state),
modifier);
name->Print();
PrintF("]\n");
}
}
#define TRACE_GENERIC_IC(isolate, type, reason) \
do { \
if (FLAG_trace_ic) { \
PrintF("[%s patching generic stub in ", type); \
JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
PrintF(" (%s)]\n", reason); \
} \
} while (false)
#else
#define TRACE_GENERIC_IC(isolate, type, reason)
#endif // DEBUG
#define TRACE_IC(type, name) \
ASSERT((TraceIC(type, name), true))
IC::IC(FrameDepth depth, Isolate* isolate)
: isolate_(isolate),
target_set_(false),
target_maps_set_(false) {
// To improve the performance of the (much used) IC code, we unfold a few
// levels of the stack frame iteration code. This yields a ~35% speedup when
// running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
const Address entry =
Isolate::c_entry_fp(isolate->thread_local_top());
Address constant_pool = NULL;
if (FLAG_enable_ool_constant_pool) {
constant_pool = Memory::Address_at(
entry + ExitFrameConstants::kConstantPoolOffset);
}
Address* pc_address =
reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
// If there's another JavaScript frame on the stack or a
// StubFailureTrampoline, we need to look one frame further down the stack to
// find the frame pointer and the return address stack slot.
if (depth == EXTRA_CALL_FRAME) {
if (FLAG_enable_ool_constant_pool) {
constant_pool = Memory::Address_at(
fp + StandardFrameConstants::kConstantPoolOffset);
}
const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
#ifdef DEBUG
StackFrameIterator it(isolate);
for (int i = 0; i < depth + 1; i++) it.Advance();
StackFrame* frame = it.frame();
ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
#endif
fp_ = fp;
if (FLAG_enable_ool_constant_pool) {
raw_constant_pool_ = handle(
ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)),
isolate);
}
pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
target_ = handle(raw_target(), isolate);
state_ = target_->ic_state();
extra_ic_state_ = target_->extra_ic_state();
}
SharedFunctionInfo* IC::GetSharedFunctionInfo() const {
// Compute the JavaScript frame for the frame pointer of this IC
// structure. We need this to be able to find the function
// corresponding to the frame.
StackFrameIterator it(isolate());
while (it.frame()->fp() != this->fp()) it.Advance();
JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
// Find the function on the stack and both the active code for the
// function and the original code.
JSFunction* function = frame->function();
return function->shared();
}
Code* IC::GetCode() const {
HandleScope scope(isolate());
Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
Code* code = shared->code();
return code;
}
Code* IC::GetOriginalCode() const {
HandleScope scope(isolate());
Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
ASSERT(Debug::HasDebugInfo(shared));
Code* original_code = Debug::GetDebugInfo(shared)->original_code();
ASSERT(original_code->IsCode());
return original_code;
}
static bool HasInterceptorGetter(JSObject* object) {
return !object->GetNamedInterceptor()->getter()->IsUndefined();
}
static bool HasInterceptorSetter(JSObject* object) {
return !object->GetNamedInterceptor()->setter()->IsUndefined();
}
static void LookupForRead(Handle<Object> object,
Handle<String> name,
LookupResult* lookup) {
// Skip all the objects with named interceptors, but
// without actual getter.
while (true) {
object->Lookup(name, lookup);
// Besides normal conditions (property not found or it's not
// an interceptor), bail out if lookup is not cacheable: we won't
// be able to IC it anyway and regular lookup should work fine.
if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
return;
}
Handle<JSObject> holder(lookup->holder(), lookup->isolate());
if (HasInterceptorGetter(*holder)) {
return;
}
holder->LookupOwnRealNamedProperty(name, lookup);
if (lookup->IsFound()) {
ASSERT(!lookup->IsInterceptor());
return;
}
Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
if (proto->IsNull()) {
ASSERT(!lookup->IsFound());
return;
}
object = proto;
}
}
bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
Handle<String> name) {
if (!IsNameCompatibleWithMonomorphicPrototypeFailure(name)) return false;
InlineCacheHolderFlag cache_holder =
Code::ExtractCacheHolderFromFlags(target()->flags());
switch (cache_holder) {
case OWN_MAP:
// The stub was generated for JSObject but called for non-JSObject.
// IC::GetCodeCacheHolder is not applicable.
if (!receiver->IsJSObject()) return false;
break;
case PROTOTYPE_MAP:
// IC::GetCodeCacheHolder is not applicable.
if (receiver->GetPrototype(isolate())->IsNull()) return false;
break;
}
Handle<Map> map(
IC::GetCodeCacheHolder(isolate(), *receiver, cache_holder)->map());
// Decide whether the inline cache failed because of changes to the
// receiver itself or changes to one of its prototypes.
//
// If there are changes to the receiver itself, the map of the
// receiver will have changed and the current target will not be in
// the receiver map's code cache. Therefore, if the current target
// is in the receiver map's code cache, the inline cache failed due
// to prototype check failure.
int index = map->IndexInCodeCache(*name, *target());
if (index >= 0) {
map->RemoveFromCodeCache(*name, *target(), index);
// Handlers are stored in addition to the ICs on the map. Remove those, too.
TryRemoveInvalidHandlers(map, name);
return true;
}
// The stub is not in the cache. We've ruled out all other kinds of failure
// except for proptotype chain changes, a deprecated map, a map that's
// different from the one that the stub expects, elements kind changes, or a
// constant global property that will become mutable. Threat all those
// situations as prototype failures (stay monomorphic if possible).
// If the IC is shared between multiple receivers (slow dictionary mode), then
// the map cannot be deprecated and the stub invalidated.
if (cache_holder == OWN_MAP) {
Map* old_map = FirstTargetMap();
if (old_map == *map) return true;
if (old_map != NULL) {
if (old_map->is_deprecated()) return true;
if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
map->elements_kind())) {
return true;
}
}
}
if (receiver->IsGlobalObject()) {
LookupResult lookup(isolate());
GlobalObject* global = GlobalObject::cast(*receiver);
global->LookupOwnRealNamedProperty(name, &lookup);
if (!lookup.IsFound()) return false;
PropertyCell* cell = global->GetPropertyCell(&lookup);
return cell->type()->IsConstant();
}
return false;
}
void IC::TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name) {
CodeHandleList handlers;
target()->FindHandlers(&handlers);
for (int i = 0; i < handlers.length(); i++) {
Handle<Code> handler = handlers.at(i);
int index = map->IndexInCodeCache(*name, *handler);
if (index >= 0) {
map->RemoveFromCodeCache(*name, *handler, index);
return;
}
}
}
bool IC::IsNameCompatibleWithMonomorphicPrototypeFailure(Handle<Object> name) {
if (target()->is_keyed_stub()) {
// Determine whether the failure is due to a name failure.
if (!name->IsName()) return false;
Name* stub_name = target()->FindFirstName();
if (*name != stub_name) return false;
}
return true;
}
void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
if (!name->IsString()) return;
if (state() != MONOMORPHIC) {
if (state() == POLYMORPHIC && receiver->IsHeapObject()) {
TryRemoveInvalidHandlers(
handle(Handle<HeapObject>::cast(receiver)->map()),
Handle<String>::cast(name));
}
return;
}
if (receiver->IsUndefined() || receiver->IsNull()) return;
// Remove the target from the code cache if it became invalid
// because of changes in the prototype chain to avoid hitting it
// again.
