blob: dab87688a3f870a8518a29d8b60724d8ab35200c [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_X87
#include "src/x87/lithium-codegen-x87.h"
#include "src/ic.h"
#include "src/code-stubs.h"
#include "src/deoptimizer.h"
#include "src/stub-cache.h"
#include "src/codegen.h"
#include "src/hydrogen-osr.h"
namespace v8 {
namespace internal {
// When invoking builtins, we need to record the safepoint in the middle of
// the invoke instruction sequence generated by the macro assembler.
class SafepointGenerator V8_FINAL : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) {}
virtual ~SafepointGenerator() {}
virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
virtual void AfterCall() const V8_OVERRIDE {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
ASSERT(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
support_aligned_spilled_doubles_ = info()->IsOptimizing();
dynamic_frame_alignment_ = info()->IsOptimizing() &&
((chunk()->num_double_slots() > 2 &&
!chunk()->graph()->is_recursive()) ||
!info()->osr_ast_id().IsNone());
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateJumpTable() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
ASSERT(is_done());
code->set_stack_slots(GetStackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
PopulateDeoptimizationData(code);
if (!info()->IsStub()) {
Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
}
}
#ifdef _MSC_VER
void LCodeGen::MakeSureStackPagesMapped(int offset) {
const int kPageSize = 4 * KB;
for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
__ mov(Operand(esp, offset), eax);
}
}
#endif
bool LCodeGen::GeneratePrologue() {
ASSERT(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ int3();
}
#endif
// Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
if (info_->this_has_uses() &&
info_->strict_mode() == SLOPPY &&
!info_->is_native()) {
Label ok;
// +1 for return address.
int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
__ mov(ecx, Operand(esp, receiver_offset));
__ cmp(ecx, isolate()->factory()->undefined_value());
__ j(not_equal, &ok, Label::kNear);
__ mov(ecx, GlobalObjectOperand());
__ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, receiver_offset), ecx);
__ bind(&ok);
}
if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
// Move state of dynamic frame alignment into edx.
__ Move(edx, Immediate(kNoAlignmentPadding));
Label do_not_pad, align_loop;
STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
// Align esp + 4 to a multiple of 2 * kPointerSize.
__ test(esp, Immediate(kPointerSize));
__ j(not_zero, &do_not_pad, Label::kNear);
__ push(Immediate(0));
__ mov(ebx, esp);
__ mov(edx, Immediate(kAlignmentPaddingPushed));
// Copy arguments, receiver, and return address.
__ mov(ecx, Immediate(scope()->num_parameters() + 2));
__ bind(&align_loop);
__ mov(eax, Operand(ebx, 1 * kPointerSize));
__ mov(Operand(ebx, 0), eax);
__ add(Operand(ebx), Immediate(kPointerSize));
__ dec(ecx);
__ j(not_zero, &align_loop, Label::kNear);
__ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
__ bind(&do_not_pad);
}
}
info()->set_prologue_offset(masm_->pc_offset());
if (NeedsEagerFrame()) {
ASSERT(!frame_is_built_);
frame_is_built_ = true;
if (info()->IsStub()) {
__ StubPrologue();
} else {
__ Prologue(info()->IsCodePreAgingActive());
}
info()->AddNoFrameRange(0, masm_->pc_offset());
}
if (info()->IsOptimizing() &&
dynamic_frame_alignment_ &&
FLAG_debug_code) {
__ test(esp, Immediate(kPointerSize));
__ Assert(zero, kFrameIsExpectedToBeAligned);
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
ASSERT(slots != 0 || !info()->IsOptimizing());
if (slots > 0) {
if (slots == 1) {
if (dynamic_frame_alignment_) {
__ push(edx);
} else {
__ push(Immediate(kNoAlignmentPadding));
}
} else {
if (FLAG_debug_code) {
__ sub(Operand(esp), Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
__ push(eax);
__ mov(Operand(eax), Immediate(slots));
Label loop;
__ bind(&loop);
__ mov(MemOperand(esp, eax, times_4, 0),
Immediate(kSlotsZapValue));
__ dec(eax);
__ j(not_zero, &loop);
__ pop(eax);
} else {
__ sub(Operand(esp), Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
}
if (support_aligned_spilled_doubles_) {
Comment(";;; Store dynamic frame alignment tag for spilled doubles");
// Store dynamic frame alignment state in the first local.
int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset;
if (dynamic_frame_alignment_) {
__ mov(Operand(ebp, offset), edx);
} else {
__ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding));
}
}
}
}
// Possibly allocate a local context.
int heap_slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is still in edi.
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), heap_slots);
__ CallStub(&stub);
// Result of FastNewContextStub is always in new space.
need_write_barrier = false;
} else {
__ push(edi);
__ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
}
RecordSafepoint(Safepoint::kNoLazyDeopt);
// Context is returned in eax. It replaces the context passed to us.
// It's saved in the stack and kept live in esi.
__ mov(esi, eax);
__ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
// Copy parameters into context if necessary.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ mov(eax, Operand(ebp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(var->index());
__ mov(Operand(esi, context_offset), eax);
// Update the write barrier. This clobbers eax and ebx.
if (need_write_barrier) {
__ RecordWriteContextSlot(esi,
context_offset,
eax,
ebx);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
// Trace the call.
if (FLAG_trace && info()->IsOptimizing()) {
// We have not executed any compiled code yet, so esi still holds the
// incoming context.
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Move state of dynamic frame alignment into edx.
