blob: 1368501e225c1c2aaa995aab34a1914160e0f365 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_IA32
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/cpu-profiler.h"
#include "src/debug.h"
#include "src/isolate-inl.h"
#include "src/runtime.h"
#include "src/serialize.h"
namespace v8 {
namespace internal {
// -------------------------------------------------------------------------
// MacroAssembler implementation.
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false) {
if (isolate() != NULL) {
// TODO(titzer): should we just use a null handle here instead?
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
isolate());
}
}
void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
ASSERT(!r.IsDouble());
if (r.IsInteger8()) {
movsx_b(dst, src);
} else if (r.IsUInteger8()) {
movzx_b(dst, src);
} else if (r.IsInteger16()) {
movsx_w(dst, src);
} else if (r.IsUInteger16()) {
movzx_w(dst, src);
} else {
mov(dst, src);
}
}
void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
ASSERT(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
mov_b(dst, src);
} else if (r.IsInteger16() || r.IsUInteger16()) {
mov_w(dst, src);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
mov(dst, src);
}
}
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
mov(destination, value);
return;
}
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(destination, Immediate(index));
mov(destination, Operand::StaticArray(destination,
times_pointer_size,
roots_array_start));
}
void MacroAssembler::StoreRoot(Register source,
Register scratch,
Heap::RootListIndex index) {
ASSERT(Heap::RootCanBeWrittenAfterInitialization(index));
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(scratch, Immediate(index));
mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
source);
}
void MacroAssembler::CompareRoot(Register with,
Register scratch,
Heap::RootListIndex index) {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(scratch, Immediate(index));
cmp(with, Operand::StaticArray(scratch,
times_pointer_size,
roots_array_start));
}
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
cmp(with, value);
}
void MacroAssembler::CompareRoot(const Operand& with,
Heap::RootListIndex index) {
ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
cmp(with, value);
}
void MacroAssembler::InNewSpace(
Register object,
Register scratch,
Condition cc,
Label* condition_met,
Label::Distance condition_met_distance) {
ASSERT(cc == equal || cc == not_equal);
if (scratch.is(object)) {
and_(scratch, Immediate(~Page::kPageAlignmentMask));
} else {
mov(scratch, Immediate(~Page::kPageAlignmentMask));
and_(scratch, object);
}
// Check that we can use a test_b.
ASSERT(MemoryChunk::IN_FROM_SPACE < 8);
ASSERT(MemoryChunk::IN_TO_SPACE < 8);
int mask = (1 << MemoryChunk::IN_FROM_SPACE)
| (1 << MemoryChunk::IN_TO_SPACE);
// If non-zero, the page belongs to new-space.
test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
static_cast<uint8_t>(mask));
j(cc, condition_met, condition_met_distance);
}
void MacroAssembler::RememberedSetHelper(
Register object, // Only used for debug checks.
Register addr,
Register scratch,
SaveFPRegsMode save_fp,
MacroAssembler::RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
int3();
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
mov(scratch, Operand::StaticVariable(store_buffer));
// Store pointer to buffer.
mov(Operand(scratch, 0), addr);
// Increment buffer top.
add(scratch, Immediate(kPointerSize));
// Write back new top of buffer.
mov(Operand::StaticVariable(store_buffer), scratch);
// Call stub on end of buffer.
// Check for end of buffer.
test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
if (and_then == kReturnAtEnd) {
Label buffer_overflowed;
j(not_equal, &buffer_overflowed, Label::kNear);
ret(0);
bind(&buffer_overflowed);
} else {
ASSERT(and_then == kFallThroughAtEnd);
j(equal, &done, Label::kNear);
}
StoreBufferOverflowStub store_buffer_overflow =
StoreBufferOverflowStub(isolate(), save_fp);
CallStub(&store_buffer_overflow);
if (and_then == kReturnAtEnd) {
ret(0);
} else {
ASSERT(and_then == kFallThroughAtEnd);
bind(&done);
}
}
void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
XMMRegister scratch_reg,
Register result_reg) {
Label done;
Label conv_failure;
xorps(scratch_reg, scratch_reg);
cvtsd2si(result_reg, input_reg);
test(result_reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
cmp(result_reg, Immediate(0x1));
j(overflow, &conv_failure, Label::kNear);
mov(result_reg, Immediate(0));
setcc(sign, result_reg);
sub(result_reg, Immediate(1));
and_(result_reg, Immediate(255));
jmp(&done, Label::kNear);
bind(&conv_failure);
Move(result_reg, Immediate(0));
ucomisd(input_reg, scratch_reg);
j(below, &done, Label::kNear);
Move(result_reg, Immediate(255));
bind(&done);
}
void MacroAssembler::ClampUint8(Register reg) {
Label done;
test(reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
setcc(negative, reg); // 1 if negative, 0 if positive.
dec_b(reg); // 0 if negative, 255 if positive.
bind(&done);
}
void MacroAssembler::SlowTruncateToI(Register result_reg,
Register input_reg,
int offset) {
DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
call(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::TruncateDoubleToI(Register result_reg,
XMMRegister input_reg) {
Label done;
cvttsd2si(result_reg, Operand(input_reg));
cmp(result_reg, 0x1);
j(no_overflow, &done, Label::kNear);
sub(esp, Immediate(kDoubleSize));
movsd(MemOperand(esp, 0), input_reg);
SlowTruncateToI(result_reg, esp, 0);
add(esp, Immediate(kDoubleSize));
bind(&done);
}
void MacroAssembler::DoubleToI(Register result_reg,
XMMRegister input_reg,
XMMRegister scratch,
MinusZeroMode minus_zero_mode,
Label* conversion_failed,
Label::Distance dst) {
ASSERT(!input_reg.is(scratch));
cvttsd2si(result_reg, Operand(input_reg));
Cvtsi2sd(scratch, Operand(result_reg));
ucomisd(scratch, input_reg);
j(not_equal, conversion_failed, dst);
j(parity_even, conversion_failed, dst); // NaN.
if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
Label done;
// The integer converted back is equal to the original. We
// only have to test if we got -0 as an input.
test(result_reg, Operand(result_reg));
j(not_zero, &done, Label::kNear);
movmskpd(result_reg, input_reg);
// Bit 0 contains the sign of the double in input_reg.
// If input was positive, we are ok and return 0, otherwise
// jump to conversion_failed.
and_(result_reg, 1);
j(not_zero, conversion_failed, dst);
bind(&done);
}
}
void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
Register input_reg) {
Label done, slow_case;
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatureScope scope(this, SSE3);
Label convert;
// Use more powerful conversion when sse3 is available.
