blob: e86baa02aa3faee01657ee2a7bc980dfc25210b0 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "compiler.h"
#include "bootstrapper.h"
#include "codegen.h"
#include "compilation-cache.h"
#include "cpu-profiler.h"
#include "debug.h"
#include "deoptimizer.h"
#include "full-codegen.h"
#include "gdb-jit.h"
#include "typing.h"
#include "hydrogen.h"
#include "isolate-inl.h"
#include "lithium.h"
#include "liveedit.h"
#include "parser.h"
#include "rewriter.h"
#include "runtime-profiler.h"
#include "scanner-character-streams.h"
#include "scopeinfo.h"
#include "scopes.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
CompilationInfo::CompilationInfo(Handle<Script> script,
Zone* zone)
: flags_(LanguageModeField::encode(CLASSIC_MODE)),
script_(script),
osr_ast_id_(BailoutId::None()),
osr_pc_offset_(0) {
Initialize(script->GetIsolate(), BASE, zone);
}
CompilationInfo::CompilationInfo(Handle<SharedFunctionInfo> shared_info,
Zone* zone)
: flags_(LanguageModeField::encode(CLASSIC_MODE) | IsLazy::encode(true)),
shared_info_(shared_info),
script_(Handle<Script>(Script::cast(shared_info->script()))),
osr_ast_id_(BailoutId::None()),
osr_pc_offset_(0) {
Initialize(script_->GetIsolate(), BASE, zone);
}
CompilationInfo::CompilationInfo(Handle<JSFunction> closure,
Zone* zone)
: flags_(LanguageModeField::encode(CLASSIC_MODE) | IsLazy::encode(true)),
closure_(closure),
shared_info_(Handle<SharedFunctionInfo>(closure->shared())),
script_(Handle<Script>(Script::cast(shared_info_->script()))),
context_(closure->context()),
osr_ast_id_(BailoutId::None()),
osr_pc_offset_(0) {
Initialize(script_->GetIsolate(), BASE, zone);
}
CompilationInfo::CompilationInfo(HydrogenCodeStub* stub,
Isolate* isolate,
Zone* zone)
: flags_(LanguageModeField::encode(CLASSIC_MODE) |
IsLazy::encode(true)),
osr_ast_id_(BailoutId::None()),
osr_pc_offset_(0) {
Initialize(isolate, STUB, zone);
code_stub_ = stub;
}
void CompilationInfo::Initialize(Isolate* isolate,
Mode mode,
Zone* zone) {
isolate_ = isolate;
function_ = NULL;
scope_ = NULL;
global_scope_ = NULL;
extension_ = NULL;
pre_parse_data_ = NULL;
zone_ = zone;
deferred_handles_ = NULL;
code_stub_ = NULL;
prologue_offset_ = Code::kPrologueOffsetNotSet;
opt_count_ = shared_info().is_null() ? 0 : shared_info()->opt_count();
no_frame_ranges_ = isolate->cpu_profiler()->is_profiling()
? new List<OffsetRange>(2) : NULL;
for (int i = 0; i < DependentCode::kGroupCount; i++) {
dependencies_[i] = NULL;
}
if (mode == STUB) {
mode_ = STUB;
return;
}
mode_ = mode;
abort_due_to_dependency_ = false;
if (script_->type()->value() == Script::TYPE_NATIVE) {
MarkAsNative();
}
if (!shared_info_.is_null()) {
ASSERT(language_mode() == CLASSIC_MODE);
SetLanguageMode(shared_info_->language_mode());
}
set_bailout_reason(kUnknown);
}
CompilationInfo::~CompilationInfo() {
delete deferred_handles_;
delete no_frame_ranges_;
#ifdef DEBUG
// Check that no dependent maps have been added or added dependent maps have
// been rolled back or committed.
for (int i = 0; i < DependentCode::kGroupCount; i++) {
ASSERT_EQ(NULL, dependencies_[i]);
}
#endif // DEBUG
}
void CompilationInfo::CommitDependencies(Handle<Code> code) {
for (int i = 0; i < DependentCode::kGroupCount; i++) {
ZoneList<Handle<HeapObject> >* group_objects = dependencies_[i];
if (group_objects == NULL) continue;
ASSERT(!object_wrapper_.is_null());
for (int j = 0; j < group_objects->length(); j++) {
DependentCode::DependencyGroup group =
static_cast<DependentCode::DependencyGroup>(i);
DependentCode* dependent_code =
DependentCode::ForObject(group_objects->at(j), group);
dependent_code->UpdateToFinishedCode(group, this, *code);
}
dependencies_[i] = NULL; // Zone-allocated, no need to delete.
}
}
void CompilationInfo::RollbackDependencies() {
// Unregister from all dependent maps if not yet committed.
for (int i = 0; i < DependentCode::kGroupCount; i++) {
ZoneList<Handle<HeapObject> >* group_objects = dependencies_[i];
if (group_objects == NULL) continue;
for (int j = 0; j < group_objects->length(); j++) {
DependentCode::DependencyGroup group =
static_cast<DependentCode::DependencyGroup>(i);
DependentCode* dependent_code =
DependentCode::ForObject(group_objects->at(j), group);
dependent_code->RemoveCompilationInfo(group, this);
}
dependencies_[i] = NULL; // Zone-allocated, no need to delete.