__ Move(edx, Immediate(kNoAlignmentPadding));
if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
Label do_not_pad, align_loop;
// Align ebp + 4 to a multiple of 2 * kPointerSize.
__ test(ebp, Immediate(kPointerSize));
__ j(zero, &do_not_pad, Label::kNear);
__ push(Immediate(0));
__ mov(ebx, esp);
__ mov(edx, Immediate(kAlignmentPaddingPushed));
// Move all parts of the frame over one word. The frame consists of:
// unoptimized frame slots, alignment state, context, frame pointer, return
// address, receiver, and the arguments.
__ mov(ecx, Immediate(scope()->num_parameters() +
5 + graph()->osr()->UnoptimizedFrameSlots()));
__ bind(&align_loop);
__ mov(eax, Operand(ebx, 1 * kPointerSize));
__ mov(Operand(ebx, 0), eax);
__ add(Operand(ebx), Immediate(kPointerSize));
__ dec(ecx);
__ j(not_zero, &align_loop, Label::kNear);
__ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
__ sub(Operand(ebp), Immediate(kPointerSize));
__ bind(&do_not_pad);
}
// Save the first local, which is overwritten by the alignment state.
Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize);
__ push(alignment_loc);
// Set the dynamic frame alignment state.
__ mov(alignment_loc, edx);
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
ASSERT(slots >= 1);
__ sub(esp, Immediate((slots - 1) * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
FlushX87StackIfNecessary(instr);
}
void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
if (instr->IsGoto()) {
x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr));
} else if (FLAG_debug_code && FLAG_enable_slow_asserts &&
!instr->IsGap() && !instr->IsReturn()) {
if (instr->ClobbersDoubleRegisters(isolate())) {
if (instr->HasDoubleRegisterResult()) {
ASSERT_EQ(1, x87_stack_.depth());
} else {
ASSERT_EQ(0, x87_stack_.depth());
}
}
__ VerifyX87StackDepth(x87_stack_.depth());
}
}
bool LCodeGen::GenerateJumpTable() {
Label needs_frame;
if (jump_table_.length() > 0) {
Comment(";;; -------------------- Jump table --------------------");
}
for (int i = 0; i < jump_table_.length(); i++) {
__ bind(&jump_table_[i].label);
Address entry = jump_table_[i].address;
Deoptimizer::BailoutType type = jump_table_[i].bailout_type;
int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
if (id == Deoptimizer::kNotDeoptimizationEntry) {
Comment(";;; jump table entry %d.", i);
} else {
Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
}
if (jump_table_[i].needs_frame) {
ASSERT(!info()->saves_caller_doubles());
__ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
if (needs_frame.is_bound()) {
__ jmp(&needs_frame);
} else {
__ bind(&needs_frame);
__ push(MemOperand(ebp, StandardFrameConstants::kContextOffset));
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
ASSERT(info()->IsStub());
__ push(Immediate(Smi::FromInt(StackFrame::STUB)));
// Push a PC inside the function so that the deopt code can find where
// the deopt comes from. It doesn't have to be the precise return
// address of a "calling" LAZY deopt, it only has to be somewhere
// inside the code body.
Label push_approx_pc;
__ call(&push_approx_pc);
__ bind(&push_approx_pc);
// Push the continuation which was stashed were the ebp should
// be. Replace it with the saved ebp.
__ push(MemOperand(esp, 3 * kPointerSize));
__ mov(MemOperand(esp, 4 * kPointerSize), ebp);
__ lea(ebp, MemOperand(esp, 4 * kPointerSize));
__ ret(0); // Call the continuation without clobbering registers.
}
} else {
__ call(entry, RelocInfo::RUNTIME_ENTRY);
}
}
return !is_aborted();
}
bool LCodeGen::GenerateDeferredCode() {
ASSERT(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
X87Stack copy(code->x87_stack());
x87_stack_ = copy;
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(
chunk()->graph()->SourcePositionToScriptPosition(value->position()));
Comment(";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(),
code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
ASSERT(!frame_is_built_);
ASSERT(info()->IsStub());
frame_is_built_ = true;
// Build the frame in such a way that esi isn't trashed.
__ push(ebp); // Caller's frame pointer.
__ push(Operand(ebp, StandardFrameConstants::kContextOffset));
__ push(Immediate(Smi::FromInt(StackFrame::STUB)));
__ lea(ebp, Operand(esp, 2 * kPointerSize));
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
__ bind(code->done());
Comment(";;; Destroy frame");
ASSERT(frame_is_built_);
frame_is_built_ = false;
__ mov(esp, ebp);
__ pop(ebp);
}
__ jmp(code->exit());
}
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
ASSERT(is_done());
if (!info()->IsStub()) {
// For lazy deoptimization we need space to patch a call after every call.
// Ensure there is always space for such patching, even if the code ends
// in a call.