// Load x87 register with heap number.
fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
// Get exponent alone and check for too-big exponent.
mov(result_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
and_(result_reg, HeapNumber::kExponentMask);
const uint32_t kTooBigExponent =
(HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
cmp(Operand(result_reg), Immediate(kTooBigExponent));
j(greater_equal, &slow_case, Label::kNear);
// Reserve space for 64 bit answer.
sub(Operand(esp), Immediate(kDoubleSize));
// Do conversion, which cannot fail because we checked the exponent.
fisttp_d(Operand(esp, 0));
mov(result_reg, Operand(esp, 0)); // Low word of answer is the result.
add(Operand(esp), Immediate(kDoubleSize));
jmp(&done, Label::kNear);
// Slow case.
bind(&slow_case);
if (input_reg.is(result_reg)) {
// Input is clobbered. Restore number from fpu stack
sub(Operand(esp), Immediate(kDoubleSize));
fstp_d(Operand(esp, 0));
SlowTruncateToI(result_reg, esp, 0);
add(esp, Immediate(kDoubleSize));
} else {
fstp(0);
SlowTruncateToI(result_reg, input_reg);
}
} else {
movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
cvttsd2si(result_reg, Operand(xmm0));
cmp(result_reg, 0x1);
j(no_overflow, &done, Label::kNear);
// Check if the input was 0x8000000 (kMinInt).
// If no, then we got an overflow and we deoptimize.
ExternalReference min_int = ExternalReference::address_of_min_int();
ucomisd(xmm0, Operand::StaticVariable(min_int));
j(not_equal, &slow_case, Label::kNear);
j(parity_even, &slow_case, Label::kNear); // NaN.
jmp(&done, Label::kNear);
// Slow case.
bind(&slow_case);
if (input_reg.is(result_reg)) {
// Input is clobbered. Restore number from double scratch.
sub(esp, Immediate(kDoubleSize));
movsd(MemOperand(esp, 0), xmm0);
SlowTruncateToI(result_reg, esp, 0);
add(esp, Immediate(kDoubleSize));
} else {
SlowTruncateToI(result_reg, input_reg);
}
}
bind(&done);
}
void MacroAssembler::TaggedToI(Register result_reg,
Register input_reg,
XMMRegister temp,
MinusZeroMode minus_zero_mode,
Label* lost_precision) {
Label done;
ASSERT(!temp.is(xmm0));
cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
j(not_equal, lost_precision, Label::kNear);
ASSERT(!temp.is(no_xmm_reg));
movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
cvttsd2si(result_reg, Operand(xmm0));
Cvtsi2sd(temp, Operand(result_reg));
ucomisd(xmm0, temp);
RecordComment("Deferred TaggedToI: lost precision");
j(not_equal, lost_precision, Label::kNear);
RecordComment("Deferred TaggedToI: NaN");
j(parity_even, lost_precision, Label::kNear);
if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
test(result_reg, Operand(result_reg));
j(not_zero, &done, Label::kNear);
movmskpd(result_reg, xmm0);
and_(result_reg, 1);
RecordComment("Deferred TaggedToI: minus zero");
j(not_zero, lost_precision, Label::kNear);
}
bind(&done);
}
void MacroAssembler::LoadUint32(XMMRegister dst,
Register src) {
Label done;
cmp(src, Immediate(0));
ExternalReference uint32_bias =
ExternalReference::address_of_uint32_bias();
Cvtsi2sd(dst, src);
j(not_sign, &done, Label::kNear);
addsd(dst, Operand::StaticVariable(uint32_bias));
bind(&done);
}
void MacroAssembler::RecordWriteArray(
Register object,
Register value,
Register index,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
ASSERT_EQ(0, kSmiTag);
test(value, Immediate(kSmiTagMask));
j(zero, &done);
}
// Array access: calculate the destination address in the same manner as
// KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
// into an array of words.
Register dst = index;
lea(dst, Operand(object, index, times_half_pointer_size,
FixedArray::kHeaderSize - kHeapObjectTag));
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Immediate(BitCast<int32_t>(kZapValue)));
mov(index, Immediate(BitCast<int32_t>(kZapValue)));
}
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done, Label::kNear);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
ASSERT(IsAligned(offset, kPointerSize));
lea(dst, FieldOperand(object, offset));
if (emit_debug_code()) {
Label ok;
test_b(dst, (1 << kPointerSizeLog2) - 1);
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
}
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Immediate(BitCast<int32_t>(kZapValue)));
mov(dst, Immediate(BitCast<int32_t>(kZapValue)));
}
}
void MacroAssembler::RecordWriteForMap(
Register object,
Handle<Map> map,
Register scratch1,
Register scratch2,
SaveFPRegsMode save_fp) {
Label done;
Register address = scratch1;
Register value = scratch2;
if (emit_debug_code()) {
Label ok;
lea(address, FieldOperand(object, HeapObject::kMapOffset));
test_b(address, (1 << kPointerSizeLog2) - 1);
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
}
ASSERT(!object.is(value));
ASSERT(!object.is(address));
ASSERT(!value.is(address));
AssertNotSmi(object);
if (!FLAG_incremental_marking) {
return;
}
// Compute the address.
lea(address, FieldOperand(object, HeapObject::kMapOffset));
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
ASSERT(!isolate()->heap()->InNewSpace(*map));
CheckPageFlagForMap(map,
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
save_fp);
CallStub(&stub);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Immediate(BitCast<int32_t>(kZapValue)));
mov(scratch1, Immediate(BitCast<int32_t>(kZapValue)));
mov(scratch2, Immediate(BitCast<int32_t>(kZapValue)));
}
}
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
ASSERT(!object.is(value));
ASSERT(!object.is(address));
ASSERT(!value.is(address));
AssertNotSmi(object);
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Label ok;
cmp(value, Operand(address, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis and stores into young gen.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
// Skip barrier if writing a smi.