if (TryRemoveInvalidPrototypeDependentStub(
receiver, Handle<String>::cast(name)) &&
TryMarkMonomorphicPrototypeFailure(name)) {
return;
}
// The builtins object is special. It only changes when JavaScript
// builtins are loaded lazily. It is important to keep inline
// caches for the builtins object monomorphic. Therefore, if we get
// an inline cache miss for the builtins object after lazily loading
// JavaScript builtins, we return uninitialized as the state to
// force the inline cache back to monomorphic state.
if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
}
MaybeHandle<Object> IC::TypeError(const char* type,
Handle<Object> object,
Handle<Object> key) {
HandleScope scope(isolate());
Handle<Object> args[2] = { key, object };
Handle<Object> error = isolate()->factory()->NewTypeError(
type, HandleVector(args, 2));
return isolate()->Throw<Object>(error);
}
MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<String> name) {
HandleScope scope(isolate());
Handle<Object> error = isolate()->factory()->NewReferenceError(
type, HandleVector(&name, 1));
return isolate()->Throw<Object>(error);
}
static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
bool was_uninitialized =
old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
bool is_uninitialized =
new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
return (was_uninitialized && !is_uninitialized) ? 1 :
(!was_uninitialized && is_uninitialized) ? -1 : 0;
}
void IC::PostPatching(Address address, Code* target, Code* old_target) {
Isolate* isolate = target->GetHeap()->isolate();
Code* host = isolate->
inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
if (host->kind() != Code::FUNCTION) return;
if (FLAG_type_info_threshold > 0 &&
old_target->is_inline_cache_stub() &&
target->is_inline_cache_stub()) {
int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
target->ic_state());
// Call ICs don't have interesting state changes from this point
// of view.
ASSERT(target->kind() != Code::CALL_IC || delta == 0);
// Not all Code objects have TypeFeedbackInfo.
if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
TypeFeedbackInfo* info =
TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_ic_with_type_info_count(delta);
}
}
if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
TypeFeedbackInfo* info =
TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_own_type_change_checksum();
}
host->set_profiler_ticks(0);
isolate->runtime_profiler()->NotifyICChanged();
// TODO(2029): When an optimized function is patched, it would
// be nice to propagate the corresponding type information to its
// unoptimized version for the benefit of later inlining.
}
void IC::RegisterWeakMapDependency(Handle<Code> stub) {
if (FLAG_collect_maps && FLAG_weak_embedded_maps_in_ic &&
stub->CanBeWeakStub()) {
ASSERT(!stub->is_weak_stub());
MapHandleList maps;
stub->FindAllMaps(&maps);
if (maps.length() == 1 && stub->IsWeakObjectInIC(*maps.at(0))) {
Map::AddDependentIC(maps.at(0), stub);
stub->mark_as_weak_stub();
if (FLAG_enable_ool_constant_pool) {
stub->constant_pool()->set_weak_object_state(
ConstantPoolArray::WEAK_OBJECTS_IN_IC);
}
}
}
}
void IC::InvalidateMaps(Code* stub) {
ASSERT(stub->is_weak_stub());
stub->mark_as_invalidated_weak_stub();
Isolate* isolate = stub->GetIsolate();
Heap* heap = isolate->heap();
Object* undefined = heap->undefined_value();
int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(stub, mode_mask); !it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT &&
it.rinfo()->target_object()->IsMap()) {
it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
}
}
CPU::FlushICache(stub->instruction_start(), stub->instruction_size());
}
void IC::Clear(Isolate* isolate, Address address,
ConstantPoolArray* constant_pool) {
Code* target = GetTargetAtAddress(address, constant_pool);
// Don't clear debug break inline cache as it will remove the break point.
if (target->is_debug_stub()) return;
switch (target->kind()) {
case Code::LOAD_IC:
return LoadIC::Clear(isolate, address, target, constant_pool);
case Code::KEYED_LOAD_IC:
return KeyedLoadIC::Clear(isolate, address, target, constant_pool);
case Code::STORE_IC:
return StoreIC::Clear(isolate, address, target, constant_pool);
case Code::KEYED_STORE_IC:
return KeyedStoreIC::Clear(isolate, address, target, constant_pool);
case Code::CALL_IC:
return CallIC::Clear(isolate, address, target, constant_pool);
case Code::COMPARE_IC:
return CompareIC::Clear(isolate, address, target, constant_pool);
case Code::COMPARE_NIL_IC:
return CompareNilIC::Clear(address, target, constant_pool);
case Code::BINARY_OP_IC:
case Code::TO_BOOLEAN_IC:
// Clearing these is tricky and does not
// make any performance difference.
return;
default: UNREACHABLE();
}
}
void KeyedLoadIC::Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
// Make sure to also clear the map used in inline fast cases. If we
// do not clear these maps, cached code can keep objects alive
// through the embedded maps.
SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool);
}
void CallIC::Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool) {
// Currently, CallIC doesn't have state changes.
}
void LoadIC::Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
Code::LOAD_IC, target->extra_ic_state());
SetTargetAtAddress(address, code, constant_pool);
}
void StoreIC::Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
Code::STORE_IC, target->extra_ic_state());
SetTargetAtAddress(address, code, constant_pool);
}
void KeyedStoreIC::Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool) {
if (IsCleared(target)) return;
SetTargetAtAddress(address,
*pre_monomorphic_stub(
isolate, StoreIC::GetStrictMode(target->extra_ic_state())),
constant_pool);
}
void CompareIC::Clear(Isolate* isolate,
Address address,
Code* target,
ConstantPoolArray* constant_pool) {
ASSERT(target->major_key() == CodeStub::CompareIC);
CompareIC::State handler_state;
Token::Value op;
ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
&handler_state, &op);
// Only clear CompareICs that can retain objects.
if (handler_state != KNOWN_OBJECT) return;
SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool);
PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
}
Handle<Code> KeyedLoadIC::megamorphic_stub() {
if (FLAG_compiled_keyed_generic_loads) {
return KeyedLoadGenericElementStub(isolate()).GetCode();
} else {
return isolate()->builtins()->KeyedLoadIC_Generic();
}
}
Handle<Code> KeyedLoadIC::generic_stub() const {
if (FLAG_compiled_keyed_generic_loads) {
return KeyedLoadGenericElementStub(isolate()).GetCode();
} else {
return isolate()->builtins()->KeyedLoadIC_Generic();
}
}
static bool MigrateDeprecated(Handle<Object> object) {
if (!object->IsJSObject()) return false;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (!receiver->map()->is_deprecated()) return false;
JSObject::MigrateInstance(Handle<JSObject>::cast(object));
return true;
}
MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<String> name) {
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_load", object, name);
}
if (FLAG_use_ic) {
// Use specialized code for getting prototype of functions.
if (object->IsJSFunction() &&
String::Equals(isolate()->factory()->prototype_string(), name) &&
Handle<JSFunction>::cast(object)->should_have_prototype()) {
Handle<Code> stub;
if (state() == UNINITIALIZED) {
stub = pre_monomorphic_stub();
} else if (state() == PREMONOMORPHIC) {
FunctionPrototypeStub function_prototype_stub(isolate(), kind());
stub = function_prototype_stub.GetCode();
} else if (state() != MEGAMORPHIC) {
ASSERT(state() != GENERIC);
stub = megamorphic_stub();
}
if (!stub.is_null()) {
set_target(*stub);
if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
}
return Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object));
}
}
// Check if the name is trivially convertible to an index and get
// the element or char if so.
uint32_t index;
if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
// Rewrite to the generic keyed load stub.
if (FLAG_use_ic) set_target(*generic_stub());
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
Runtime::GetElementOrCharAt(isolate(), object, index),
Object);
return result;
}
bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
// Named lookup in the object.