}
}
int CompilationInfo::num_parameters() const {
ASSERT(!IsStub());
return scope()->num_parameters();
}
int CompilationInfo::num_heap_slots() const {
if (IsStub()) {
return 0;
} else {
return scope()->num_heap_slots();
}
}
Code::Flags CompilationInfo::flags() const {
if (IsStub()) {
return Code::ComputeFlags(code_stub()->GetCodeKind(),
code_stub()->GetICState(),
code_stub()->GetExtraICState(),
code_stub()->GetStubType(),
code_stub()->GetStubFlags());
} else {
return Code::ComputeFlags(Code::OPTIMIZED_FUNCTION);
}
}
// Disable optimization for the rest of the compilation pipeline.
void CompilationInfo::DisableOptimization() {
bool is_optimizable_closure =
FLAG_optimize_closures &&
closure_.is_null() &&
!scope_->HasTrivialOuterContext() &&
!scope_->outer_scope_calls_non_strict_eval() &&
!scope_->inside_with();
SetMode(is_optimizable_closure ? BASE : NONOPT);
}
// Primitive functions are unlikely to be picked up by the stack-walking
// profiler, so they trigger their own optimization when they're called
// for the SharedFunctionInfo::kCallsUntilPrimitiveOptimization-th time.
bool CompilationInfo::ShouldSelfOptimize() {
return FLAG_self_optimization &&
FLAG_crankshaft &&
!function()->flags()->Contains(kDontSelfOptimize) &&
!function()->dont_optimize() &&
function()->scope()->AllowsLazyCompilation() &&
(shared_info().is_null() || !shared_info()->optimization_disabled());
}
// Determine whether to use the full compiler for all code. If the flag
// --always-full-compiler is specified this is the case. For the virtual frame
// based compiler the full compiler is also used if a debugger is connected, as
// the code from the full compiler supports mode precise break points. For the
// crankshaft adaptive compiler debugging the optimized code is not possible at
// all. However crankshaft support recompilation of functions, so in this case
// the full compiler need not be be used if a debugger is attached, but only if
// break points has actually been set.
static bool IsDebuggerActive(Isolate* isolate) {
#ifdef ENABLE_DEBUGGER_SUPPORT
return isolate->use_crankshaft() ?
isolate->debug()->has_break_points() :
isolate->debugger()->IsDebuggerActive();
#else
return false;
#endif
}
static bool AlwaysFullCompiler(Isolate* isolate) {
return FLAG_always_full_compiler || IsDebuggerActive(isolate);
}
void RecompileJob::RecordOptimizationStats() {
Handle<JSFunction> function = info()->closure();
if (!function->IsOptimized()) {
// Concurrent recompilation and OSR may race. Increment only once.
int opt_count = function->shared()->opt_count();
function->shared()->set_opt_count(opt_count + 1);
}
double ms_creategraph = time_taken_to_create_graph_.InMillisecondsF();
double ms_optimize = time_taken_to_optimize_.InMillisecondsF();
double ms_codegen = time_taken_to_codegen_.InMillisecondsF();
if (FLAG_trace_opt) {
PrintF("[optimizing ");
function->ShortPrint();
PrintF(" - took %0.3f, %0.3f, %0.3f ms]\n", ms_creategraph, ms_optimize,
ms_codegen);
}
if (FLAG_trace_opt_stats) {
static double compilation_time = 0.0;
static int compiled_functions = 0;
static int code_size = 0;
compilation_time += (ms_creategraph + ms_optimize + ms_codegen);
compiled_functions++;
code_size += function->shared()->SourceSize();
PrintF("Compiled: %d functions with %d byte source size in %fms.\n",
compiled_functions,
code_size,
compilation_time);
}
if (FLAG_hydrogen_stats) {
isolate()->GetHStatistics()->IncrementSubtotals(time_taken_to_create_graph_,
time_taken_to_optimize_,
time_taken_to_codegen_);
}
}
// A return value of true indicates the compilation pipeline is still
// going, not necessarily that we optimized the code.