JumpIfSmi(value, &done, Label::kNear);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
bind(&done);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(address, Immediate(BitCast<int32_t>(kZapValue)));
mov(value, Immediate(BitCast<int32_t>(kZapValue)));
}
}
void MacroAssembler::DebugBreak() {
Move(eax, Immediate(0));
mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
CEntryStub ces(isolate(), 1);
call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
void MacroAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) {
xorps(dst, dst);
cvtsi2sd(dst, src);
}
bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
static const int kMaxImmediateBits = 17;
if (!RelocInfo::IsNone(x.rmode_)) return false;
return !is_intn(x.x_, kMaxImmediateBits);
}
void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
Move(dst, Immediate(x.x_ ^ jit_cookie()));
xor_(dst, jit_cookie());
} else {
Move(dst, x);
}
}
void MacroAssembler::SafePush(const Immediate& x) {
if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
push(Immediate(x.x_ ^ jit_cookie()));
xor_(Operand(esp, 0), Immediate(jit_cookie()));
} else {
push(x);
}
}
void MacroAssembler::CmpObjectType(Register heap_object,
InstanceType type,
Register map) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
CmpInstanceType(map, type);
}
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
static_cast<int8_t>(type));
}
void MacroAssembler::CheckFastElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Map::kMaximumBitField2FastHoleyElementValue);
j(above, fail, distance);
}
void MacroAssembler::CheckFastObjectElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Map::kMaximumBitField2FastHoleySmiElementValue);
j(below_equal, fail, distance);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Map::kMaximumBitField2FastHoleyElementValue);
j(above, fail, distance);
}
void MacroAssembler::CheckFastSmiElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Map::kMaximumBitField2FastHoleySmiElementValue);
j(above, fail, distance);
}
void MacroAssembler::StoreNumberToDoubleElements(
Register maybe_number,
Register elements,
Register key,
Register scratch1,
XMMRegister scratch2,
Label* fail,
int elements_offset) {
Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
JumpIfSmi(maybe_number, &smi_value, Label::kNear);
CheckMap(maybe_number,
isolate()->factory()->heap_number_map(),
fail,
DONT_DO_SMI_CHECK);
// Double value, canonicalize NaN.
uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
cmp(FieldOperand(maybe_number, offset),
Immediate(kNaNOrInfinityLowerBoundUpper32));
j(greater_equal, &maybe_nan, Label::kNear);
bind(&not_nan);
ExternalReference canonical_nan_reference =
ExternalReference::address_of_canonical_non_hole_nan();
movsd(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset));
bind(&have_double_value);
movsd(FieldOperand(elements, key, times_4,
FixedDoubleArray::kHeaderSize - elements_offset),
scratch2);
jmp(&done);
bind(&maybe_nan);
// Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
// it's an Infinity, and the non-NaN code path applies.
j(greater, &is_nan, Label::kNear);
cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
j(zero, &not_nan);
bind(&is_nan);
movsd(scratch2, Operand::StaticVariable(canonical_nan_reference));
jmp(&have_double_value, Label::kNear);
bind(&smi_value);
// Value is a smi. Convert to a double and store.
// Preserve original value.
mov(scratch1, maybe_number);
SmiUntag(scratch1);
Cvtsi2sd(scratch2, scratch1);
movsd(FieldOperand(elements, key, times_4,
FixedDoubleArray::kHeaderSize - elements_offset),
scratch2);
bind(&done);
}
void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
}
void MacroAssembler::CheckMap(Register obj,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
CompareMap(obj, map);
j(not_equal, fail);
}
void MacroAssembler::DispatchMap(Register obj,
Register unused,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
j(equal, success);
bind(&fail);
}
Condition MacroAssembler::IsObjectStringType(Register heap_object,
Register map,
Register instance_type) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
test(instance_type, Immediate(kIsNotStringMask));
return zero;
}
Condition MacroAssembler::IsObjectNameType(Register heap_object,
Register map,
Register instance_type) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
return below_equal;
}
void MacroAssembler::IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
IsInstanceJSObjectType(map, scratch, fail);
}
void MacroAssembler::IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail) {
movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
cmp(scratch,
LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
j(above, fail);
}
void MacroAssembler::FCmp() {
fucomip();
fstp(0);
}
void MacroAssembler::AssertNumber(Register object) {
if (emit_debug_code()) {
Label ok;
JumpIfSmi(object, &ok);
cmp(FieldOperand(object, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
Check(equal, kOperandNotANumber);
bind(&ok);
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(equal, kOperandIsNotASmi);
}
}
void MacroAssembler::AssertString(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAString);
push(object);
mov(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, FIRST_NONSTRING_TYPE);
pop(object);
Check(below, kOperandIsNotAString);
}
}
void MacroAssembler::AssertName(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAName);
push(object);
mov(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, LAST_NAME_TYPE);
pop(object);
Check(below_equal, kOperandIsNotAName);
}
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
cmp(object, isolate()->factory()->undefined_value());
j(equal, &done_checking);
cmp(FieldOperand(object, 0),
Immediate(isolate()->factory()->allocation_site_map()));
Assert(equal, kExpectedUndefinedOrCell);
bind(&done_checking);
}
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
test(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmi);
}
}
void MacroAssembler::StubPrologue() {
push(ebp); // Caller's frame pointer.
mov(ebp, esp);
push(esi); // Callee's context.
push(Immediate(Smi::FromInt(StackFrame::STUB)));
}
void MacroAssembler::Prologue(bool code_pre_aging) {
PredictableCodeSizeScope predictible_code_size_scope(this,
kNoCodeAgeSequenceLength);
if (code_pre_aging) {
// Pre-age the code.
call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
RelocInfo::CODE_AGE_SEQUENCE);
Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
} else {
push(ebp); // Caller's frame pointer.
mov(ebp, esp);
push(esi); // Callee's context.
push(edi); // Callee's JS function.
}
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
push(ebp);
mov(ebp, esp);
push(esi);
push(Immediate(Smi::FromInt(type)));
push(Immediate(CodeObject()));
if (emit_debug_code()) {
cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
Check(not_equal, kCodeObjectNotProperlyPatched);
}
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
if (emit_debug_code()) {
cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
Immediate(Smi::FromInt(type)));
Check(equal, kStackFrameTypesMustMatch);
}
leave();
}
void MacroAssembler::EnterExitFramePrologue() {
// Set up the frame structure on the stack.
ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
push(ebp);
mov(ebp, esp);
// Reserve room for entry stack pointer and push the code object.
ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
push(Immediate(0)); // Saved entry sp, patched before call.
push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
// Save the frame pointer and the context in top.