int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
while (masm()->pc_offset() < target_offset) {
masm()->nop();
}
}
safepoints_.Emit(masm(), GetStackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
X87Register LCodeGen::ToX87Register(int index) const {
return X87Register::FromAllocationIndex(index);
}
void LCodeGen::X87LoadForUsage(X87Register reg) {
ASSERT(x87_stack_.Contains(reg));
x87_stack_.Fxch(reg);
x87_stack_.pop();
}
void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) {
ASSERT(x87_stack_.Contains(reg1));
ASSERT(x87_stack_.Contains(reg2));
x87_stack_.Fxch(reg1, 1);
x87_stack_.Fxch(reg2);
x87_stack_.pop();
x87_stack_.pop();
}
void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) {
ASSERT(is_mutable_);
ASSERT(Contains(reg) && stack_depth_ > other_slot);
int i = ArrayIndex(reg);
int st = st2idx(i);
if (st != other_slot) {
int other_i = st2idx(other_slot);
X87Register other = stack_[other_i];
stack_[other_i] = reg;
stack_[i] = other;
if (st == 0) {
__ fxch(other_slot);
} else if (other_slot == 0) {
__ fxch(st);
} else {
__ fxch(st);
__ fxch(other_slot);
__ fxch(st);
}
}
}
int LCodeGen::X87Stack::st2idx(int pos) {
return stack_depth_ - pos - 1;
}
int LCodeGen::X87Stack::ArrayIndex(X87Register reg) {
for (int i = 0; i < stack_depth_; i++) {
if (stack_[i].is(reg)) return i;
}
UNREACHABLE();
return -1;
}
bool LCodeGen::X87Stack::Contains(X87Register reg) {
for (int i = 0; i < stack_depth_; i++) {
if (stack_[i].is(reg)) return true;
}
return false;
}
void LCodeGen::X87Stack::Free(X87Register reg) {
ASSERT(is_mutable_);
ASSERT(Contains(reg));
int i = ArrayIndex(reg);
int st = st2idx(i);
if (st > 0) {
// keep track of how fstp(i) changes the order of elements
int tos_i = st2idx(0);
stack_[i] = stack_[tos_i];
}
pop();
__ fstp(st);
}
void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) {
if (x87_stack_.Contains(dst)) {
x87_stack_.Fxch(dst);
__ fstp(0);
} else {
x87_stack_.push(dst);
}
X87Fld(src, opts);
}
void LCodeGen::X87Fld(Operand src, X87OperandType opts) {
ASSERT(!src.is_reg_only());
switch (opts) {
case kX87DoubleOperand:
__ fld_d(src);
break;
case kX87FloatOperand:
__ fld_s(src);
break;
case kX87IntOperand:
__ fild_s(src);
break;
default:
UNREACHABLE();
}
}
void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) {
ASSERT(!dst.is_reg_only());
x87_stack_.Fxch(src);
switch (opts) {
case kX87DoubleOperand:
__ fst_d(dst);
break;
case kX87IntOperand:
__ fist_s(dst);
break;
default:
UNREACHABLE();
}
}
void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) {
ASSERT(is_mutable_);
if (Contains(reg)) {
Free(reg);
}
// Mark this register as the next register to write to
stack_[stack_depth_] = reg;
}
void LCodeGen::X87Stack::CommitWrite(X87Register reg) {
ASSERT(is_mutable_);
// Assert the reg is prepared to write, but not on the virtual stack yet
ASSERT(!Contains(reg) && stack_[stack_depth_].is(reg) &&
stack_depth_ < X87Register::kMaxNumAllocatableRegisters);
stack_depth_++;
}
void LCodeGen::X87PrepareBinaryOp(
X87Register left, X87Register right, X87Register result) {
// You need to use DefineSameAsFirst for x87 instructions
ASSERT(result.is(left));
x87_stack_.Fxch(right, 1);
x87_stack_.Fxch(left);
}
void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) {
if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) {
bool double_inputs = instr->HasDoubleRegisterInput();
// Flush stack from tos down, since FreeX87() will mess with tos
for (int i = stack_depth_-1; i >= 0; i--) {
X87Register reg = stack_[i];
// Skip registers which contain the inputs for the next instruction
// when flushing the stack
if (double_inputs && instr->IsDoubleInput(reg, cgen)) {
continue;
}
Free(reg);
if (i < stack_depth_-1) i++;
}
}
if (instr->IsReturn()) {
while (stack_depth_ > 0) {
__ fstp(0);
stack_depth_--;
}
if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0);
}
}
void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr) {
ASSERT(stack_depth_ <= 1);
// If ever used for new stubs producing two pairs of doubles joined into two
// phis this assert hits. That situation is not handled, since the two stacks
// might have st0 and st1 swapped.
if (current_block_id + 1 != goto_instr->block_id()) {
// If we have a value on the x87 stack on leaving a block, it must be a
// phi input. If the next block we compile is not the join block, we have
// to discard the stack state.
stack_depth_ = 0;
}
}
void LCodeGen::EmitFlushX87ForDeopt() {
// The deoptimizer does not support X87 Registers. But as long as we
// deopt from a stub its not a problem, since we will re-materialize the
// original stub inputs, which can't be double registers.