LookupResult lookup(isolate());
LookupForRead(object, name, &lookup);
// If we did not find a property, check if we need to throw an exception.
if (!lookup.IsFound()) {
if (IsUndeclaredGlobal(object)) {
return ReferenceError("not_defined", name);
}
LOG(isolate(), SuspectReadEvent(*name, *object));
}
// Update inline cache and stub cache.
if (use_ic) UpdateCaches(&lookup, object, name);
// Get the property.
LookupIterator it(object, name);
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(), result, Object::GetProperty(&it), Object);
// If the property is not present, check if we need to throw an exception.
if ((lookup.IsInterceptor() || lookup.IsHandler()) &&
!it.IsFound() && IsUndeclaredGlobal(object)) {
return ReferenceError("not_defined", name);
}
return result;
}
static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
Handle<Map> new_receiver_map) {
ASSERT(!new_receiver_map.is_null());
for (int current = 0; current < receiver_maps->length(); ++current) {
if (!receiver_maps->at(current).is_null() &&
receiver_maps->at(current).is_identical_to(new_receiver_map)) {
return false;
}
}
receiver_maps->Add(new_receiver_map);
return true;
}
bool IC::UpdatePolymorphicIC(Handle<HeapType> type,
Handle<String> name,
Handle<Code> code) {
if (!code->is_handler()) return false;
TypeHandleList types;
CodeHandleList handlers;
TargetTypes(&types);
int number_of_types = types.length();
int deprecated_types = 0;
int handler_to_overwrite = -1;
for (int i = 0; i < number_of_types; i++) {
Handle<HeapType> current_type = types.at(i);
if (current_type->IsClass() &&
current_type->AsClass()->Map()->is_deprecated()) {
// Filter out deprecated maps to ensure their instances get migrated.
++deprecated_types;
} else if (type->NowIs(current_type)) {
// If the receiver type is already in the polymorphic IC, this indicates
// there was a prototoype chain failure. In that case, just overwrite the
// handler.
handler_to_overwrite = i;
} else if (handler_to_overwrite == -1 &&
current_type->IsClass() &&
type->IsClass() &&
IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(),
*type->AsClass()->Map())) {
handler_to_overwrite = i;
}
}
int number_of_valid_types =
number_of_types - deprecated_types - (handler_to_overwrite != -1);
if (number_of_valid_types >= 4) return false;
if (number_of_types == 0) return false;
if (!target()->FindHandlers(&handlers, types.length())) return false;
number_of_valid_types++;
if (handler_to_overwrite >= 0) {
handlers.Set(handler_to_overwrite, code);
if (!type->NowIs(types.at(handler_to_overwrite))) {
types.Set(handler_to_overwrite, type);
}
} else {
types.Add(type);
handlers.Add(code);
}
Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
kind(), &types, &handlers, number_of_valid_types, name, extra_ic_state());
set_target(*ic);
return true;
}
Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
return object->IsJSGlobalObject()
? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate)
: HeapType::NowOf(object, isolate);
}
Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) {
if (type->Is(HeapType::Number()))
return isolate->factory()->heap_number_map();
if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map();
if (type->IsConstant()) {
return handle(
Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map());
}
ASSERT(type->IsClass());
return type->AsClass()->Map();
}
template <class T>
typename T::TypeHandle IC::MapToType(Handle<Map> map,
typename T::Region* region) {
if (map->instance_type() == HEAP_NUMBER_TYPE) {
return T::Number(region);
} else if (map->instance_type() == ODDBALL_TYPE) {
// The only oddballs that can be recorded in ICs are booleans.
return T::Boolean(region);
} else {
return T::Class(map, region);
}
}
template
Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone);
template
Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map, Isolate* region);
void IC::UpdateMonomorphicIC(Handle<HeapType> type,
Handle<Code> handler,
Handle<String> name) {
if (!handler->is_handler()) return set_target(*handler);
Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
kind(), name, type, handler, extra_ic_state());
set_target(*ic);
}
void IC::CopyICToMegamorphicCache(Handle<String> name) {
TypeHandleList types;
CodeHandleList handlers;
TargetTypes(&types);
if (!target()->FindHandlers(&handlers, types.length())) return;
for (int i = 0; i < types.length(); i++) {
UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
}
}
bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) {
if (source_map == NULL) return true;
if (target_map == NULL) return false;
ElementsKind target_elements_kind = target_map->elements_kind();
bool more_general_transition =
IsMoreGeneralElementsKindTransition(
source_map->elements_kind(), target_elements_kind);
Map* transitioned_map = more_general_transition
? source_map->LookupElementsTransitionMap(target_elements_kind)
: NULL;
return transitioned_map == target_map;
}
void IC::PatchCache(Handle<HeapType> type,
Handle<String> name,
Handle<Code> code) {
switch (state()) {
case UNINITIALIZED:
case PREMONOMORPHIC:
case MONOMORPHIC_PROTOTYPE_FAILURE:
UpdateMonomorphicIC(type, code, name);
break;
case MONOMORPHIC: // Fall through.
case POLYMORPHIC:
if (!target()->is_keyed_stub()) {
if (UpdatePolymorphicIC(type, name, code)) break;
CopyICToMegamorphicCache(name);
}
set_target(*megamorphic_stub());
// Fall through.
case MEGAMORPHIC:
UpdateMegamorphicCache(*type, *name, *code);
break;
case DEBUG_STUB:
break;
case GENERIC:
UNREACHABLE();
break;
}
}
Handle<Code> LoadIC::initialize_stub(Isolate* isolate,
ExtraICState extra_state) {
return isolate->stub_cache()->ComputeLoad(UNINITIALIZED, extra_state);
}
Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate,
ExtraICState extra_state) {
return isolate->stub_cache()->ComputeLoad(PREMONOMORPHIC, extra_state);
}
Handle<Code> LoadIC::megamorphic_stub() {
return isolate()->stub_cache()->ComputeLoad(MEGAMORPHIC, extra_ic_state());
}
Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) {
if (kind() == Code::LOAD_IC) {
LoadFieldStub stub(isolate(), index);
return stub.GetCode();
} else {
KeyedLoadFieldStub stub(isolate(), index);
return stub.GetCode();
}
}
void LoadIC::UpdateCaches(LookupResult* lookup,
Handle<Object> object,
Handle<String> name) {
if (state() == UNINITIALIZED) {
// This is the first time we execute this inline cache.
// Set the target to the pre monomorphic stub to delay
// setting the monomorphic state.
set_target(*pre_monomorphic_stub());
TRACE_IC("LoadIC", name);
return;
}
Handle<HeapType> type = CurrentTypeOf(object, isolate());
Handle<Code> code;
if (!lookup->IsCacheable()) {
// Bail out if the result is not cacheable.
code = slow_stub();
} else if (!lookup->IsProperty()) {
if (kind() == Code::LOAD_IC) {
code = isolate()->stub_cache()->ComputeLoadNonexistent(name, type);
} else {
code = slow_stub();
}
} else {
code = ComputeHandler(lookup, object, name);
}
PatchCache(type, name, code);
TRACE_IC("LoadIC", name);
}
void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {
// Cache code holding map should be consistent with
// GenerateMonomorphicCacheProbe.