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
ExternalReference context_address(Isolate::kContextAddress, isolate());
mov(Operand::StaticVariable(c_entry_fp_address), ebp);
mov(Operand::StaticVariable(context_address), esi);
}
void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
// Optionally save all XMM registers.
if (save_doubles) {
int space = XMMRegister::kMaxNumRegisters * kDoubleSize +
argc * kPointerSize;
sub(esp, Immediate(space));
const int offset = -2 * kPointerSize;
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
}
} else {
sub(esp, Immediate(argc * kPointerSize));
}
// Get the required frame alignment for the OS.
const int kFrameAlignment = OS::ActivationFrameAlignment();
if (kFrameAlignment > 0) {
ASSERT(IsPowerOf2(kFrameAlignment));
and_(esp, -kFrameAlignment);
}
// Patch the saved entry sp.
mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
}
void MacroAssembler::EnterExitFrame(bool save_doubles) {
EnterExitFramePrologue();
// Set up argc and argv in callee-saved registers.
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
mov(edi, eax);
lea(esi, Operand(ebp, eax, times_4, offset));
// Reserve space for argc, argv and isolate.
EnterExitFrameEpilogue(3, save_doubles);
}
void MacroAssembler::EnterApiExitFrame(int argc) {
EnterExitFramePrologue();
EnterExitFrameEpilogue(argc, false);
}
void MacroAssembler::LeaveExitFrame(bool save_doubles) {
// Optionally restore all XMM registers.
if (save_doubles) {
const int offset = -2 * kPointerSize;
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
}
}
// Get the return address from the stack and restore the frame pointer.
mov(ecx, Operand(ebp, 1 * kPointerSize));
mov(ebp, Operand(ebp, 0 * kPointerSize));
// Pop the arguments and the receiver from the caller stack.
lea(esp, Operand(esi, 1 * kPointerSize));
// Push the return address to get ready to return.
push(ecx);
LeaveExitFrameEpilogue(true);
}
void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
// Restore current context from top and clear it in debug mode.
ExternalReference context_address(Isolate::kContextAddress, isolate());
if (restore_context) {
mov(esi, Operand::StaticVariable(context_address));
}
#ifdef DEBUG
mov(Operand::StaticVariable(context_address), Immediate(0));
#endif
// Clear the top frame.
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
isolate());
mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
}
void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
mov(esp, ebp);
pop(ebp);
LeaveExitFrameEpilogue(restore_context);
}
void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
int handler_index) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// We will build up the handler from the bottom by pushing on the stack.
// First push the frame pointer and context.
if (kind == StackHandler::JS_ENTRY) {
// The frame pointer does not point to a JS frame so we save NULL for
// ebp. We expect the code throwing an exception to check ebp before
// dereferencing it to restore the context.
push(Immediate(0)); // NULL frame pointer.
push(Immediate(Smi::FromInt(0))); // No context.
} else {
push(ebp);
push(esi);
}
// Push the state and the code object.
unsigned state =
StackHandler::IndexField::encode(handler_index) |
StackHandler::KindField::encode(kind);
push(Immediate(state));
Push(CodeObject());
// Link the current handler as the next handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
push(Operand::StaticVariable(handler_address));
// Set this new handler as the current one.
mov(Operand::StaticVariable(handler_address), esp);
}
void MacroAssembler::PopTryHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
pop(Operand::StaticVariable(handler_address));
add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
}
void MacroAssembler::JumpToHandlerEntry() {
// Compute the handler entry address and jump to it. The handler table is
// a fixed array of (smi-tagged) code offsets.
// eax = exception, edi = code object, edx = state.
mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
shr(edx, StackHandler::kKindWidth);
mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
SmiUntag(edx);
lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
jmp(edi);
}
void MacroAssembler::Throw(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in eax.
if (!value.is(eax)) {
mov(eax, value);
}
// Drop the stack pointer to the top of the top handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
mov(esp, Operand::StaticVariable(handler_address));
// Restore the next handler.
pop(Operand::StaticVariable(handler_address));
// Remove the code object and state, compute the handler address in edi.
pop(edi); // Code object.
pop(edx); // Index and state.
// Restore the context and frame pointer.
pop(esi); // Context.
pop(ebp); // Frame pointer.
// If the handler is a JS frame, restore the context to the frame.
// (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
// ebp or esi.
Label skip;
test(esi, esi);
j(zero, &skip, Label::kNear);
mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
bind(&skip);
JumpToHandlerEntry();
}
void MacroAssembler::ThrowUncatchable(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in eax.
if (!value.is(eax)) {
mov(eax, value);
}
// Drop the stack pointer to the top of the top stack handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
mov(esp, Operand::StaticVariable(handler_address));
// Unwind the handlers until the top ENTRY handler is found.
Label fetch_next, check_kind;
jmp(&check_kind, Label::kNear);
bind(&fetch_next);
mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
bind(&check_kind);
STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
test(Operand(esp, StackHandlerConstants::kStateOffset),
Immediate(StackHandler::KindField::kMask));
j(not_zero, &fetch_next);
// Set the top handler address to next handler past the top ENTRY handler.
pop(Operand::StaticVariable(handler_address));
// Remove the code object and state, compute the handler address in edi.
pop(edi); // Code object.
pop(edx); // Index and state.
// Clear the context pointer and frame pointer (0 was saved in the handler).
pop(esi);
pop(ebp);
JumpToHandlerEntry();
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch1,
Register scratch2,
Label* miss) {
Label same_contexts;
ASSERT(!holder_reg.is(scratch1));
ASSERT(!holder_reg.is(scratch2));
ASSERT(!scratch1.is(scratch2));
// Load current lexical context from the stack frame.
mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
// When generating debug code, make sure the lexical context is set.
if (emit_debug_code()) {
cmp(scratch1, Immediate(0));
Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
}
// Load the native context of the current context.
int offset =
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
mov(scratch1, FieldOperand(scratch1, offset));
mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
// Check the context is a native context.
if (emit_debug_code()) {
// Read the first word and compare to native_context_map.
cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
isolate()->factory()->native_context_map());
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
}
// Check if both contexts are the same.
cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
j(equal, &same_contexts);
// Compare security tokens, save holder_reg on the stack so we can use it
// as a temporary register.