ASSERT(info()->IsStub());
if (FLAG_debug_code && FLAG_enable_slow_asserts) {
__ pushfd();
__ VerifyX87StackDepth(x87_stack_.depth());
__ popfd();
}
for (int i = 0; i < x87_stack_.depth(); i++) __ fstp(0);
}
Register LCodeGen::ToRegister(LOperand* op) const {
ASSERT(op->IsRegister());
return ToRegister(op->index());
}
X87Register LCodeGen::ToX87Register(LOperand* op) const {
ASSERT(op->IsDoubleRegister());
return ToX87Register(op->index());
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
ASSERT(r.IsSmiOrTagged());
return reinterpret_cast<int32_t>(Smi::FromInt(value));
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
ASSERT(constant->HasDoubleValue());
return constant->DoubleValue();
}
ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
ASSERT(constant->HasExternalReferenceValue());
return constant->ExternalReferenceValue();
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsSmi(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
static int ArgumentsOffsetWithoutFrame(int index) {
ASSERT(index < 0);
return -(index + 1) * kPointerSize + kPCOnStackSize;
}
Operand LCodeGen::ToOperand(LOperand* op) const {
if (op->IsRegister()) return Operand(ToRegister(op));
ASSERT(!op->IsDoubleRegister());
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return Operand(ebp, StackSlotOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
Operand LCodeGen::HighOperand(LOperand* op) {
ASSERT(op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize);
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return Operand(
esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
bool has_closure_id = !info()->closure().is_null() &&
!info()->closure().is_identical_to(environment->closure());
int closure_id = has_closure_id
? DefineDeoptimizationLiteral(environment->closure())
: Translation::kSelfLiteralId;
switch (environment->frame_type()) {
case JS_FUNCTION:
translation->BeginJSFrame(environment->ast_id(), closure_id, height);
break;
case JS_CONSTRUCT:
translation->BeginConstructStubFrame(closure_id, translation_size);
break;
case JS_GETTER:
ASSERT(translation_size == 1);
ASSERT(height == 0);
translation->BeginGetterStubFrame(closure_id);
break;
case JS_SETTER:
ASSERT(translation_size == 2);
ASSERT(height == 0);
translation->BeginSetterStubFrame(closure_id);
break;
case ARGUMENTS_ADAPTOR:
translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
break;
case STUB:
translation->BeginCompiledStubFrame();
break;
default:
UNREACHABLE();
}
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i),
&object_index,
&dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer,
dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else if (is_uint32) {
translation->StoreUint32StackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode) {
ASSERT(instr != NULL);
__ call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallRuntime(const Runtime::Function* fun,
int argc,
LInstruction* instr) {
ASSERT(instr != NULL);
ASSERT(instr->HasPointerMap());
__ CallRuntime(fun, argc);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
ASSERT(info()->is_calling());
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
if (!ToRegister(context).is(esi)) {
__ mov(esi, ToRegister(context));
}
} else if (context->IsStackSlot()) {
__ mov(esi, ToOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntime(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
ASSERT(info()->is_calling());
}
void LCodeGen::RegisterEnvironmentForDeoptimization(
LEnvironment* environment, Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, zone());
}
}
void LCodeGen::DeoptimizeIf(Condition cc,
LEnvironment* environment,
Deoptimizer::BailoutType bailout_type) {
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
ASSERT(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
ASSERT(info()->IsOptimizing() || info()->IsStub());
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (DeoptEveryNTimes()) {
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
Label no_deopt;
__ pushfd();
__ push(eax);
__ mov(eax, Operand::StaticVariable(count));
__ sub(eax, Immediate(1));
__ j(not_zero, &no_deopt, Label::kNear);
if (FLAG_trap_on_deopt) __ int3();
__ mov(eax, Immediate(FLAG_deopt_every_n_times));
__ mov(Operand::StaticVariable(count), eax);
__ pop(eax);
__ popfd();
ASSERT(frame_is_built_);
__ call(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&no_deopt);
__ mov(Operand::StaticVariable(count), eax);
__ pop(eax);
__ popfd();
}
// Before Instructions which can deopt, we normally flush the x87 stack. But
// we can have inputs or outputs of the current instruction on the stack,
// thus we need to flush them here from the physical stack to leave it in a
// consistent state.
if (x87_stack_.depth() > 0) {
Label done;
if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
EmitFlushX87ForDeopt();
__ bind(&done);
}
if (info()->ShouldTrapOnDeopt()) {
Label done;
if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
__ int3();
__ bind(&done);
}
ASSERT(info()->IsStub() || frame_is_built_);
if (cc == no_condition && frame_is_built_) {
__ call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (jump_table_.is_empty() ||
jump_table_.last().address != entry ||
jump_table_.last().needs_frame != !frame_is_built_ ||
jump_table_.last().bailout_type != bailout_type) {
Deoptimizer::JumpTableEntry table_entry(entry,
bailout_type,
!frame_is_built_);
jump_table_.Add(table_entry, zone());
}
if (cc == no_condition) {
__ jmp(&jump_table_.last().label);
} else {
__ j(cc, &jump_table_.last().label);
}
}
}
void LCodeGen::DeoptimizeIf(Condition cc,
LEnvironment* environment) {
Deoptimizer::BailoutType bailout_type = info()->IsStub()
? Deoptimizer::LAZY
: Deoptimizer::EAGER;
DeoptimizeIf(cc, environment, bailout_type);
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
Handle<DeoptimizationInputData> data =
DeoptimizationInputData::New(isolate(), length, TENURED);
Handle<ByteArray> translations =
translations_.CreateByteArray(isolate()->factory());
data->SetTranslationByteArray(*translations);
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
if (info_->IsOptimizing()) {
// Reference to shared function info does not change between phases.
AllowDeferredHandleDereference allow_handle_dereference;
data->SetSharedFunctionInfo(*info_->shared_info());
} else {
data->SetSharedFunctionInfo(Smi::FromInt(0));
}
Handle<FixedArray> literals =
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
{ AllowDeferredHandleDereference copy_handles;
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
}
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, env->ast_id());
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
data->SetPc(i, Smi::FromInt(env->pc_offset()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal, zone());
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
ASSERT(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
ASSERT(kind == expected_safepoint_kind_);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint =
safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode mode) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
}
void LCodeGen::RecordAndWritePosition(int position) {
if (position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
masm()->positions_recorder()->WriteRecordedPositions();
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_,
label->hydrogen_value()->id(),
label->block_id(),
LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->result()).is(eax));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpExec: {
RegExpExecStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ test(dividend, dividend);
__ j(not_sign, &dividend_is_not_negative, Label::kNear);
// Note that this is correct even for kMinInt operands.