Map* map = *TypeToMap(type, isolate());
isolate()->stub_cache()->Set(name, map, code);
}
Handle<Code> IC::ComputeHandler(LookupResult* lookup,
Handle<Object> object,
Handle<String> name,
Handle<Object> value) {
InlineCacheHolderFlag cache_holder = GetCodeCacheForObject(*object);
Handle<HeapObject> stub_holder(GetCodeCacheHolder(
isolate(), *object, cache_holder));
Handle<Code> code = isolate()->stub_cache()->FindHandler(
name, handle(stub_holder->map()), kind(), cache_holder,
lookup->holder()->HasFastProperties() ? Code::FAST : Code::NORMAL);
if (!code.is_null()) {
return code;
}
code = CompileHandler(lookup, object, name, value, cache_holder);
ASSERT(code->is_handler());
if (code->type() != Code::NORMAL) {
HeapObject::UpdateMapCodeCache(stub_holder, name, code);
}
return code;
}
Handle<Code> LoadIC::CompileHandler(LookupResult* lookup,
Handle<Object> object,
Handle<String> name,
Handle<Object> unused,
InlineCacheHolderFlag cache_holder) {
if (object->IsString() &&
String::Equals(isolate()->factory()->length_string(), name)) {
FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset);
return SimpleFieldLoad(index);
}
if (object->IsStringWrapper() &&
String::Equals(isolate()->factory()->length_string(), name)) {
if (kind() == Code::LOAD_IC) {
StringLengthStub string_length_stub(isolate());
return string_length_stub.GetCode();
} else {
KeyedStringLengthStub string_length_stub(isolate());
return string_length_stub.GetCode();
}
}
Handle<HeapType> type = CurrentTypeOf(object, isolate());
Handle<JSObject> holder(lookup->holder());
LoadStubCompiler compiler(isolate(), kNoExtraICState, cache_holder, kind());
switch (lookup->type()) {
case FIELD: {
FieldIndex field = lookup->GetFieldIndex();
if (object.is_identical_to(holder)) {
return SimpleFieldLoad(field);
}
return compiler.CompileLoadField(
type, holder, name, field, lookup->representation());
}
case CONSTANT: {
Handle<Object> constant(lookup->GetConstant(), isolate());
// TODO(2803): Don't compute a stub for cons strings because they cannot
// be embedded into code.
if (constant->IsConsString()) break;
return compiler.CompileLoadConstant(type, holder, name, constant);
}
case NORMAL:
if (kind() != Code::LOAD_IC) break;
if (holder->IsGlobalObject()) {
Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
Handle<PropertyCell> cell(
global->GetPropertyCell(lookup), isolate());
Handle<Code> code = compiler.CompileLoadGlobal(
type, global, cell, name, lookup->IsDontDelete());
// TODO(verwaest): Move caching of these NORMAL stubs outside as well.
Handle<HeapObject> stub_holder(GetCodeCacheHolder(
isolate(), *object, cache_holder));
HeapObject::UpdateMapCodeCache(stub_holder, name, code);
return code;
}
// There is only one shared stub for loading normalized
// properties. It does not traverse the prototype chain, so the
// property must be found in the object for the stub to be
// applicable.
if (!object.is_identical_to(holder)) break;
return isolate()->builtins()->LoadIC_Normal();
case CALLBACKS: {
// Use simple field loads for some well-known callback properties.
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
Handle<Map> map(receiver->map());
Handle<HeapType> type = IC::MapToType<HeapType>(
handle(receiver->map()), isolate());
int object_offset;
if (Accessors::IsJSObjectFieldAccessor<HeapType>(
type, name, &object_offset)) {
FieldIndex index = FieldIndex::ForInObjectOffset(
object_offset, receiver->map());
return SimpleFieldLoad(index);
}
}
Handle<Object> callback(lookup->GetCallbackObject(), isolate());
if (callback->IsExecutableAccessorInfo()) {
Handle<ExecutableAccessorInfo> info =
Handle<ExecutableAccessorInfo>::cast(callback);
if (v8::ToCData<Address>(info->getter()) == 0) break;
if (!info->IsCompatibleReceiver(*object)) break;
return compiler.CompileLoadCallback(type, holder, name, info);
} else if (callback->IsAccessorPair()) {
Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
isolate());
if (!getter->IsJSFunction()) break;
if (holder->IsGlobalObject()) break;
if (!holder->HasFastProperties()) break;
Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
if (!object->IsJSObject() &&
!function->IsBuiltin() &&
function->shared()->strict_mode() == SLOPPY) {
// Calling sloppy non-builtins with a value as the receiver
// requires boxing.
break;
}
CallOptimization call_optimization(function);
if (call_optimization.is_simple_api_call() &&
call_optimization.IsCompatibleReceiver(object, holder)) {
return compiler.CompileLoadCallback(
type, holder, name, call_optimization);
}
return compiler.CompileLoadViaGetter(type, holder, name, function);
}
// TODO(dcarney): Handle correctly.
ASSERT(callback->IsDeclaredAccessorInfo());
break;
}
case INTERCEPTOR:
ASSERT(HasInterceptorGetter(*holder));
return compiler.CompileLoadInterceptor(type, holder, name);
default:
break;
}
return slow_stub();
}
static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
// This helper implements a few common fast cases for converting
// non-smi keys of keyed loads/stores to a smi or a string.
if (key->IsHeapNumber()) {
double value = Handle<HeapNumber>::cast(key)->value();
if (std::isnan(value)) {
key = isolate->factory()->nan_string();
} else {
int int_value = FastD2I(value);
if (value == int_value && Smi::IsValid(int_value)) {
key = Handle<Smi>(Smi::FromInt(int_value), isolate);
}
}
} else if (key->IsUndefined()) {
key = isolate->factory()->undefined_string();
}
return key;
}
Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
// Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
// via megamorphic stubs, since they don't have a map in their relocation info
// and so the stubs can't be harvested for the object needed for a map check.
if (target()->type() != Code::NORMAL) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
return generic_stub();
}
Handle<Map> receiver_map(receiver->map(), isolate());
MapHandleList target_receiver_maps;
if (target().is_identical_to(string_stub())) {
target_receiver_maps.Add(isolate()->factory()->string_map());
} else {
TargetMaps(&target_receiver_maps);
}
if (target_receiver_maps.length() == 0) {
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
}
// The first time a receiver is seen that is a transitioned version of the
// previous monomorphic receiver type, assume the new ElementsKind is the
// monomorphic type. This benefits global arrays that only transition
// once, and all call sites accessing them are faster if they remain
// monomorphic. If this optimistic assumption is not true, the IC will
// miss again and it will become polymorphic and support both the
// untransitioned and transitioned maps.
if (state() == MONOMORPHIC &&
IsMoreGeneralElementsKindTransition(
target_receiver_maps.at(0)->elements_kind(),
receiver->GetElementsKind())) {
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
}
ASSERT(state() != GENERIC);
// Determine the list of receiver maps that this call site has seen,
// adding the map that was just encountered.
if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the generic stub.
TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
return generic_stub();
}
// If the maximum number of receiver maps has been exceeded, use the generic
// version of the IC.