//
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
mov(scratch2,
FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
// Check the context is a native context.
if (emit_debug_code()) {
cmp(scratch2, isolate()->factory()->null_value());
Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
// Read the first word and compare to native_context_map(),
cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
isolate()->factory()->native_context_map());
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
}
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
mov(scratch1, FieldOperand(scratch1, token_offset));
cmp(scratch1, FieldOperand(scratch2, token_offset));
j(not_equal, miss);
bind(&same_contexts);
}
// Compute the hash code from the untagged key. This must be kept in sync with
// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
// code-stub-hydrogen.cc
//
// Note: r0 will contain hash code
void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
// Xor original key with a seed.
if (serializer_enabled()) {
ExternalReference roots_array_start =
ExternalReference::roots_array_start(isolate());
mov(scratch, Immediate(Heap::kHashSeedRootIndex));
mov(scratch,
Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
SmiUntag(scratch);
xor_(r0, scratch);
} else {
int32_t seed = isolate()->heap()->HashSeed();
xor_(r0, Immediate(seed));
}
// hash = ~hash + (hash << 15);
mov(scratch, r0);
not_(r0);
shl(scratch, 15);
add(r0, scratch);
// hash = hash ^ (hash >> 12);
mov(scratch, r0);
shr(scratch, 12);
xor_(r0, scratch);
// hash = hash + (hash << 2);
lea(r0, Operand(r0, r0, times_4, 0));
// hash = hash ^ (hash >> 4);
mov(scratch, r0);
shr(scratch, 4);
xor_(r0, scratch);
// hash = hash * 2057;
imul(r0, r0, 2057);
// hash = hash ^ (hash >> 16);
mov(scratch, r0);
shr(scratch, 16);
xor_(r0, scratch);
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register r0,
Register r1,
Register r2,
Register result) {
// Register use:
//
// elements - holds the slow-case elements of the receiver and is unchanged.
//
// key - holds the smi key on entry and is unchanged.
//
// Scratch registers:
//
// r0 - holds the untagged key on entry and holds the hash once computed.
//
// r1 - used to hold the capacity mask of the dictionary
//
// r2 - used for the index into the dictionary.
//
// result - holds the result on exit if the load succeeds and we fall through.
Label done;
GetNumberHash(r0, r1);
// Compute capacity mask.
mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
shr(r1, kSmiTagSize); // convert smi to int
dec(r1);
// Generate an unrolled loop that performs a few probes before giving up.
for (int i = 0; i < kNumberDictionaryProbes; i++) {
// Use r2 for index calculations and keep the hash intact in r0.
mov(r2, r0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
}
and_(r2, r1);
// Scale the index by multiplying by the entry size.
ASSERT(SeededNumberDictionary::kEntrySize == 3);
lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
// Check if the key matches.
cmp(key, FieldOperand(elements,
r2,
times_pointer_size,
SeededNumberDictionary::kElementsStartOffset));
if (i != (kNumberDictionaryProbes - 1)) {
j(equal, &done);
} else {
j(not_equal, miss);
}
}
bind(&done);
// Check that the value is a normal propety.
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
ASSERT_EQ(NORMAL, 0);
test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
j(not_zero, miss);
// Get the value at the masked, scaled index.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
}
void MacroAssembler::LoadAllocationTopHelper(Register result,
Register scratch,
AllocationFlags flags) {
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Just return if allocation top is already known.
if ((flags & RESULT_CONTAINS_TOP) != 0) {
// No use of scratch if allocation top is provided.
ASSERT(scratch.is(no_reg));
#ifdef DEBUG
// Assert that result actually contains top on entry.
cmp(result, Operand::StaticVariable(allocation_top));
Check(equal, kUnexpectedAllocationTop);
#endif
return;
}
// Move address of new object to result. Use scratch register if available.
if (scratch.is(no_reg)) {
mov(result, Operand::StaticVariable(allocation_top));
} else {
mov(scratch, Immediate(allocation_top));
mov(result, Operand(scratch, 0));
}
}
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
Register scratch,
AllocationFlags flags) {
if (emit_debug_code()) {
test(result_end, Immediate(kObjectAlignmentMask));
Check(zero, kUnalignedAllocationInNewSpace);
}
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Update new top. Use scratch if available.
if (scratch.is(no_reg)) {
mov(Operand::StaticVariable(allocation_top), result_end);
} else {
mov(Operand(scratch, 0), result_end);
}
}
void MacroAssembler::Allocate(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Immediate(0x7091));
if (result_end.is_valid()) {
mov(result_end, Immediate(0x7191));
}
if (scratch.is_valid()) {
mov(scratch, Immediate(0x7291));
}
}
jmp(gc_required);
return;
}
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
if ((flags & DOUBLE_ALIGNMENT) != 0) {
ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
Label aligned;
test(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
cmp(result, Operand::StaticVariable(allocation_limit));
j(above_equal, gc_required);
}
mov(Operand(result, 0),
Immediate(isolate()->factory()->one_pointer_filler_map()));
add(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
// Calculate new top and bail out if space is exhausted.
Register top_reg = result_end.is_valid() ? result_end : result;
if (!top_reg.is(result)) {
mov(top_reg, result);
}
add(top_reg, Immediate(object_size));
j(carry, gc_required);
cmp(top_reg, Operand::StaticVariable(allocation_limit));
j(above, gc_required);
// Update allocation top.
UpdateAllocationTopHelper(top_reg, scratch, flags);
// Tag result if requested.
bool tag_result = (flags & TAG_OBJECT) != 0;
if (top_reg.is(result)) {
if (tag_result) {
sub(result, Immediate(object_size - kHeapObjectTag));
} else {
sub(result, Immediate(object_size));
}
} else if (tag_result) {
ASSERT(kHeapObjectTag == 1);
inc(result);
}
}
void MacroAssembler::Allocate(int header_size,
ScaleFactor element_size,
Register element_count,
RegisterValueType element_count_type,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
ASSERT((flags & SIZE_IN_WORDS) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Immediate(0x7091));
mov(result_end, Immediate(0x7191));
if (scratch.is_valid()) {
mov(scratch, Immediate(0x7291));
}
// Register element_count is not modified by the function.
}
jmp(gc_required);
return;
}
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
if ((flags & DOUBLE_ALIGNMENT) != 0) {
ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
Label aligned;
test(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
cmp(result, Operand::StaticVariable(allocation_limit));
j(above_equal, gc_required);
}
mov(Operand(result, 0),
Immediate(isolate()->factory()->one_pointer_filler_map()));
add(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
// Calculate new top and bail out if space is exhausted.
// We assume that element_count*element_size + header_size does not
// overflow.
if (element_count_type == REGISTER_VALUE_IS_SMI) {
STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
ASSERT(element_size >= times_2);
ASSERT(kSmiTagSize == 1);
element_size = static_cast<ScaleFactor>(element_size - 1);
} else {
ASSERT(element_count_type == REGISTER_VALUE_IS_INT32);
}
lea(result_end, Operand(element_count, element_size, header_size));
add(result_end, result);
j(carry, gc_required);
cmp(result_end, Operand::StaticVariable(allocation_limit));
j(above, gc_required);
if ((flags & TAG_OBJECT) != 0) {
ASSERT(kHeapObjectTag == 1);
inc(result);
}
// Update allocation top.