static bool MakeCrankshaftCode(CompilationInfo* info) {
RecompileJob job(info);
RecompileJob::Status status = job.CreateGraph();
if (status != RecompileJob::SUCCEEDED) {
return status != RecompileJob::FAILED;
}
status = job.OptimizeGraph();
if (status != RecompileJob::SUCCEEDED) {
status = job.AbortOptimization();
return status != RecompileJob::FAILED;
}
status = job.GenerateAndInstallCode();
return status != RecompileJob::FAILED;
}
class HOptimizedGraphBuilderWithPotisions: public HOptimizedGraphBuilder {
public:
explicit HOptimizedGraphBuilderWithPotisions(CompilationInfo* info)
: HOptimizedGraphBuilder(info) {
}
#define DEF_VISIT(type) \
virtual void Visit##type(type* node) V8_OVERRIDE { \
if (node->position() != RelocInfo::kNoPosition) { \
SetSourcePosition(node->position()); \
} \
HOptimizedGraphBuilder::Visit##type(node); \
}
EXPRESSION_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
#define DEF_VISIT(type) \
virtual void Visit##type(type* node) V8_OVERRIDE { \
if (node->position() != RelocInfo::kNoPosition) { \
SetSourcePosition(node->position()); \
} \
HOptimizedGraphBuilder::Visit##type(node); \
}
STATEMENT_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
#define DEF_VISIT(type) \
virtual void Visit##type(type* node) V8_OVERRIDE { \
HOptimizedGraphBuilder::Visit##type(node); \
}
MODULE_NODE_LIST(DEF_VISIT)
DECLARATION_NODE_LIST(DEF_VISIT)
AUXILIARY_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
};
RecompileJob::Status RecompileJob::CreateGraph() {
ASSERT(isolate()->use_crankshaft());
ASSERT(info()->IsOptimizing());
ASSERT(!info()->IsCompilingForDebugging());
// We should never arrive here if there is no code object on the
// shared function object.
ASSERT(info()->shared_info()->code()->kind() == Code::FUNCTION);
// We should never arrive here if optimization has been disabled on the
// shared function info.
ASSERT(!info()->shared_info()->optimization_disabled());
// Fall back to using the full code generator if it's not possible
// to use the Hydrogen-based optimizing compiler. We already have
// generated code for this from the shared function object.
if (AlwaysFullCompiler(isolate())) {
info()->AbortOptimization();
return SetLastStatus(BAILED_OUT);
}
// Limit the number of times we re-compile a functions with
// the optimizing compiler.
const int kMaxOptCount =
FLAG_deopt_every_n_times == 0 ? FLAG_max_opt_count : 1000;
if (info()->opt_count() > kMaxOptCount) {
info()->set_bailout_reason(kOptimizedTooManyTimes);
return AbortOptimization();
}
// Due to an encoding limit on LUnallocated operands in the Lithium
// language, we cannot optimize functions with too many formal parameters
// or perform on-stack replacement for function with too many
// stack-allocated local variables.
//
// The encoding is as a signed value, with parameters and receiver using
// the negative indices and locals the non-negative ones.
const int parameter_limit = -LUnallocated::kMinFixedSlotIndex;
Scope* scope = info()->scope();
if ((scope->num_parameters() + 1) > parameter_limit) {
info()->set_bailout_reason(kTooManyParameters);
return AbortOptimization();
}
const int locals_limit = LUnallocated::kMaxFixedSlotIndex;
if (info()->is_osr() &&
scope->num_parameters() + 1 + scope->num_stack_slots() > locals_limit) {
info()->set_bailout_reason(kTooManyParametersLocals);
return AbortOptimization();
}
// Take --hydrogen-filter into account.
if (!info()->closure()->PassesFilter(FLAG_hydrogen_filter)) {
info()->AbortOptimization();
return SetLastStatus(BAILED_OUT);
}
// Recompile the unoptimized version of the code if the current version
// doesn't have deoptimization support. Alternatively, we may decide to
// run the full code generator to get a baseline for the compile-time
// performance of the hydrogen-based compiler.
bool should_recompile = !info()->shared_info()->has_deoptimization_support();
if (should_recompile || FLAG_hydrogen_stats) {
ElapsedTimer timer;
if (FLAG_hydrogen_stats) {
timer.Start();
}
CompilationInfoWithZone unoptimized(info()->shared_info());
// Note that we use the same AST that we will use for generating the
// optimized code.
unoptimized.SetFunction(info()->function());
unoptimized.SetScope(info()->scope());
unoptimized.SetContext(info()->context());
if (should_recompile) unoptimized.EnableDeoptimizationSupport();
bool succeeded = FullCodeGenerator::MakeCode(&unoptimized);
if (should_recompile) {
if (!succeeded) return SetLastStatus(FAILED);
Handle<SharedFunctionInfo> shared = info()->shared_info();
shared->EnableDeoptimizationSupport(*unoptimized.code());
// The existing unoptimized code was replaced with the new one.
Compiler::RecordFunctionCompilation(
Logger::LAZY_COMPILE_TAG, &unoptimized, shared);
}
if (FLAG_hydrogen_stats) {
isolate()->GetHStatistics()->IncrementFullCodeGen(timer.Elapsed());
}
}
// Check that the unoptimized, shared code is ready for
// optimizations. When using the always_opt flag we disregard the
// optimizable marker in the code object and optimize anyway. This
// is safe as long as the unoptimized code has deoptimization
// support.
ASSERT(FLAG_always_opt || info()->shared_info()->code()->optimizable());
ASSERT(info()->shared_info()->has_deoptimization_support());
if (FLAG_trace_hydrogen) {
Handle<String> name = info()->function()->debug_name();
PrintF("-----------------------------------------------------------\n");
PrintF("Compiling method %s using hydrogen\n", *name->ToCString());
isolate()->GetHTracer()->TraceCompilation(info());
}
// Type-check the function.