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
return generic_stub();
}
return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
&target_receiver_maps);
}
MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object,
Handle<Object> key) {
if (MigrateDeprecated(object)) {
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
Runtime::GetObjectProperty(isolate(), object, key),
Object);
return result;
}
Handle<Object> load_handle;
Handle<Code> stub = generic_stub();
// Check for non-string values that can be converted into an
// internalized string directly or is representable as a smi.
key = TryConvertKey(key, isolate());
if (key->IsInternalizedString()) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
load_handle,
LoadIC::Load(object, Handle<String>::cast(key)),
Object);
} else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
if (object->IsString() && key->IsNumber()) {
if (state() == UNINITIALIZED) stub = string_stub();
} else if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->elements()->map() ==
isolate()->heap()->sloppy_arguments_elements_map()) {
stub = sloppy_arguments_stub();
} else if (receiver->HasIndexedInterceptor()) {
stub = indexed_interceptor_stub();
} else if (!Object::ToSmi(isolate(), key).is_null() &&
(!target().is_identical_to(sloppy_arguments_stub()))) {
stub = LoadElementStub(receiver);
}
}
}
if (!is_target_set()) {
Code* generic = *generic_stub();
if (*stub == generic) {
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
}
set_target(*stub);
TRACE_IC("LoadIC", key);
}
if (!load_handle.is_null()) return load_handle;
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
Runtime::GetObjectProperty(isolate(), object, key),
Object);
return result;
}
static bool LookupForWrite(Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value,
LookupResult* lookup,
IC* ic) {
Handle<JSObject> holder = receiver;
receiver->Lookup(name, lookup);
if (lookup->IsFound()) {
if (lookup->IsInterceptor() && !HasInterceptorSetter(lookup->holder())) {
receiver->LookupOwnRealNamedProperty(name, lookup);
if (!lookup->IsFound()) return false;
}
if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
if (lookup->holder() == *receiver) return lookup->CanHoldValue(value);
if (lookup->IsPropertyCallbacks()) return true;
// JSGlobalProxy either stores on the global object in the prototype, or
// goes into the runtime if access checks are needed, so this is always
// safe.
if (receiver->IsJSGlobalProxy()) {
return lookup->holder() == receiver->GetPrototype();
}
// Currently normal holders in the prototype chain are not supported. They
// would require a runtime positive lookup and verification that the details
// have not changed.
if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
}
// While normally LookupTransition gets passed the receiver, in this case we
// pass the holder of the property that we overwrite. This keeps the holder in
// the LookupResult intact so we can later use it to generate a prototype
// chain check. This avoids a double lookup, but requires us to pass in the
// receiver when trying to fetch extra information from the transition.
receiver->map()->LookupTransition(*holder, *name, lookup);
if (!lookup->IsTransition() || lookup->IsReadOnly()) return false;
// If the value that's being stored does not fit in the field that the
// instance would transition to, create a new transition that fits the value.
// This has to be done before generating the IC, since that IC will embed the
// transition target.
// Ensure the instance and its map were migrated before trying to update the
// transition target.
ASSERT(!receiver->map()->is_deprecated());
if (!lookup->CanHoldValue(value)) {
Handle<Map> target(lookup->GetTransitionTarget());
Representation field_representation = value->OptimalRepresentation();
Handle<HeapType> field_type = value->OptimalType(
lookup->isolate(), field_representation);
Map::GeneralizeRepresentation(
target, target->LastAdded(),
field_representation, field_type, FORCE_FIELD);
// Lookup the transition again since the transition tree may have changed
// entirely by the migration above.
receiver->map()->LookupTransition(*holder, *name, lookup);
if (!lookup->IsTransition()) return false;
return ic->TryMarkMonomorphicPrototypeFailure(name);
}
return true;
}
MaybeHandle<Object> StoreIC::Store(Handle<Object> object,
Handle<String> name,
Handle<Object> value,
JSReceiver::StoreFromKeyed store_mode) {
if (MigrateDeprecated(object) || object->IsJSProxy()) {
Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(object);
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
JSReceiver::SetProperty(receiver, name, value, NONE, strict_mode()),
Object);
return result;
}
// If the object is undefined or null it's illegal to try to set any
// properties on it; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_store", object, name);
}
// The length property of string values is read-only. Throw in strict mode.
if (strict_mode() == STRICT && object->IsString() &&
String::Equals(isolate()->factory()->length_string(), name)) {
return TypeError("strict_read_only_property", object, name);
}
// Ignore other stores where the receiver is not a JSObject.
// TODO(1475): Must check prototype chains of object wrappers.
if (!object->IsJSObject()) return value;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
// Check if the given name is an array index.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
JSObject::SetElement(receiver, index, value, NONE, strict_mode()),
Object);
return value;
}
// Observed objects are always modified through the runtime.
if (receiver->map()->is_observed()) {
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
JSReceiver::SetProperty(
receiver, name, value, NONE, strict_mode(), store_mode),
Object);
return result;
}
LookupResult lookup(isolate());
bool can_store = LookupForWrite(receiver, name, value, &lookup, this);
if (!can_store &&
strict_mode() == STRICT &&
!(lookup.IsProperty() && lookup.IsReadOnly()) &&
object->IsGlobalObject()) {
// Strict mode doesn't allow setting non-existent global property.
return ReferenceError("not_defined", name);
}
if (FLAG_use_ic) {
if (state() == UNINITIALIZED) {
Handle<Code> stub = pre_monomorphic_stub();
set_target(*stub);
TRACE_IC("StoreIC", name);
} else if (can_store) {
UpdateCaches(&lookup, receiver, name, value);
} else if (lookup.IsNormal() ||
(lookup.IsField() && lookup.CanHoldValue(value))) {
Handle<Code> stub = generic_stub();
set_target(*stub);
}
}
// Set the property.
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
JSReceiver::SetProperty(
receiver, name, value, NONE, strict_mode(), store_mode),
Object);
return result;
}
void CallIC::State::Print(StringStream* stream) const {
stream->Add("(args(%d), ",
argc_);
stream->Add("%s, ",
call_type_ == CallIC::METHOD ? "METHOD" : "FUNCTION");
}
Handle<Code> CallIC::initialize_stub(Isolate* isolate,
int argc,
CallType call_type) {
CallICStub stub(isolate, State(argc, call_type));
Handle<Code> code = stub.GetCode();
return code;
}
Handle<Code> StoreIC::initialize_stub(Isolate* isolate,
StrictMode strict_mode) {
ExtraICState extra_state = ComputeExtraICState(strict_mode);
Handle<Code> ic = isolate->stub_cache()->ComputeStore(
UNINITIALIZED, extra_state);
return ic;
}
Handle<Code> StoreIC::megamorphic_stub() {
return isolate()->stub_cache()->ComputeStore(MEGAMORPHIC, extra_ic_state());
}
Handle<Code> StoreIC::generic_stub() const {
return isolate()->stub_cache()->ComputeStore(GENERIC, extra_ic_state());
}
Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate,
StrictMode strict_mode) {
ExtraICState state = ComputeExtraICState(strict_mode);
return isolate->stub_cache()->ComputeStore(PREMONOMORPHIC, state);
}
void StoreIC::UpdateCaches(LookupResult* lookup,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value) {
ASSERT(lookup->IsFound());
// These are not cacheable, so we never see such LookupResults here.
ASSERT(!lookup->IsHandler());
Handle<Code> code = ComputeHandler(lookup, receiver, name, value);
PatchCache(CurrentTypeOf(receiver, isolate()), name, code);
TRACE_IC("StoreIC", name);
}
Handle<Code> StoreIC::CompileHandler(LookupResult* lookup,
Handle<Object> object,
Handle<String> name,
Handle<Object> value,
InlineCacheHolderFlag cache_holder) {
if (object->IsAccessCheckNeeded()) return slow_stub();
ASSERT(cache_holder == OWN_MAP);
// This is currently guaranteed by checks in StoreIC::Store.