__ neg(dividend);
__ and_(dividend, mask);
__ neg(dividend);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr->environment());
}
__ jmp(&done, Label::kNear);
}
__ bind(&dividend_is_not_negative);
__ and_(dividend, mask);
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(ToRegister(instr->result()).is(eax));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr->environment());
return;
}
__ TruncatingDiv(dividend, Abs(divisor));
__ imul(edx, edx, Abs(divisor));
__ mov(eax, dividend);
__ sub(eax, edx);
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ j(not_zero, &remainder_not_zero, Label::kNear);
__ cmp(dividend, Immediate(0));
DeoptimizeIf(less, instr->environment());
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
Register left_reg = ToRegister(instr->left());
ASSERT(left_reg.is(eax));
Register right_reg = ToRegister(instr->right());
ASSERT(!right_reg.is(eax));
ASSERT(!right_reg.is(edx));
Register result_reg = ToRegister(instr->result());
ASSERT(result_reg.is(edx));
Label done;
// Check for x % 0, idiv would signal a divide error. We have to
// deopt in this case because we can't return a NaN.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(right_reg, Operand(right_reg));
DeoptimizeIf(zero, instr->environment());
}
// Check for kMinInt % -1, idiv would signal a divide error. We
// have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ cmp(left_reg, kMinInt);
__ j(not_equal, &no_overflow_possible, Label::kNear);
__ cmp(right_reg, -1);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(equal, instr->environment());
} else {
__ j(not_equal, &no_overflow_possible, Label::kNear);
__ Move(result_reg, Immediate(0));
__ jmp(&done, Label::kNear);
}
__ bind(&no_overflow_possible);
}
// Sign extend dividend in eax into edx:eax.
__ cdq();
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive_left;
__ test(left_reg, Operand(left_reg));
__ j(not_sign, &positive_left, Label::kNear);
__ idiv(right_reg);
__ test(result_reg, Operand(result_reg));
DeoptimizeIf(zero, instr->environment());
__ jmp(&done, Label::kNear);
__ bind(&positive_left);
}
__ idiv(right_reg);
__ bind(&done);
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
ASSERT(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
ASSERT(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr->environment());
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
__ cmp(dividend, kMinInt);
DeoptimizeIf(zero, instr->environment());
}
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
divisor != 1 && divisor != -1) {
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
__ test(dividend, Immediate(mask));
DeoptimizeIf(not_zero, instr->environment());
}
__ Move(result, dividend);
int32_t shift = WhichPowerOf2Abs(divisor);
if (shift > 0) {
// The arithmetic shift is always OK, the 'if' is an optimization only.
if (shift > 1) __ sar(result, 31);
__ shr(result, 32 - shift);
__ add(result, dividend);
__ sar(result, shift);
}
if (divisor < 0) __ neg(result);
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(ToRegister(instr->result()).is(edx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr->environment());
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr->environment());
}
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
__ mov(eax, edx);
__ imul(eax, eax, divisor);
__ sub(eax, dividend);
DeoptimizeIf(not_equal, instr->environment());
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
ASSERT(dividend.is(eax));
ASSERT(remainder.is(edx));
ASSERT(ToRegister(instr->result()).is(eax));
ASSERT(!divisor.is(eax));
ASSERT(!divisor.is(edx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(divisor, divisor);
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ test(dividend, dividend);
__ j(not_zero, &dividend_not_zero, Label::kNear);
__ test(divisor, divisor);
DeoptimizeIf(sign, instr->environment());
__ bind(&dividend_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmp(dividend, kMinInt);
__ j(not_zero, &dividend_not_min_int, Label::kNear);
__ cmp(divisor, -1);
DeoptimizeIf(zero, instr->environment());
__ bind(&dividend_not_min_int);
}
// Sign extend to edx (= remainder).
__ cdq();
__ idiv(divisor);
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
__ test(remainder, remainder);
DeoptimizeIf(not_zero, instr->environment());
}
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(dividend.is(ToRegister(instr->result())));
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
if (divisor == 1) return;
int32_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 1) {
__ sar(dividend, shift);
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
__ neg(dividend);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr->environment());
}
// Dividing by -1 is basically negation, unless we overflow.
if (divisor == -1) {
if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
DeoptimizeIf(overflow, instr->environment());
}
return;
}
// If the negation could not overflow, simply shifting is OK.
if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ sar(dividend, shift);
return;
}
Label not_kmin_int, done;
__ j(no_overflow, &not_kmin_int, Label::kNear);
__ mov(dividend, Immediate(kMinInt / divisor));
__ jmp(&done, Label::kNear);
__ bind(&not_kmin_int);
__ sar(dividend, shift);
__ bind(&done);
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
ASSERT(ToRegister(instr->result()).is(edx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr->environment());
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ test(dividend, dividend);
DeoptimizeIf(zero, instr->environment());
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp3());
ASSERT(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
Label needs_adjustment, done;
__ cmp(dividend, Immediate(0));
__ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ neg(edx);
__ jmp(&done, Label::kNear);
__ bind(&needs_adjustment);
__ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
__ TruncatingDiv(temp, Abs(divisor));
if (divisor < 0) __ neg(edx);
__ dec(edx);
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
Register result = ToRegister(instr->result());
ASSERT(dividend.is(eax));
ASSERT(remainder.is(edx));
ASSERT(result.is(eax));
ASSERT(!divisor.is(eax));
ASSERT(!divisor.is(edx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ test(divisor, divisor);
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ test(dividend, dividend);
__ j(not_zero, &dividend_not_zero, Label::kNear);
__ test(divisor, divisor);
DeoptimizeIf(sign, instr->environment());
__ bind(&dividend_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmp(dividend, kMinInt);
__ j(not_zero, &dividend_not_min_int, Label::kNear);
__ cmp(divisor, -1);
DeoptimizeIf(zero, instr->environment());
__ bind(&dividend_not_min_int);
}
// Sign extend to edx (= remainder).