AstTyper::Run(info());
graph_builder_ = FLAG_emit_opt_code_positions
? new(info()->zone()) HOptimizedGraphBuilderWithPotisions(info())
: new(info()->zone()) HOptimizedGraphBuilder(info());
Timer t(this, &time_taken_to_create_graph_);
graph_ = graph_builder_->CreateGraph();
if (isolate()->has_pending_exception()) {
info()->SetCode(Handle<Code>::null());
return SetLastStatus(FAILED);
}
// The function being compiled may have bailed out due to an inline
// candidate bailing out. In such a case, we don't disable
// optimization on the shared_info.
ASSERT(!graph_builder_->inline_bailout() || graph_ == NULL);
if (graph_ == NULL) {
if (graph_builder_->inline_bailout()) {
info_->AbortOptimization();
return SetLastStatus(BAILED_OUT);
} else {
return AbortOptimization();
}
}
if (info()->HasAbortedDueToDependencyChange()) {
info_->set_bailout_reason(kBailedOutDueToDependencyChange);
info_->AbortOptimization();
return SetLastStatus(BAILED_OUT);
}
return SetLastStatus(SUCCEEDED);
}
RecompileJob::Status RecompileJob::OptimizeGraph() {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
DisallowCodeDependencyChange no_dependency_change;
ASSERT(last_status() == SUCCEEDED);
Timer t(this, &time_taken_to_optimize_);
ASSERT(graph_ != NULL);
BailoutReason bailout_reason = kNoReason;
if (!graph_->Optimize(&bailout_reason)) {
if (bailout_reason == kNoReason) graph_builder_->Bailout(bailout_reason);
return SetLastStatus(BAILED_OUT);
} else {
chunk_ = LChunk::NewChunk(graph_);
if (chunk_ == NULL) {
return SetLastStatus(BAILED_OUT);
}
}
return SetLastStatus(SUCCEEDED);
}
RecompileJob::Status RecompileJob::GenerateAndInstallCode() {
ASSERT(last_status() == SUCCEEDED);
ASSERT(!info()->HasAbortedDueToDependencyChange());
DisallowCodeDependencyChange no_dependency_change;
{ // Scope for timer.
Timer timer(this, &time_taken_to_codegen_);
ASSERT(chunk_ != NULL);
ASSERT(graph_ != NULL);
// Deferred handles reference objects that were accessible during
// graph creation. To make sure that we don't encounter inconsistencies
// between graph creation and code generation, we disallow accessing
// objects through deferred handles during the latter, with exceptions.
DisallowDeferredHandleDereference no_deferred_handle_deref;
Handle<Code> optimized_code = chunk_->Codegen();
if (optimized_code.is_null()) {
if (info()->bailout_reason() == kNoReason) {
info()->set_bailout_reason(kCodeGenerationFailed);
}
return AbortOptimization();
}
info()->SetCode(optimized_code);
}
RecordOptimizationStats();
// Add to the weak list of optimized code objects.
info()->context()->native_context()->AddOptimizedCode(*info()->code());
return SetLastStatus(SUCCEEDED);
}
static bool GenerateCode(CompilationInfo* info) {
bool is_optimizing = info->isolate()->use_crankshaft() &&
!info->IsCompilingForDebugging() &&
info->IsOptimizing();
if (is_optimizing) {
Logger::TimerEventScope timer(
info->isolate(), Logger::TimerEventScope::v8_recompile_synchronous);
return MakeCrankshaftCode(info);
} else {
if (info->IsOptimizing()) {
// Have the CompilationInfo decide if the compilation should be
// BASE or NONOPT.
info->DisableOptimization();
}
Logger::TimerEventScope timer(
info->isolate(), Logger::TimerEventScope::v8_compile_full_code);
return FullCodeGenerator::MakeCode(info);
}
}
static bool MakeCode(CompilationInfo* info) {
// Precondition: code has been parsed. Postcondition: the code field in
// the compilation info is set if compilation succeeded.
ASSERT(info->function() != NULL);
return Rewriter::Rewrite(info) && Scope::Analyze(info) && GenerateCode(info);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
bool Compiler::MakeCodeForLiveEdit(CompilationInfo* info) {
// Precondition: code has been parsed. Postcondition: the code field in
// the compilation info is set if compilation succeeded.
bool succeeded = MakeCode(info);
if (!info->shared_info().is_null()) {
Handle<ScopeInfo> scope_info = ScopeInfo::Create(info->scope(),
info->zone());
info->shared_info()->set_scope_info(*scope_info);
}
return succeeded;
}
#endif
static bool DebuggerWantsEagerCompilation(CompilationInfo* info,
bool allow_lazy_without_ctx = false) {
return LiveEditFunctionTracker::IsActive(info->isolate()) ||
(info->isolate()->DebuggerHasBreakPoints() && !allow_lazy_without_ctx);
}
// Sets the expected number of properties based on estimate from compiler.
void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
int estimate) {
// See the comment in SetExpectedNofProperties.
if (shared->live_objects_may_exist()) return;
// If no properties are added in the constructor, they are more likely
// to be added later.
if (estimate == 0) estimate = 2;
// TODO(yangguo): check whether those heuristics are still up-to-date.