UpdateAllocationTopHelper(result_end, scratch, flags);
}
void MacroAssembler::Allocate(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Immediate(0x7091));
mov(result_end, Immediate(0x7191));
if (scratch.is_valid()) {
mov(scratch, Immediate(0x7291));
}
// object_size is left unchanged by this function.
}
jmp(gc_required);
return;
}
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
if ((flags & DOUBLE_ALIGNMENT) != 0) {
ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
Label aligned;
test(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
cmp(result, Operand::StaticVariable(allocation_limit));
j(above_equal, gc_required);
}
mov(Operand(result, 0),
Immediate(isolate()->factory()->one_pointer_filler_map()));
add(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
// Calculate new top and bail out if space is exhausted.
if (!object_size.is(result_end)) {
mov(result_end, object_size);
}
add(result_end, result);
j(carry, gc_required);
cmp(result_end, Operand::StaticVariable(allocation_limit));
j(above, gc_required);
// Tag result if requested.
if ((flags & TAG_OBJECT) != 0) {
ASSERT(kHeapObjectTag == 1);
inc(result);
}
// Update allocation top.
UpdateAllocationTopHelper(result_end, scratch, flags);
}
void MacroAssembler::UndoAllocationInNewSpace(Register object) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Make sure the object has no tag before resetting top.
and_(object, Immediate(~kHeapObjectTagMask));
#ifdef DEBUG
cmp(object, Operand::StaticVariable(new_space_allocation_top));
Check(below, kUndoAllocationOfNonAllocatedMemory);
#endif
mov(Operand::StaticVariable(new_space_allocation_top), object);
}
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
// Set the map.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->heap_number_map()));
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
ASSERT(kShortSize == 2);
// scratch1 = length * 2 + kObjectAlignmentMask.
lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
and_(scratch1, Immediate(~kObjectAlignmentMask));
// Allocate two byte string in new space.
Allocate(SeqTwoByteString::kHeaderSize,
times_1,
scratch1,
REGISTER_VALUE_IS_INT32,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->string_map()));
mov(scratch1, length);
SmiTag(scratch1);
mov(FieldOperand(result, String::kLengthOffset), scratch1);
mov(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
mov(scratch1, length);
ASSERT(kCharSize == 1);
add(scratch1, Immediate(kObjectAlignmentMask));
and_(scratch1, Immediate(~kObjectAlignmentMask));
// Allocate ASCII string in new space.
Allocate(SeqOneByteString::kHeaderSize,
times_1,
scratch1,
REGISTER_VALUE_IS_INT32,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->ascii_string_map()));
mov(scratch1, length);
SmiTag(scratch1);
mov(FieldOperand(result, String::kLengthOffset), scratch1);
mov(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateAsciiString(Register result,
int length,
Register scratch1,
Register scratch2,
Label* gc_required) {
ASSERT(length > 0);
// Allocate ASCII string in new space.
Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
gc_required, TAG_OBJECT);
// Set the map, length and hash field.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->ascii_string_map()));
mov(FieldOperand(result, String::kLengthOffset),
Immediate(Smi::FromInt(length)));
mov(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->cons_string_map()));
}
void MacroAssembler::AllocateAsciiConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->cons_ascii_string_map()));
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->sliced_string_map()));
}
void MacroAssembler::AllocateAsciiSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(isolate()->factory()->sliced_ascii_string_map()));
}
// Copy memory, byte-by-byte, from source to destination. Not optimized for
// long or aligned copies. The contents of scratch and length are destroyed.
// Source and destination are incremented by length.
// Many variants of movsb, loop unrolling, word moves, and indexed operands
// have been tried here already, and this is fastest.
// A simpler loop is faster on small copies, but 30% slower on large ones.
// The cld() instruction must have been emitted, to set the direction flag(),
// before calling this function.
void MacroAssembler::CopyBytes(Register source,
Register destination,
Register length,
Register scratch) {
Label short_loop, len4, len8, len12, done, short_string;
ASSERT(source.is(esi));
ASSERT(destination.is(edi));
ASSERT(length.is(ecx));
cmp(length, Immediate(4));
j(below, &short_string, Label::kNear);
// Because source is 4-byte aligned in our uses of this function,
// we keep source aligned for the rep_movs call by copying the odd bytes
// at the end of the ranges.
mov(scratch, Operand(source, length, times_1, -4));
mov(Operand(destination, length, times_1, -4), scratch);
cmp(length, Immediate(8));
j(below_equal, &len4, Label::kNear);
cmp(length, Immediate(12));
j(below_equal, &len8, Label::kNear);
cmp(length, Immediate(16));
j(below_equal, &len12, Label::kNear);
mov(scratch, ecx);
shr(ecx, 2);
rep_movs();
and_(scratch, Immediate(0x3));
add(destination, scratch);
jmp(&done, Label::kNear);
bind(&len12);
mov(scratch, Operand(source, 8));
mov(Operand(destination, 8), scratch);
bind(&len8);
mov(scratch, Operand(source, 4));
mov(Operand(destination, 4), scratch);
bind(&len4);
mov(scratch, Operand(source, 0));
mov(Operand(destination, 0), scratch);
add(destination, length);
jmp(&done, Label::kNear);
bind(&short_string);
test(length, length);
j(zero, &done, Label::kNear);
bind(&short_loop);
mov_b(scratch, Operand(source, 0));
mov_b(Operand(destination, 0), scratch);
inc(source);
inc(destination);
dec(length);
j(not_zero, &short_loop);
bind(&done);
}
void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
Register end_offset,
Register filler) {
Label loop, entry;
jmp(&entry);
bind(&loop);
mov(Operand(start_offset, 0), filler);
add(start_offset, Immediate(kPointerSize));
bind(&entry);
cmp(start_offset, end_offset);
j(less, &loop);
}
void MacroAssembler::BooleanBitTest(Register object,
int field_offset,
int bit_index) {
bit_index += kSmiTagSize + kSmiShiftSize;
ASSERT(IsPowerOf2(kBitsPerByte));
int byte_index = bit_index / kBitsPerByte;
int byte_bit_index = bit_index & (kBitsPerByte - 1);
test_b(FieldOperand(object, field_offset + byte_index),
static_cast<byte>(1 << byte_bit_index));
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op,
Label* then_label) {
Label ok;
test(result, result);
j(not_zero, &ok);
test(op, op);
j(sign, then_label);
bind(&ok);
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op1,
Register op2,
Register scratch,
Label* then_label) {
Label ok;
test(result, result);
j(not_zero, &ok);
mov(scratch, op1);
or_(scratch, op2);
j(sign, then_label);
bind(&ok);
}
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
bool miss_on_bound_function) {
// Check that the receiver isn't a smi.