__ cdq();
__ idiv(divisor);
Label done;
__ test(remainder, remainder);
__ j(zero, &done, Label::kNear);
__ xor_(remainder, divisor);
__ sar(remainder, 31);
__ add(result, remainder);
__ bind(&done);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register left = ToRegister(instr->left());
LOperand* right = instr->right();
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ mov(ToRegister(instr->temp()), left);
}
if (right->IsConstantOperand()) {
// Try strength reductions on the multiplication.
// All replacement instructions are at most as long as the imul
// and have better latency.
int constant = ToInteger32(LConstantOperand::cast(right));
if (constant == -1) {
__ neg(left);
} else if (constant == 0) {
__ xor_(left, Operand(left));
} else if (constant == 2) {
__ add(left, Operand(left));
} else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
// If we know that the multiplication can't overflow, it's safe to
// use instructions that don't set the overflow flag for the
// multiplication.
switch (constant) {
case 1:
// Do nothing.
break;
case 3:
__ lea(left, Operand(left, left, times_2, 0));
break;
case 4:
__ shl(left, 2);
break;
case 5:
__ lea(left, Operand(left, left, times_4, 0));
break;
case 8:
__ shl(left, 3);
break;
case 9:
__ lea(left, Operand(left, left, times_8, 0));
break;
case 16:
__ shl(left, 4);
break;
default:
__ imul(left, left, constant);
break;
}
} else {
__ imul(left, left, constant);
}
} else {
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(left);
}
__ imul(left, ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
Label done;
__ test(left, Operand(left));
__ j(not_zero, &done, Label::kNear);
if (right->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(right)) < 0) {
DeoptimizeIf(no_condition, instr->environment());
} else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
__ cmp(ToRegister(instr->temp()), Immediate(0));
DeoptimizeIf(less, instr->environment());
}
} else {
// Test the non-zero operand for negative sign.
__ or_(ToRegister(instr->temp()), ToOperand(right));
DeoptimizeIf(sign, instr->environment());
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
if (right->IsConstantOperand()) {
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->representation());
switch (instr->op()) {
case Token::BIT_AND:
__ and_(ToRegister(left), right_operand);
break;
case Token::BIT_OR:
__ or_(ToRegister(left), right_operand);
break;
case Token::BIT_XOR:
if (right_operand == int32_t(~0)) {
__ not_(ToRegister(left));
} else {
__ xor_(ToRegister(left), right_operand);
}
break;
default:
UNREACHABLE();
break;
}
} else {
switch (instr->op()) {
case Token::BIT_AND:
__ and_(ToRegister(left), ToOperand(right));
break;
case Token::BIT_OR:
__ or_(ToRegister(left), ToOperand(right));
break;
case Token::BIT_XOR:
__ xor_(ToRegister(left), ToOperand(right));
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
if (right->IsRegister()) {
ASSERT(ToRegister(right).is(ecx));
switch (instr->op()) {
case Token::ROR:
__ ror_cl(ToRegister(left));
if (instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr->environment());
}
break;
case Token::SAR:
__ sar_cl(ToRegister(left));
break;
case Token::SHR:
__ shr_cl(ToRegister(left));
if (instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr->environment());
}
break;
case Token::SHL:
__ shl_cl(ToRegister(left));
break;
default:
UNREACHABLE();
break;
}
} else {
int value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count == 0 && instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr->environment());
} else {
__ ror(ToRegister(left), shift_count);
}
break;
case Token::SAR:
if (shift_count != 0) {
__ sar(ToRegister(left), shift_count);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ shr(ToRegister(left), shift_count);
} else if (instr->can_deopt()) {
__ test(ToRegister(left), ToRegister(left));
DeoptimizeIf(sign, instr->environment());
}
break;
case Token::SHL:
if (shift_count != 0) {
if (instr->hydrogen_value()->representation().IsSmi() &&
instr->can_deopt()) {
if (shift_count != 1) {
__ shl(ToRegister(left), shift_count - 1);
}
__ SmiTag(ToRegister(left));
DeoptimizeIf(overflow, instr->environment());
} else {
__ shl(ToRegister(left), shift_count);
}
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
__ sub(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else {
__ sub(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
__ Move(ToRegister(instr->result()), Immediate(instr->value()));
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ Move(ToRegister(instr->result()), Immediate(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
double v = instr->value();
uint64_t int_val = BitCast<uint64_t, double>(v);
int32_t lower = static_cast<int32_t>(int_val);
int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
ASSERT(instr->result()->IsDoubleRegister());
__ push(Immediate(upper));
__ push(Immediate(lower));
X87Register reg = ToX87Register(instr->result());
X87Mov(reg, Operand(esp, 0));
__ add(Operand(esp), Immediate(kDoubleSize));
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Register reg = ToRegister(instr->result());
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ LoadObject(reg, object);
}
void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->value());
__ EnumLength(result, map);
}
void LCodeGen::DoDateField(LDateField* instr) {
Register object = ToRegister(instr->date());
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->temp());
Smi* index = instr->index();
Label runtime, done;
ASSERT(object.is(result));
ASSERT(object.is(eax));
__ test(object, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr->environment());
__ CmpObjectType(object, JS_DATE_TYPE, scratch);
DeoptimizeIf(not_equal, instr->environment());
if (index->value() == 0) {