// We do not shrink objects that go into a snapshot (yet), so we adjust
// the estimate conservatively.
if (Serializer::enabled()) {
estimate += 2;
} else if (FLAG_clever_optimizations) {
// Inobject slack tracking will reclaim redundant inobject space later,
// so we can afford to adjust the estimate generously.
estimate += 8;
} else {
estimate += 3;
}
shared->set_expected_nof_properties(estimate);
}
static Handle<SharedFunctionInfo> MakeFunctionInfo(CompilationInfo* info) {
Isolate* isolate = info->isolate();
PostponeInterruptsScope postpone(isolate);
ASSERT(!isolate->native_context().is_null());
Handle<Script> script = info->script();
// TODO(svenpanne) Obscure place for this, perhaps move to OnBeforeCompile?
FixedArray* array = isolate->native_context()->embedder_data();
script->set_context_data(array->get(0));
#ifdef ENABLE_DEBUGGER_SUPPORT
if (info->is_eval()) {
script->set_compilation_type(Script::COMPILATION_TYPE_EVAL);
// For eval scripts add information on the function from which eval was
// called.
if (info->is_eval()) {
StackTraceFrameIterator it(isolate);
if (!it.done()) {
script->set_eval_from_shared(it.frame()->function()->shared());
Code* code = it.frame()->LookupCode();
int offset = static_cast<int>(
it.frame()->pc() - code->instruction_start());
script->set_eval_from_instructions_offset(Smi::FromInt(offset));
}
}
}
// Notify debugger
isolate->debugger()->OnBeforeCompile(script);
#endif
// Only allow non-global compiles for eval.
ASSERT(info->is_eval() || info->is_global());
{
Parser parser(info);
if ((info->pre_parse_data() != NULL ||
String::cast(script->source())->length() > FLAG_min_preparse_length) &&
!DebuggerWantsEagerCompilation(info))
parser.set_allow_lazy(true);
if (!parser.Parse()) {
return Handle<SharedFunctionInfo>::null();
}
}
FunctionLiteral* lit = info->function();
LiveEditFunctionTracker live_edit_tracker(isolate, lit);
Handle<SharedFunctionInfo> result;
{
// Measure how long it takes to do the compilation; only take the
// rest of the function into account to avoid overlap with the
// parsing statistics.
HistogramTimer* rate = info->is_eval()
? info->isolate()->counters()->compile_eval()
: info->isolate()->counters()->compile();
HistogramTimerScope timer(rate);
// Compile the code.
if (!MakeCode(info)) {
if (!isolate->has_pending_exception()) isolate->StackOverflow();
return Handle<SharedFunctionInfo>::null();
}
// Allocate function.
ASSERT(!info->code().is_null());
result =
isolate->factory()->NewSharedFunctionInfo(
lit->name(),
lit->materialized_literal_count(),
lit->is_generator(),
info->code(),
ScopeInfo::Create(info->scope(), info->zone()));
ASSERT_EQ(RelocInfo::kNoPosition, lit->function_token_position());
Compiler::SetFunctionInfo(result, lit, true, script);
if (script->name()->IsString()) {
PROFILE(isolate, CodeCreateEvent(
info->is_eval()
? Logger::EVAL_TAG
: Logger::ToNativeByScript(Logger::SCRIPT_TAG, *script),
*info->code(),
*result,
info,
String::cast(script->name())));
GDBJIT(AddCode(Handle<String>(String::cast(script->name())),
script,
info->code(),
info));
} else {
PROFILE(isolate, CodeCreateEvent(
info->is_eval()
? Logger::EVAL_TAG
: Logger::ToNativeByScript(Logger::SCRIPT_TAG, *script),
*info->code(),
*result,
info,
isolate->heap()->empty_string()));
GDBJIT(AddCode(Handle<String>(), script, info->code(), info));
}
// Hint to the runtime system used when allocating space for initial
// property space by setting the expected number of properties for
// the instances of the function.
SetExpectedNofPropertiesFromEstimate(result,
lit->expected_property_count());
script->set_compilation_state(Script::COMPILATION_STATE_COMPILED);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
// Notify debugger
isolate->debugger()->OnAfterCompile(
script, Debugger::NO_AFTER_COMPILE_FLAGS);
#endif
live_edit_tracker.RecordFunctionInfo(result, lit, info->zone());
return result;
}
Handle<SharedFunctionInfo> Compiler::Compile(Handle<String> source,
Handle<Object> script_name,
int line_offset,
int column_offset,
bool is_shared_cross_origin,
Handle<Context> context,
v8::Extension* extension,
ScriptDataImpl* pre_data,
Handle<Object> script_data,
NativesFlag natives) {
Isolate* isolate = source->GetIsolate();
int source_length = source->length();
isolate->counters()->total_load_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
// The VM is in the COMPILER state until exiting this function.
VMState<COMPILER> state(isolate);
CompilationCache* compilation_cache = isolate->compilation_cache();
// Do a lookup in the compilation cache but not for extensions.
Handle<SharedFunctionInfo> result;
if (extension == NULL) {
result = compilation_cache->LookupScript(source,
script_name,
line_offset,
column_offset,
is_shared_cross_origin,
context);
}
if (result.is_null()) {
// No cache entry found. Do pre-parsing, if it makes sense, and compile
// the script.