JumpIfSmi(function, miss);
// Check that the function really is a function.
CmpObjectType(function, JS_FUNCTION_TYPE, result);
j(not_equal, miss);
if (miss_on_bound_function) {
// If a bound function, go to miss label.
mov(scratch,
FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
SharedFunctionInfo::kBoundFunction);
j(not_zero, miss);
}
// Make sure that the function has an instance prototype.
Label non_instance;
movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
j(not_zero, &non_instance);
// Get the prototype or initial map from the function.
mov(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
cmp(result, Immediate(isolate()->factory()->the_hole_value()));
j(equal, miss);
// If the function does not have an initial map, we're done.
Label done;
CmpObjectType(result, MAP_TYPE, scratch);
j(not_equal, &done);
// Get the prototype from the initial map.
mov(result, FieldOperand(result, Map::kPrototypeOffset));
jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
mov(result, FieldOperand(result, Map::kConstructorOffset));
// All done.
bind(&done);
}
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
ASSERT(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
}
void MacroAssembler::TailCallStub(CodeStub* stub) {
jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::StubReturn(int argc) {
ASSERT(argc >= 1 && generating_stub());
ret((argc - 1) * kPointerSize);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame_ || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::IndexFromHash(Register hash, Register index) {
// The assert checks that the constants for the maximum number of digits
// for an array index cached in the hash field and the number of bits
// reserved for it does not conflict.
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
if (!index.is(hash)) {
mov(index, hash);
}
DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles) {
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Move(eax, Immediate(num_arguments));
mov(ebx, Immediate(ExternalReference(f, isolate())));
CEntryStub ces(isolate(), 1, save_doubles);
CallStub(&ces);
}
void MacroAssembler::CallExternalReference(ExternalReference ref,
int num_arguments) {
mov(eax, Immediate(num_arguments));
mov(ebx, Immediate(ref));
CEntryStub stub(isolate(), 1);
CallStub(&stub);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Move(eax, Immediate(num_arguments));
JumpToExternalReference(ext);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
Operand ApiParameterOperand(int index) {
return Operand(esp, index * kPointerSize);
}
void MacroAssembler::PrepareCallApiFunction(int argc) {
EnterApiExitFrame(argc);
if (emit_debug_code()) {
mov(esi, Immediate(BitCast<int32_t>(kZapValue)));
}
}
void MacroAssembler::CallApiFunctionAndReturn(
Register function_address,
ExternalReference thunk_ref,
Operand thunk_last_arg,
int stack_space,
Operand return_value_operand,
Operand* context_restore_operand) {
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate());
ExternalReference limit_address =
ExternalReference::handle_scope_limit_address(isolate());
ExternalReference level_address =
ExternalReference::handle_scope_level_address(isolate());
ASSERT(edx.is(function_address));
// Allocate HandleScope in callee-save registers.
mov(ebx, Operand::StaticVariable(next_address));
mov(edi, Operand::StaticVariable(limit_address));
add(Operand::StaticVariable(level_address), Immediate(1));
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1, eax);
mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
PopSafepointRegisters();
}
Label profiler_disabled;
Label end_profiler_check;
mov(eax, Immediate(ExternalReference::is_profiling_address(isolate())));
cmpb(Operand(eax, 0), 0);
j(zero, &profiler_disabled);
// Additional parameter is the address of the actual getter function.
mov(thunk_last_arg, function_address);
// Call the api function.
mov(eax, Immediate(thunk_ref));
call(eax);
jmp(&end_profiler_check);
bind(&profiler_disabled);
// Call the api function.
call(function_address);
bind(&end_profiler_check);
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1, eax);
mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
PopSafepointRegisters();
}
Label prologue;
// Load the value from ReturnValue
mov(eax, return_value_operand);
Label promote_scheduled_exception;
Label exception_handled;
Label delete_allocated_handles;
Label leave_exit_frame;
bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
mov(Operand::StaticVariable(next_address), ebx);
sub(Operand::StaticVariable(level_address), Immediate(1));
Assert(above_equal, kInvalidHandleScopeLevel);
cmp(edi, Operand::StaticVariable(limit_address));
j(not_equal, &delete_allocated_handles);
bind(&leave_exit_frame);
// Check if the function scheduled an exception.
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate());
cmp(Operand::StaticVariable(scheduled_exception_address),
Immediate(isolate()->factory()->the_hole_value()));
j(not_equal, &promote_scheduled_exception);
bind(&exception_handled);
#if ENABLE_EXTRA_CHECKS
// Check if the function returned a valid JavaScript value.
Label ok;
Register return_value = eax;
Register map = ecx;
JumpIfSmi(return_value, &ok, Label::kNear);
mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
CmpInstanceType(map, FIRST_NONSTRING_TYPE);
j(below, &ok, Label::kNear);
CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
j(above_equal, &ok, Label::kNear);
cmp(map, isolate()->factory()->heap_number_map());
j(equal, &ok, Label::kNear);
cmp(return_value, isolate()->factory()->undefined_value());
j(equal, &ok, Label::kNear);
cmp(return_value, isolate()->factory()->true_value());
j(equal, &ok, Label::kNear);
cmp(return_value, isolate()->factory()->false_value());
j(equal, &ok, Label::kNear);
cmp(return_value, isolate()->factory()->null_value());
j(equal, &ok, Label::kNear);
Abort(kAPICallReturnedInvalidObject);
bind(&ok);
#endif
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
mov(esi, *context_restore_operand);
}
LeaveApiExitFrame(!restore_context);
ret(stack_space * kPointerSize);
bind(&promote_scheduled_exception);
{
FrameScope frame(this, StackFrame::INTERNAL);
CallRuntime(Runtime::kHiddenPromoteScheduledException, 0);
}
jmp(&exception_handled);
// HandleScope limit has changed. Delete allocated extensions.