__ mov(result, FieldOperand(object, JSDate::kValueOffset));
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch, Operand::StaticVariable(stamp));
__ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
__ j(not_equal, &runtime, Label::kNear);
__ mov(result, FieldOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done, Label::kNear);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch);
__ mov(Operand(esp, 0), object);
__ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ bind(&done);
}
}
Operand LCodeGen::BuildSeqStringOperand(Register string,
LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToRepresentation(LConstantOperand::cast(index),
Representation::Integer32());
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldOperand(string, SeqString::kHeaderSize + offset);
}
return FieldOperand(
string, ToRegister(index),
encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register result = ToRegister(instr->result());
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
__ push(string);
__ mov(string, FieldOperand(string, HeapObject::kMapOffset));
__ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
__ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type));
__ Check(equal, kUnexpectedStringType);
__ pop(string);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ movzx_b(result, operand);
} else {
__ movzx_w(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
Register value = ToRegister(instr->value());
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (instr->value()->IsConstantOperand()) {
int value = ToRepresentation(LConstantOperand::cast(instr->value()),
Representation::Integer32());
ASSERT_LE(0, value);
if (encoding == String::ONE_BYTE_ENCODING) {
ASSERT_LE(value, String::kMaxOneByteCharCode);
__ mov_b(operand, static_cast<int8_t>(value));
} else {
ASSERT_LE(value, String::kMaxUtf16CodeUnit);
__ mov_w(operand, static_cast<int16_t>(value));
}
} else {
Register value = ToRegister(instr->value());
if (encoding == String::ONE_BYTE_ENCODING) {
__ mov_b(operand, value);
} else {
__ mov_w(operand, value);
}
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
if (right->IsConstantOperand()) {
int32_t offset = ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->representation());
__ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
} else {
Operand address(ToRegister(left), ToRegister(right), times_1, 0);
__ lea(ToRegister(instr->result()), address);
}
} else {
if (right->IsConstantOperand()) {
__ add(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else {
__ add(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
HMathMinMax::Operation operation = instr->hydrogen()->operation();
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Label return_left;
Condition condition = (operation == HMathMinMax::kMathMin)
? less_equal
: greater_equal;
if (right->IsConstantOperand()) {
Operand left_op = ToOperand(left);
Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
instr->hydrogen()->representation());
__ cmp(left_op, immediate);
__ j(condition, &return_left, Label::kNear);
__ mov(left_op, immediate);
} else {
Register left_reg = ToRegister(left);
Operand right_op = ToOperand(right);
__ cmp(left_reg, right_op);
__ j(condition, &return_left, Label::kNear);
__ mov(left_reg, right_op);
}
__ bind(&return_left);
} else {
// TODO(weiliang) use X87 for double representation.
UNIMPLEMENTED();
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
X87Register left = ToX87Register(instr->left());
X87Register right = ToX87Register(instr->right());
X87Register result = ToX87Register(instr->result());
if (instr->op() != Token::MOD) {
X87PrepareBinaryOp(left, right, result);
}
switch (instr->op()) {
case Token::ADD:
__ fadd_i(1);
break;
case Token::SUB:
__ fsub_i(1);
break;
case Token::MUL:
__ fmul_i(1);
break;
case Token::DIV:
__ fdiv_i(1);
break;
case Token::MOD: {
// Pass two doubles as arguments on the stack.
__ PrepareCallCFunction(4, eax);
X87Mov(Operand(esp, 1 * kDoubleSize), right);
X87Mov(Operand(esp, 0), left);
X87Free(right);
ASSERT(left.is(result));
X87PrepareToWrite(result);
__ CallCFunction(
ExternalReference::mod_two_doubles_operation(isolate()),
4);
// Return value is in st(0) on ia32.
X87CommitWrite(result);
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->context()).is(esi));
ASSERT(ToRegister(instr->left()).is(edx));
ASSERT(ToRegister(instr->right()).is(eax));
ASSERT(ToRegister(instr->result()).is(eax));
BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || cc == no_condition) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
__ jmp(chunk_->GetAssemblyLabel(right_block));
}
}
template<class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
int false_block = instr->FalseDestination(chunk_);
if (cc == no_condition) {
__ jmp(chunk_->GetAssemblyLabel(false_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(false_block));
}
}
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
if (r.IsSmiOrInteger32()) {
Register reg = ToRegister(instr->value());
__ test(reg, Operand(reg));
EmitBranch(instr, not_zero);
} else if (r.IsDouble()) {
UNREACHABLE();
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
ASSERT(!info()->IsStub());
__ cmp(reg, factory()->true_value());
EmitBranch(instr, equal);
} else if (type.IsSmi()) {
ASSERT(!info()->IsStub());
__ test(reg, Operand(reg));
EmitBranch(instr, not_equal);
} else if (type.IsJSArray()) {
ASSERT(!info()->IsStub());
EmitBranch(instr, no_condition);
} else if (type.IsHeapNumber()) {
UNREACHABLE();
} else if (type.IsString()) {
ASSERT(!info()->IsStub());
__ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
EmitBranch(instr, not_equal);
} else {
ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
if (expected.Contains(ToBooleanStub::UNDEFINED)) {
// undefined -> false.