// Building preparse data that is only used immediately after is only a
// saving if we might skip building the AST for lazily compiled functions.
// I.e., preparse data isn't relevant when the lazy flag is off, and
// for small sources, odds are that there aren't many functions
// that would be compiled lazily anyway, so we skip the preparse step
// in that case too.
// Create a script object describing the script to be compiled.
Handle<Script> script = isolate->factory()->NewScript(source);
if (natives == NATIVES_CODE) {
script->set_type(Smi::FromInt(Script::TYPE_NATIVE));
}
if (!script_name.is_null()) {
script->set_name(*script_name);
script->set_line_offset(Smi::FromInt(line_offset));
script->set_column_offset(Smi::FromInt(column_offset));
}
script->set_is_shared_cross_origin(is_shared_cross_origin);
script->set_data(script_data.is_null() ? isolate->heap()->undefined_value()
: *script_data);
// Compile the function and add it to the cache.
CompilationInfoWithZone info(script);
info.MarkAsGlobal();
info.SetExtension(extension);
info.SetPreParseData(pre_data);
info.SetContext(context);
if (FLAG_use_strict) {
info.SetLanguageMode(FLAG_harmony_scoping ? EXTENDED_MODE : STRICT_MODE);
}
result = MakeFunctionInfo(&info);
if (extension == NULL && !result.is_null() && !result->dont_cache()) {
compilation_cache->PutScript(source, context, result);
}
} else {
if (result->ic_age() != isolate->heap()->global_ic_age()) {
result->ResetForNewContext(isolate->heap()->global_ic_age());
}
}
if (result.is_null()) isolate->ReportPendingMessages();
return result;
}
Handle<SharedFunctionInfo> Compiler::CompileEval(Handle<String> source,
Handle<Context> context,
bool is_global,
LanguageMode language_mode,
ParseRestriction restriction,
int scope_position) {
Isolate* isolate = source->GetIsolate();
int source_length = source->length();
isolate->counters()->total_eval_size()->Increment(source_length);
isolate->counters()->total_compile_size()->Increment(source_length);
// The VM is in the COMPILER state until exiting this function.
VMState<COMPILER> state(isolate);
// Do a lookup in the compilation cache; if the entry is not there, invoke
// the compiler and add the result to the cache.
Handle<SharedFunctionInfo> result;
CompilationCache* compilation_cache = isolate->compilation_cache();
result = compilation_cache->LookupEval(source,
context,
is_global,
language_mode,
scope_position);
if (result.is_null()) {
// Create a script object describing the script to be compiled.
Handle<Script> script = isolate->factory()->NewScript(source);
CompilationInfoWithZone info(script);
info.MarkAsEval();
if (is_global) info.MarkAsGlobal();
info.SetLanguageMode(language_mode);
info.SetParseRestriction(restriction);
info.SetContext(context);
result = MakeFunctionInfo(&info);
if (!result.is_null()) {
// Explicitly disable optimization for eval code. We're not yet prepared
// to handle eval-code in the optimizing compiler.
result->DisableOptimization(kEval);
// If caller is strict mode, the result must be in strict mode or
// extended mode as well, but not the other way around. Consider:
// eval("'use strict'; ...");
ASSERT(language_mode != STRICT_MODE || !result->is_classic_mode());
// If caller is in extended mode, the result must also be in
// extended mode.
ASSERT(language_mode != EXTENDED_MODE ||
result->is_extended_mode());
if (!result->dont_cache()) {
compilation_cache->PutEval(
source, context, is_global, result, scope_position);
}
}
} else {
if (result->ic_age() != isolate->heap()->global_ic_age()) {
result->ResetForNewContext(isolate->heap()->global_ic_age());
}
}
return result;
}
static bool InstallFullCode(CompilationInfo* info) {
// Update the shared function info with the compiled code and the
// scope info. Please note, that the order of the shared function
// info initialization is important since set_scope_info might
// trigger a GC, causing the ASSERT below to be invalid if the code
// was flushed. By setting the code object last we avoid this.
Handle<SharedFunctionInfo> shared = info->shared_info();
Handle<Code> code = info->code();
CHECK(code->kind() == Code::FUNCTION);
Handle<JSFunction> function = info->closure();
Handle<ScopeInfo> scope_info =
ScopeInfo::Create(info->scope(), info->zone());
shared->set_scope_info(*scope_info);
shared->ReplaceCode(*code);
if (!function.is_null()) {
function->ReplaceCode(*code);
ASSERT(!function->IsOptimized());
}
// Set the expected number of properties for instances.
FunctionLiteral* lit = info->function();
int expected = lit->expected_property_count();
SetExpectedNofPropertiesFromEstimate(shared, expected);
// Check the function has compiled code.