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
Handle<JSObject> holder(lookup->holder());
// Handlers do not use strict mode.
StoreStubCompiler compiler(isolate(), SLOPPY, kind());
if (lookup->IsTransition()) {
// Explicitly pass in the receiver map since LookupForWrite may have
// stored something else than the receiver in the holder.
Handle<Map> transition(lookup->GetTransitionTarget());
PropertyDetails details = lookup->GetPropertyDetails();
if (details.type() != CALLBACKS && details.attributes() == NONE) {
return compiler.CompileStoreTransition(
receiver, lookup, transition, name);
}
} else {
switch (lookup->type()) {
case FIELD:
return compiler.CompileStoreField(receiver, lookup, name);
case NORMAL:
if (kind() == Code::KEYED_STORE_IC) break;
if (receiver->IsJSGlobalProxy() || receiver->IsGlobalObject()) {
// The stub generated for the global object picks the value directly
// from the property cell. So the property must be directly on the
// global object.
Handle<GlobalObject> global = receiver->IsJSGlobalProxy()
? handle(GlobalObject::cast(receiver->GetPrototype()))
: Handle<GlobalObject>::cast(receiver);
Handle<PropertyCell> cell(global->GetPropertyCell(lookup), isolate());
Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value);
StoreGlobalStub stub(
isolate(), union_type->IsConstant(), receiver->IsJSGlobalProxy());
Handle<Code> code = stub.GetCodeCopyFromTemplate(global, cell);
// TODO(verwaest): Move caching of these NORMAL stubs outside as well.
HeapObject::UpdateMapCodeCache(receiver, name, code);
return code;
}
ASSERT(holder.is_identical_to(receiver));
return isolate()->builtins()->StoreIC_Normal();
case CALLBACKS: {
Handle<Object> callback(lookup->GetCallbackObject(), isolate());
if (callback->IsExecutableAccessorInfo()) {
Handle<ExecutableAccessorInfo> info =
Handle<ExecutableAccessorInfo>::cast(callback);
if (v8::ToCData<Address>(info->setter()) == 0) break;
if (!holder->HasFastProperties()) break;
if (!info->IsCompatibleReceiver(*receiver)) break;
return compiler.CompileStoreCallback(receiver, holder, name, info);
} else if (callback->IsAccessorPair()) {
Handle<Object> setter(
Handle<AccessorPair>::cast(callback)->setter(), isolate());
if (!setter->IsJSFunction()) break;
if (holder->IsGlobalObject()) break;
if (!holder->HasFastProperties()) break;
Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
CallOptimization call_optimization(function);
if (call_optimization.is_simple_api_call() &&
call_optimization.IsCompatibleReceiver(receiver, holder)) {
return compiler.CompileStoreCallback(
receiver, holder, name, call_optimization);
}
return compiler.CompileStoreViaSetter(
receiver, holder, name, Handle<JSFunction>::cast(setter));
}
// TODO(dcarney): Handle correctly.
ASSERT(callback->IsDeclaredAccessorInfo());
break;
}
case INTERCEPTOR:
if (kind() == Code::KEYED_STORE_IC) break;
ASSERT(HasInterceptorSetter(*holder));
return compiler.CompileStoreInterceptor(receiver, name);
case CONSTANT:
break;
case NONEXISTENT:
case HANDLER:
UNREACHABLE();
break;
}
}
return slow_stub();
}
Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
KeyedAccessStoreMode store_mode) {
// Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
// via megamorphic stubs, since they don't have a map in their relocation info
// and so the stubs can't be harvested for the object needed for a map check.
if (target()->type() != Code::NORMAL) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
return generic_stub();
}
Handle<Map> receiver_map(receiver->map(), isolate());
MapHandleList target_receiver_maps;
TargetMaps(&target_receiver_maps);
if (target_receiver_maps.length() == 0) {
Handle<Map> monomorphic_map =
ComputeTransitionedMap(receiver_map, store_mode);
store_mode = GetNonTransitioningStoreMode(store_mode);
return isolate()->stub_cache()->ComputeKeyedStoreElement(
monomorphic_map, strict_mode(), store_mode);
}
// There are several special cases where an IC that is MONOMORPHIC can still
// transition to a different GetNonTransitioningStoreMode IC that handles a
// superset of the original IC. Handle those here if the receiver map hasn't
// changed or it has transitioned to a more general kind.
KeyedAccessStoreMode old_store_mode =
KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
if (state() == MONOMORPHIC) {
Handle<Map> transitioned_receiver_map = receiver_map;
if (IsTransitionStoreMode(store_mode)) {
transitioned_receiver_map =
ComputeTransitionedMap(receiver_map, store_mode);
}
if ((receiver_map.is_identical_to(previous_receiver_map) &&
IsTransitionStoreMode(store_mode)) ||
IsTransitionOfMonomorphicTarget(*previous_receiver_map,
*transitioned_receiver_map)) {
// If the "old" and "new" maps are in the same elements map family, or
// if they at least come from the same origin for a transitioning store,
// stay MONOMORPHIC and use the map for the most generic ElementsKind.
store_mode = GetNonTransitioningStoreMode(store_mode);
return isolate()->stub_cache()->ComputeKeyedStoreElement(
transitioned_receiver_map, strict_mode(), store_mode);
} else if (*previous_receiver_map == receiver->map() &&
old_store_mode == STANDARD_STORE &&
(store_mode == STORE_AND_GROW_NO_TRANSITION ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
// A "normal" IC that handles stores can switch to a version that can
// grow at the end of the array, handle OOB accesses or copy COW arrays
// and still stay MONOMORPHIC.
return isolate()->stub_cache()->ComputeKeyedStoreElement(
receiver_map, strict_mode(), store_mode);
}
}
ASSERT(state() != GENERIC);
bool map_added =
AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
if (IsTransitionStoreMode(store_mode)) {
Handle<Map> transitioned_receiver_map =
ComputeTransitionedMap(receiver_map, store_mode);
map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
transitioned_receiver_map);
}
if (!map_added) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the generic stub.
TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
return generic_stub();
}
// If the maximum number of receiver maps has been exceeded, use the generic
// version of the IC.