ExternalReference delete_extensions =
ExternalReference::delete_handle_scope_extensions(isolate());
bind(&delete_allocated_handles);
mov(Operand::StaticVariable(limit_address), edi);
mov(edi, eax);
mov(Operand(esp, 0),
Immediate(ExternalReference::isolate_address(isolate())));
mov(eax, Immediate(delete_extensions));
call(eax);
mov(eax, edi);
jmp(&leave_exit_frame);
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
// Set the entry point and jump to the C entry runtime stub.
mov(ebx, Immediate(ext));
CEntryStub ces(isolate(), 1);
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
const Operand& code_operand,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
Label::Distance done_near,
const CallWrapper& call_wrapper) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label invoke;
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
mov(eax, actual.immediate());
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
mov(ebx, expected.immediate());
}
}
} else {
if (actual.is_immediate()) {
// Expected is in register, actual is immediate. This is the
// case when we invoke function values without going through the
// IC mechanism.
cmp(expected.reg(), actual.immediate());
j(equal, &invoke);
ASSERT(expected.reg().is(ebx));
mov(eax, actual.immediate());
} else if (!expected.reg().is(actual.reg())) {
// Both expected and actual are in (different) registers. This
// is the case when we invoke functions using call and apply.
cmp(expected.reg(), actual.reg());
j(equal, &invoke);
ASSERT(actual.reg().is(eax));
ASSERT(expected.reg().is(ebx));
}
}
if (!definitely_matches) {
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (!code_constant.is_null()) {
mov(edx, Immediate(code_constant));
add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
} else if (!code_operand.is_reg(edx)) {
mov(edx, code_operand);
}
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
call(adaptor, RelocInfo::CODE_TARGET);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
jmp(done, done_near);
}
} else {
jmp(adaptor, RelocInfo::CODE_TARGET);
}
bind(&invoke);
}
}
void MacroAssembler::InvokeCode(const Operand& code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, Handle<Code>::null(), code,
&done, &definitely_mismatches, flag, Label::kNear,
call_wrapper);
if (!definitely_mismatches) {
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
call(code);
call_wrapper.AfterCall();
} else {
ASSERT(flag == JUMP_FUNCTION);
jmp(code);
}
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register fun,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
ASSERT(fun.is(edi));
mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
SmiUntag(ebx);
ParameterCount expected(ebx);
InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Register fun,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
ASSERT(fun.is(edi));
mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
LoadHeapObject(edi, function);
InvokeFunction(edi, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a builtin without a valid frame.
ASSERT(flag == JUMP_FUNCTION || has_frame());
// Rely on the assertion to check that the number of provided
// arguments match the expected number of arguments. Fake a
// parameter count to avoid emitting code to do the check.
ParameterCount expected(0);
GetBuiltinFunction(edi, id);
InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
expected, expected, flag, call_wrapper);
}
void MacroAssembler::GetBuiltinFunction(Register target,
Builtins::JavaScript id) {
// Load the JavaScript builtin function from the builtins object.
mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
mov(target, FieldOperand(target,
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
ASSERT(!target.is(edi));
// Load the JavaScript builtin function from the builtins object.
GetBuiltinFunction(edi, id);
// Load the code entry point from the function into the target register.
mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in esi).
mov(dst, esi);
}
// We should not have found a with context by walking the context chain
// (i.e., the static scope chain and runtime context chain do not agree).
// A variable occurring in such a scope should have slot type LOOKUP and
// not CONTEXT.
if (emit_debug_code()) {
cmp(FieldOperand(dst, HeapObject::kMapOffset),
isolate()->factory()->with_context_map());
Check(not_equal, kVariableResolvedToWithContext);
}
}
void MacroAssembler::LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match) {
// Load the global or builtins object from the current context.
mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
// Check that the function's map is the same as the expected cached map.
mov(scratch, Operand(scratch,
Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
size_t offset = expected_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
cmp(map_in_out, FieldOperand(scratch, offset));
j(not_equal, no_map_match);
// Use the transitioned cached map.
offset = transitioned_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
mov(map_in_out, FieldOperand(scratch, offset));
}
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
mov(function,
Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
// Load the native context from the global or builtins object.
mov(function,
FieldOperand(function, GlobalObject::kNativeContextOffset));
// Load the function from the native context.
mov(function, Operand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map) {
// Load the initial map. The global functions all have initial maps.
mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
jmp(&ok);
bind(&fail);
Abort(kGlobalFunctionsMustHaveInitialMap);
bind(&ok);
}
}
// Store the value in register src in the safepoint register stack
// slot for register dst.
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
mov(SafepointRegisterSlot(dst), src);
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
mov(SafepointRegisterSlot(dst), src);
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
mov(dst, SafepointRegisterSlot(src));
}
Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the lowest encoding,
// which means that lowest encodings are furthest away from
// the stack pointer.
ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
return kNumSafepointRegisters - reg_code - 1;
}
void MacroAssembler::LoadHeapObject(Register result,
Handle<HeapObject> object) {
AllowDeferredHandleDereference embedding_raw_address;
if (isolate()->heap()->InNewSpace(*object)) {
Handle<Cell> cell = isolate()->factory()->NewCell(object);
mov(result, Operand::ForCell(cell));
} else {
mov(result, object);
}
}
void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
AllowDeferredHandleDereference using_raw_address;
if (isolate()->heap()->InNewSpace(*object)) {
Handle<Cell> cell = isolate()->factory()->NewCell(object);
cmp(reg, Operand::ForCell(cell));
} else {
cmp(reg, object);
}
}
void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
AllowDeferredHandleDereference using_raw_address;
if (isolate()->heap()->InNewSpace(*object)) {
Handle<Cell> cell = isolate()->factory()->NewCell(object);
push(Operand::ForCell(cell));
} else {
Push(object);
}
}
void MacroAssembler::Ret() {
ret(0);
}
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
if (is_uint16(bytes_dropped)) {
ret(bytes_dropped);
} else {
pop(scratch);
add(esp, Immediate(bytes_dropped));
push(scratch);
ret(0);
}
}
void MacroAssembler::Drop(int stack_elements) {
if (stack_elements > 0) {
add(esp, Immediate(stack_elements * kPointerSize));
}
}
void MacroAssembler::Move(Register dst, Register src) {
if (!dst.is(src)) {
mov(dst, src);
}
}
void MacroAssembler::Move(Register dst, const Immediate& x) {
if (x.is_zero()) {
xor_(dst, dst); // Shorter than mov of 32-bit immediate 0.