ASSERT(shared->is_compiled());
shared->set_dont_optimize_reason(lit->dont_optimize_reason());
shared->set_dont_inline(lit->flags()->Contains(kDontInline));
shared->set_ast_node_count(lit->ast_node_count());
if (info->isolate()->use_crankshaft() &&
!function.is_null() &&
!shared->optimization_disabled()) {
// If we're asked to always optimize, we compile the optimized
// version of the function right away - unless the debugger is
// active as it makes no sense to compile optimized code then.
if (FLAG_always_opt &&
!info->isolate()->DebuggerHasBreakPoints()) {
CompilationInfoWithZone optimized(function);
optimized.SetOptimizing(BailoutId::None());
return Compiler::CompileLazy(&optimized);
}
}
return true;
}
static void InstallCodeCommon(CompilationInfo* info) {
Handle<SharedFunctionInfo> shared = info->shared_info();
Handle<Code> code = info->code();
ASSERT(!code.is_null());
// Set optimizable to false if this is disallowed by the shared
// function info, e.g., we might have flushed the code and must
// reset this bit when lazy compiling the code again.
if (shared->optimization_disabled()) code->set_optimizable(false);
if (shared->code() == *code) {
// Do not send compilation event for the same code twice.
return;
}
Compiler::RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, info, shared);
}
static void InsertCodeIntoOptimizedCodeMap(CompilationInfo* info) {
Handle<Code> code = info->code();
if (code->kind() != Code::OPTIMIZED_FUNCTION) return; // Nothing to do.
// Cache non-OSR optimized code.
if (FLAG_cache_optimized_code && !info->is_osr()) {
Handle<JSFunction> function = info->closure();
Handle<SharedFunctionInfo> shared(function->shared());
Handle<FixedArray> literals(function->literals());
Handle<Context> native_context(function->context()->native_context());
SharedFunctionInfo::AddToOptimizedCodeMap(
shared, native_context, code, literals);
}
}
static bool InstallCodeFromOptimizedCodeMap(CompilationInfo* info) {
if (!info->IsOptimizing()) return false; // Nothing to look up.
// Lookup non-OSR optimized code.
if (FLAG_cache_optimized_code && !info->is_osr()) {
Handle<SharedFunctionInfo> shared = info->shared_info();
Handle<JSFunction> function = info->closure();
ASSERT(!function.is_null());
Handle<Context> native_context(function->context()->native_context());
int index = shared->SearchOptimizedCodeMap(*native_context);
if (index > 0) {
if (FLAG_trace_opt) {
PrintF("[found optimized code for ");
function->ShortPrint();
PrintF("]\n");
}
// Caching of optimized code enabled and optimized code found.
shared->InstallFromOptimizedCodeMap(*function, index);
return true;
}
}
return false;
}
bool Compiler::CompileLazy(CompilationInfo* info) {
Isolate* isolate = info->isolate();
// The VM is in the COMPILER state until exiting this function.
VMState<COMPILER> state(isolate);
PostponeInterruptsScope postpone(isolate);
Handle<SharedFunctionInfo> shared = info->shared_info();
int compiled_size = shared->end_position() - shared->start_position();
isolate->counters()->total_compile_size()->Increment(compiled_size);
if (InstallCodeFromOptimizedCodeMap(info)) return true;
// Generate the AST for the lazily compiled function.
if (Parser::Parse(info)) {
// Measure how long it takes to do the lazy compilation; only take the
// rest of the function into account to avoid overlap with the lazy
// parsing statistics.
HistogramTimerScope timer(isolate->counters()->compile_lazy());
// After parsing we know the function's language mode. Remember it.
LanguageMode language_mode = info->function()->language_mode();
info->SetLanguageMode(language_mode);
shared->set_language_mode(language_mode);
// Compile the code.
if (!MakeCode(info)) {
if (!isolate->has_pending_exception()) {
isolate->StackOverflow();
}
} else {
InstallCodeCommon(info);
if (info->IsOptimizing()) {
// Optimized code successfully created.
Handle<Code> code = info->code();
ASSERT(shared->scope_info() != ScopeInfo::Empty(isolate));
// TODO(titzer): Only replace the code if it was not an OSR compile.
info->closure()->ReplaceCode(*code);
InsertCodeIntoOptimizedCodeMap(info);
return true;
} else if (!info->is_osr()) {
// Compilation failed. Replace with full code if not OSR compile.
return InstallFullCode(info);
}
}
}
ASSERT(info->code().is_null());
return false;
}
bool Compiler::RecompileConcurrent(Handle<JSFunction> closure,
uint32_t osr_pc_offset) {
bool compiling_for_osr = (osr_pc_offset != 0);
Isolate* isolate = closure->GetIsolate();
// Here we prepare compile data for the concurrent recompilation thread, but
// this still happens synchronously and interrupts execution.