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
return generic_stub();
}
// Make sure all polymorphic handlers have the same store mode, otherwise the
// generic stub must be used.
store_mode = GetNonTransitioningStoreMode(store_mode);
if (old_store_mode != STANDARD_STORE) {
if (store_mode == STANDARD_STORE) {
store_mode = old_store_mode;
} else if (store_mode != old_store_mode) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
return generic_stub();
}
}
// If the store mode isn't the standard mode, make sure that all polymorphic
// receivers are either external arrays, or all "normal" arrays. Otherwise,
// use the generic stub.
if (store_mode != STANDARD_STORE) {
int external_arrays = 0;
for (int i = 0; i < target_receiver_maps.length(); ++i) {
if (target_receiver_maps[i]->has_external_array_elements() ||
target_receiver_maps[i]->has_fixed_typed_array_elements()) {
external_arrays++;
}
}
if (external_arrays != 0 &&
external_arrays != target_receiver_maps.length()) {
TRACE_GENERIC_IC(isolate(), "KeyedIC",
"unsupported combination of external and normal arrays");
return generic_stub();
}
}
return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
&target_receiver_maps, store_mode, strict_mode());
}
Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
Handle<Map> map,
KeyedAccessStoreMode store_mode) {
switch (store_mode) {
case STORE_TRANSITION_SMI_TO_OBJECT:
case STORE_TRANSITION_DOUBLE_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
return Map::TransitionElementsTo(map, FAST_ELEMENTS);
case STORE_TRANSITION_SMI_TO_DOUBLE:
case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS);
case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS);
case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS);
case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
ASSERT(map->has_external_array_elements());
// Fall through
case STORE_NO_TRANSITION_HANDLE_COW:
case STANDARD_STORE:
case STORE_AND_GROW_NO_TRANSITION:
return map;
}
UNREACHABLE();
return MaybeHandle<Map>().ToHandleChecked();
}
bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
int index) {
if (receiver->IsJSArray()) {
return JSArray::cast(*receiver)->length()->IsSmi() &&
index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
}
return index >= receiver->elements()->length();
}
KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
Handle<Object> key,
Handle<Object> value) {
Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked();
int index = smi_key->value();
bool oob_access = IsOutOfBoundsAccess(receiver, index);
// Don't consider this a growing store if the store would send the receiver to
// dictionary mode.
bool allow_growth = receiver->IsJSArray() && oob_access &&
!receiver->WouldConvertToSlowElements(key);
if (allow_growth) {
// Handle growing array in stub if necessary.
if (receiver->HasFastSmiElements()) {
if (value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
} else {
return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
}
}
if (value->IsHeapObject()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
} else {
return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
}
}
} else if (receiver->HasFastDoubleElements()) {
if (!value->IsSmi() && !value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
} else {
return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
}
}
}
return STORE_AND_GROW_NO_TRANSITION;
} else {
// Handle only in-bounds elements accesses.
if (receiver->HasFastSmiElements()) {
if (value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
} else {
return STORE_TRANSITION_SMI_TO_DOUBLE;
}
} else if (value->IsHeapObject()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
} else {
return STORE_TRANSITION_SMI_TO_OBJECT;
}
}
} else if (receiver->HasFastDoubleElements()) {
if (!value->IsSmi() && !value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
} else {
return STORE_TRANSITION_DOUBLE_TO_OBJECT;
}
}
}
if (!FLAG_trace_external_array_abuse &&
receiver->map()->has_external_array_elements() && oob_access) {
return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
}
Heap* heap = receiver->GetHeap();
if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
return STORE_NO_TRANSITION_HANDLE_COW;
} else {
return STANDARD_STORE;
}
}
}
MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object,
Handle<Object> key,
Handle<Object> value) {
if (MigrateDeprecated(object)) {
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
result,
Runtime::SetObjectProperty(
isolate(), object, key, value, NONE, strict_mode()),
Object);
return result;
}
// Check for non-string values that can be converted into an
// internalized string directly or is representable as a smi.
key = TryConvertKey(key, isolate());
Handle<Object> store_handle;
Handle<Code> stub = generic_stub();
if (key->IsInternalizedString()) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
store_handle,
StoreIC::Store(object,
Handle<String>::cast(key),
value,
JSReceiver::MAY_BE_STORE_FROM_KEYED),
Object);
} else {
bool use_ic = FLAG_use_ic &&
!object->IsStringWrapper() &&
!object->IsAccessCheckNeeded() &&
!object->IsJSGlobalProxy() &&
!(object->IsJSObject() &&
JSObject::cast(*object)->map()->is_observed());
if (use_ic && !object->IsSmi()) {
// Don't use ICs for maps of the objects in Array's prototype chain. We
// expect to be able to trap element sets to objects with those maps in
// the runtime to enable optimization of element hole access.
Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
}
if (use_ic) {
ASSERT(!object->IsAccessCheckNeeded());
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null();
if (receiver->elements()->map() ==
isolate()->heap()->sloppy_arguments_elements_map()) {
if (strict_mode() == SLOPPY) {
stub = sloppy_arguments_stub();
}
} else if (key_is_smi_like &&
!(target().is_identical_to(sloppy_arguments_stub()))) {
// We should go generic if receiver isn't a dictionary, but our
// prototype chain does have dictionary elements. This ensures that
// other non-dictionary receivers in the polymorphic case benefit
// from fast path keyed stores.
if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
KeyedAccessStoreMode store_mode =
GetStoreMode(receiver, key, value);
stub = StoreElementStub(receiver, store_mode);
}
}
}
}
}
if (store_handle.is_null()) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate(),
store_handle,
Runtime::SetObjectProperty(
isolate(), object, key, value, NONE, strict_mode()),
Object);
}
if (!is_target_set()) {
Code* generic = *generic_stub();
if (*stub == generic) {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
}
ASSERT(!stub.is_null());
set_target(*stub);
TRACE_IC("StoreIC", key);
}
return store_handle;
}
CallIC::State::State(ExtraICState extra_ic_state)
: argc_(ArgcBits::decode(extra_ic_state)),
call_type_(CallTypeBits::decode(extra_ic_state)) {
}
ExtraICState CallIC::State::GetExtraICState() const {
ExtraICState extra_ic_state =
ArgcBits::encode(argc_) |
CallTypeBits::encode(call_type_);
return extra_ic_state;
}
bool CallIC::DoCustomHandler(Handle<Object> receiver,
Handle<Object> function,
Handle<FixedArray> vector,
Handle<Smi> slot,
const State& state) {
ASSERT(FLAG_use_ic && function->IsJSFunction());
// Are we the array function?
Handle<JSFunction> array_function = Handle<JSFunction>(
isolate()->context()->native_context()->array_function(), isolate());
if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) {
// Alter the slot.
Handle<AllocationSite> new_site = isolate()->factory()->NewAllocationSite();
vector->set(slot->value(), *new_site);
CallIC_ArrayStub stub(isolate(), state);
set_target(*stub.GetCode());
Handle<String> name;
if (array_function->shared()->name()->IsString()) {
name = Handle<String>(String::cast(array_function->shared()->name()),
isolate());
}
TRACE_IC("CallIC (Array call)", name);
return true;
}
return false;
}
void CallIC::PatchMegamorphic(Handle<FixedArray> vector,
Handle<Smi> slot) {
State state(target()->extra_ic_state());
// We are going generic.
vector->set(slot->value(),
*TypeFeedbackInfo::MegamorphicSentinel(isolate()),
SKIP_WRITE_BARRIER);
CallICStub stub(isolate(), state);
Handle<Code> code = stub.GetCode();
set_target(*code);
TRACE_GENERIC_IC(isolate(), "CallIC", "megamorphic");
}
void CallIC::HandleMiss(Handle<Object> receiver,
Handle<Object> function,
Handle<FixedArray> vector,
Handle<Smi> slot) {
State state(target()->extra_ic_state());
Object* feedback = vector->get(slot->value());
if (feedback->IsJSFunction() || !function->IsJSFunction()) {
// We are going generic.
vector->set(slot->value(),
*TypeFeedbackInfo::MegamorphicSentinel(isolate()),
SKIP_WRITE_BARRIER);
TRACE_GENERIC_IC(isolate(), "CallIC", "megamorphic");
} else {
// If we came here feedback must be the uninitialized sentinel,
// and we are going monomorphic.