__ cmp(reg, factory()->undefined_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::BOOLEAN)) {
// true -> true.
__ cmp(reg, factory()->true_value());
__ j(equal, instr->TrueLabel(chunk_));
// false -> false.
__ cmp(reg, factory()->false_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
// 'null' -> false.
__ cmp(reg, factory()->null_value());
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::SMI)) {
// Smis: 0 -> false, all other -> true.
__ test(reg, Operand(reg));
__ j(equal, instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected.NeedsMap()) {
// If we need a map later and have a Smi -> deopt.
__ test(reg, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr->environment());
}
Register map = no_reg; // Keep the compiler happy.
if (expected.NeedsMap()) {
map = ToRegister(instr->temp());
ASSERT(!map.is(reg));
__ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
if (expected.CanBeUndetectable()) {
// Undetectable -> false.
__ test_b(FieldOperand(map, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
__ j(not_zero, instr->FalseLabel(chunk_));
}
}
if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
// spec object -> true.
__ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
__ j(above_equal, instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::STRING)) {
// String value -> false iff empty.
Label not_string;
__ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
__ j(above_equal, &not_string, Label::kNear);
__ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
__ j(not_zero, instr->TrueLabel(chunk_));
__ jmp(instr->FalseLabel(chunk_));
__ bind(&not_string);
}
if (expected.Contains(ToBooleanStub::SYMBOL)) {
// Symbol value -> true.
__ CmpInstanceType(map, SYMBOL_TYPE);
__ j(equal, instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(not_equal, &not_heap_number, Label::kNear);
__ fldz();
__ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
__ FCmp();
__ j(zero, instr->FalseLabel(chunk_));
__ jmp(instr->TrueLabel(chunk_));
__ bind(&not_heap_number);
}
if (!expected.IsGeneric()) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(no_condition, instr->environment());
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
}
}
void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) {
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = no_condition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = equal;
break;
case Token::NE:
case Token::NE_STRICT:
cond = not_equal;
break;
case Token::LT:
cond = is_unsigned ? below : less;
break;
case Token::GT:
cond = is_unsigned ? above : greater;
break;
case Token::LTE:
cond = is_unsigned ? below_equal : less_equal;
break;
case Token::GTE:
cond = is_unsigned ? above_equal : greater_equal;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->is_double() ||
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cc = TokenToCondition(instr->op(), is_unsigned);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = EvalComparison(instr->op(), left_val, right_val) ?
instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
X87LoadForUsage(ToX87Register(right), ToX87Register(left));
__ FCmp();
// Don't base result on EFLAGS when a NaN is involved. Instead
// jump to the false block.
__ j(parity_even, instr->FalseLabel(chunk_));
} else {
if (right->IsConstantOperand()) {
__ cmp(ToOperand(left),
ToImmediate(right, instr->hydrogen()->representation()));
} else if (left->IsConstantOperand()) {
__ cmp(ToOperand(right),
ToImmediate(left, instr->hydrogen()->representation()));
// We commuted the operands, so commute the condition.
cc = CommuteCondition(cc);
} else {
__ cmp(ToRegister(left), ToOperand(right));
}
}
EmitBranch(instr, cc);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
if (instr->right()->IsConstantOperand()) {
Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
__ CmpObject(left, right);
} else {
Operand right = ToOperand(instr->right());
__ cmp(left, right);
}
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ cmp(input_reg, factory()->the_hole_value());
EmitBranch(instr, equal);
return;
}
// Put the value to the top of stack
X87Register src = ToX87Register(instr->object());
X87LoadForUsage(src);
__ fld(0);
__ fld(0);
__ FCmp();
Label ok;
__ j(parity_even, &ok, Label::kNear);
__ fstp(0);
EmitFalseBranch(instr, no_condition);
__ bind(&ok);
__ sub(esp, Immediate(kDoubleSize));
__ fstp_d(MemOperand(esp, 0));
__ add(esp, Immediate(kDoubleSize));
int offset = sizeof(kHoleNanUpper32);
__ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
EmitBranch(instr, equal);
}
void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
Representation rep = instr->hydrogen()->value()->representation();
ASSERT(!rep.IsInteger32());
if (rep.IsDouble()) {
UNREACHABLE();
} else {
Register value = ToRegister(instr->value());
Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
__ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
__ cmp(FieldOperand(value, HeapNumber::kExponentOffset),
Immediate(0x1));
EmitFalseBranch(instr, no_overflow);
__ cmp(FieldOperand(value, HeapNumber::kMantissaOffset),
Immediate(0x00000000));
EmitBranch(instr, equal);
}
}
Condition LCodeGen::EmitIsObject(Register input,
Register temp1,
Label* is_not_object,
Label* is_object) {
__ JumpIfSmi(input, is_not_object);
__ cmp(input, isolate()->factory()->null_value());
__ j(equal, is_object);
__ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
// Undetectable objects behave like undefined.
__ test_b(FieldOperand(temp1, Map::kBitFieldOffset),
1 << Map::kIsUndetectable);
__ j(not_zero, is_not_object);
__ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset));
__ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ j(below, is_not_object);
__ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
return below_equal;
}
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
Condition true_cond = EmitIsObject(
reg, temp, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
EmitBranch(instr, true_cond);
}
Condition LCodeGen::EmitIsString(Register input,
Register temp1,
Label* is_not_string,
SmiCheck check_needed = INLINE_SMI_CHECK) {
if (check_needed == INLINE_SMI_CHECK) {
__ JumpIfSmi(input, is_not_string);
}
Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
return cond;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()