ASSERT(feedback == *TypeFeedbackInfo::UninitializedSentinel(isolate()));
// Do we want to install a custom handler?
if (FLAG_use_ic &&
DoCustomHandler(receiver, function, vector, slot, state)) {
return;
}
Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
Handle<Object> name(js_function->shared()->name(), isolate());
TRACE_IC("CallIC", name);
vector->set(slot->value(), *function);
}
}
#undef TRACE_IC
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(CallIC_Miss) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 4);
CallIC ic(isolate);
Handle<Object> receiver = args.at<Object>(0);
Handle<Object> function = args.at<Object>(1);
Handle<FixedArray> vector = args.at<FixedArray>(2);
Handle<Smi> slot = args.at<Smi>(3);
ic.HandleMiss(receiver, function, vector, slot);
return *function;
}
RUNTIME_FUNCTION(CallIC_Customization_Miss) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 4);
// A miss on a custom call ic always results in going megamorphic.
CallIC ic(isolate);
Handle<Object> function = args.at<Object>(1);
Handle<FixedArray> vector = args.at<FixedArray>(2);
Handle<Smi> slot = args.at<Smi>(3);
ic.PatchMegamorphic(vector, slot);
return *function;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(LoadIC_Miss) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 2);
LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<Object> receiver = args.at<Object>(0);
Handle<String> key = args.at<String>(1);
ic.UpdateState(receiver, key);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
return *result;
}
// Used from ic-<arch>.cc
RUNTIME_FUNCTION(KeyedLoadIC_Miss) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<Object> receiver = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
ic.UpdateState(receiver, key);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
return *result;
}
RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
Handle<Object> receiver = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
ic.UpdateState(receiver, key);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
return *result;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(StoreIC_Miss) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<Object> receiver = args.at<Object>(0);
Handle<String> key = args.at<String>(1);
ic.UpdateState(receiver, key);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate,
result,
ic.Store(receiver, key, args.at<Object>(2)));
return *result;
}
RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
Handle<Object> receiver = args.at<Object>(0);
Handle<String> key = args.at<String>(1);
ic.UpdateState(receiver, key);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate,
result,
ic.Store(receiver, key, args.at<Object>(2)));
return *result;
}
RUNTIME_FUNCTION(StoreIC_ArrayLength) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 2);
Handle<JSArray> receiver = args.at<JSArray>(0);
Handle<Object> len = args.at<Object>(1);
// The generated code should filter out non-Smis before we get here.
ASSERT(len->IsSmi());
#ifdef DEBUG
// The length property has to be a writable callback property.
LookupResult debug_lookup(isolate);
receiver->LookupOwn(isolate->factory()->length_string(), &debug_lookup);
ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
#endif
RETURN_FAILURE_ON_EXCEPTION(
isolate, JSArray::SetElementsLength(receiver, len));
return *len;
}
// Extend storage is called in a store inline cache when
// it is necessary to extend the properties array of a
// JSObject.
RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope shs(isolate);
ASSERT(args.length() == 3);
// Convert the parameters
Handle<JSObject> object = args.at<JSObject>(0);
Handle<Map> transition = args.at<Map>(1);
Handle<Object> value = args.at<Object>(2);
// Check the object has run out out property space.
ASSERT(object->HasFastProperties());
ASSERT(object->map()->unused_property_fields() == 0);
// Expand the properties array.
Handle<FixedArray> old_storage = handle(object->properties(), isolate);
int new_unused = transition->unused_property_fields();
int new_size = old_storage->length() + new_unused + 1;
Handle<FixedArray> new_storage = FixedArray::CopySize(old_storage, new_size);
Handle<Object> to_store = value;
PropertyDetails details = transition->instance_descriptors()->GetDetails(
transition->LastAdded());
if (details.representation().IsDouble()) {
to_store = isolate->factory()->NewHeapNumber(value->Number());
}
new_storage->set(old_storage->length(), *to_store);
// Set the new property value and do the map transition.
object->set_properties(*new_storage);
object->set_map(*transition);
// Return the stored value.
return *value;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(KeyedStoreIC_Miss) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<Object> receiver = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
ic.UpdateState(receiver, key);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate,
result,
ic.Store(receiver, key, args.at<Object>(2)));
return *result;
}
RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
Handle<Object> receiver = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
ic.UpdateState(receiver, key);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate,
result,
ic.Store(receiver, key, args.at<Object>(2)));
return *result;
}
RUNTIME_FUNCTION(StoreIC_Slow) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
StrictMode strict_mode = ic.strict_mode();
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Runtime::SetObjectProperty(
isolate, object, key, value, NONE, strict_mode));
return *result;
}
RUNTIME_FUNCTION(KeyedStoreIC_Slow) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
StrictMode strict_mode = ic.strict_mode();
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Runtime::SetObjectProperty(
isolate, object, key, value, NONE, strict_mode));
return *result;
}
RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) {
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_ic_miss);
HandleScope scope(isolate);
ASSERT(args.length() == 4);
KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
Handle<Object> value = args.at<Object>(0);
Handle<Map> map = args.at<Map>(1);
Handle<Object> key = args.at<Object>(2);
Handle<Object> object = args.at<Object>(3);
StrictMode strict_mode = ic.strict_mode();
if (object->IsJSObject()) {
JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
map->elements_kind());
}
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
Runtime::SetObjectProperty(
isolate, object, key, value, NONE, strict_mode));
return *result;
}
BinaryOpIC::State::State(Isolate* isolate, ExtraICState extra_ic_state)
: isolate_(isolate) {
op_ = static_cast<Token::Value>(
FIRST_TOKEN + OpField::decode(extra_ic_state));
mode_ = OverwriteModeField::decode(extra_ic_state);
fixed_right_arg_ = Maybe<int>(
HasFixedRightArgField::decode(extra_ic_state),
1 << FixedRightArgValueField::decode(extra_ic_state));
left_kind_ = LeftKindField::decode(extra_ic_state);
if (fixed_right_arg_.has_value) {
right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
} else {
right_kind_ = RightKindField::decode(extra_ic_state);
}
result_kind_ = ResultKindField::decode(extra_ic_state);
ASSERT_LE(FIRST_TOKEN, op_);
ASSERT_LE(op_, LAST_TOKEN);
}
ExtraICState BinaryOpIC::State::GetExtraICState() const {
ExtraICState extra_ic_state =
OpField::encode(op_ - FIRST_TOKEN) |
OverwriteModeField::encode(mode_) |
LeftKindField::encode(left_kind_) |
ResultKindField::encode(result_kind_) |
HasFixedRightArgField::encode(fixed_right_arg_.has_value);
if (fixed_right_arg_.has_value) {
extra_ic_state = FixedRightArgValueField::update(
extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
} else {
extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
}
return extra_ic_state;
}
// static
void BinaryOpIC::State::GenerateAheadOfTime(
Isolate* isolate, void (*Generate)(Isolate*, const State&)) {
// TODO(olivf) We should investigate why adding stubs to the snapshot is so
// expensive at runtime. When solved we should be able to add most binops to
// the snapshot instead of hand-picking them.
// Generated list of commonly used stubs
#define GENERATE(op, left_kind, right_kind, result_kind, mode) \
do { \
State state(isolate, op, mode); \
state.left_kind_ = left_kind; \
state.fixed_right_arg_.has_value = false; \
state.right_kind_ = right_kind; \
state.result_kind_ = result_kind; \
Generate(isolate, state); \
} while (false)
GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
GENERATE(Token::