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_recompile_synchronous);
if (!isolate->optimizing_compiler_thread()->IsQueueAvailable()) {
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Compilation queue full, will retry optimizing ");
closure->PrintName();
PrintF(" on next run.\n");
}
return false;
}
SmartPointer<CompilationInfo> info(new CompilationInfoWithZone(closure));
Handle<SharedFunctionInfo> shared = info->shared_info();
if (compiling_for_osr) {
BailoutId osr_ast_id =
shared->code()->TranslatePcOffsetToAstId(osr_pc_offset);
ASSERT(!osr_ast_id.IsNone());
info->SetOptimizing(osr_ast_id);
info->set_osr_pc_offset(osr_pc_offset);
if (FLAG_trace_osr) {
PrintF("[COSR - attempt to queue ");
closure->PrintName();
PrintF(" at AST id %d]\n", osr_ast_id.ToInt());
}
} else {
info->SetOptimizing(BailoutId::None());
}
VMState<COMPILER> state(isolate);
PostponeInterruptsScope postpone(isolate);
int compiled_size = shared->end_position() - shared->start_position();
isolate->counters()->total_compile_size()->Increment(compiled_size);
{
CompilationHandleScope handle_scope(*info);
if (!compiling_for_osr && InstallCodeFromOptimizedCodeMap(*info)) {
return true;
}
if (Parser::Parse(*info)) {
LanguageMode language_mode = info->function()->language_mode();
info->SetLanguageMode(language_mode);
shared->set_language_mode(language_mode);
info->SaveHandles();
if (Rewriter::Rewrite(*info) && Scope::Analyze(*info)) {
RecompileJob* job = new(info->zone()) RecompileJob(*info);
RecompileJob::Status status = job->CreateGraph();
if (status == RecompileJob::SUCCEEDED) {
info.Detach();
shared->code()->set_profiler_ticks(0);
isolate->optimizing_compiler_thread()->QueueForOptimization(job);
ASSERT(!isolate->has_pending_exception());
return true;
} else if (status == RecompileJob::BAILED_OUT) {
isolate->clear_pending_exception();
InstallFullCode(*info);
}
}
}
}
if (isolate->has_pending_exception()) isolate->clear_pending_exception();
return false;
}
Handle<Code> Compiler::InstallOptimizedCode(RecompileJob* job) {
SmartPointer<CompilationInfo> info(job->info());
// The function may have already been optimized by OSR. Simply continue.
// Except when OSR already disabled optimization for some reason.
if (info->shared_info()->optimization_disabled()) {
info->AbortOptimization();
InstallFullCode(*info);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** aborting optimization for ");
info->closure()->PrintName();
PrintF(" as it has been disabled.\n");
}
ASSERT(!info->closure()->IsInRecompileQueue());
return Handle<Code>::null();
}
Isolate* isolate = info->isolate();
VMState<COMPILER> state(isolate);
Logger::TimerEventScope timer(
isolate, Logger::TimerEventScope::v8_recompile_synchronous);
// If crankshaft succeeded, install the optimized code else install
// the unoptimized code.
RecompileJob::Status status = job->last_status();
if (info->HasAbortedDueToDependencyChange()) {
info->set_bailout_reason(kBailedOutDueToDependencyChange);
status = job->AbortOptimization();
} else if (status != RecompileJob::SUCCEEDED) {
info->set_bailout_reason(kFailedBailedOutLastTime);
status = job->AbortOptimization();
} else if (isolate->DebuggerHasBreakPoints()) {
info->set_bailout_reason(kDebuggerIsActive);
status = job->AbortOptimization();
} else {
status = job->GenerateAndInstallCode();
ASSERT(status == RecompileJob::SUCCEEDED ||
status == RecompileJob::BAILED_OUT);
}
InstallCodeCommon(*info);
if (status == RecompileJob::SUCCEEDED) {
Handle<Code> code = info->code();
ASSERT(info->shared_info()->scope_info() != ScopeInfo::Empty(isolate));
info->closure()->ReplaceCode(*code);
if (info->shared_info()->SearchOptimizedCodeMap(
info->closure()->context()->native_context()) == -1) {
InsertCodeIntoOptimizedCodeMap(*info);
}
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Optimized code for ");
info->closure()->PrintName();
PrintF(" installed.\n");
}
} else {
info->AbortOptimization();
InstallFullCode(*info);
}
// Optimized code is finally replacing unoptimized code. Reset the latter's
// profiler ticks to prevent too soon re-opt after a deopt.
info->shared_info()->code()->set_profiler_ticks(0);
ASSERT(!info->closure()->IsInRecompileQueue());
return (status == RecompileJob::SUCCEEDED) ? info->code()
: Handle<Code>::null();
}
Handle<SharedFunctionInfo> Compiler::BuildFunctionInfo(FunctionLiteral* literal,
Handle<Script> script) {
// Precondition: code has been parsed and scopes have been analyzed.
CompilationInfoWithZone info(script);
info.SetFunction(literal);
info.SetScope(literal->scope());
info.SetLanguageMode(literal->scope()->language_mode());
Isolate* isolate = info.isolate();
Factory* factory = isolate->factory();
LiveEditFunctionTracker live_edit_tracker(isolate, literal);
// Determine if the function can be lazily compiled. This is necessary to
// allow some of our builtin JS files to be lazily compiled. These
// builtins cannot be handled lazily by the parser, since we have to know
// if a function uses the special natives syntax, which is something the
// parser records.
// If the debugger requests compilation for break points, we cannot be
// aggressive about lazy compilation, because it might trigger compilation
// of functions without an outer context when setting a breakpoint through
// Debug::FindSharedFunctionInfoInScript.
bool allow_lazy_without_ctx = literal->AllowsLazyCompilationWithoutContext();
bool allow_lazy = literal->AllowsLazyCompilation() &&
!DebuggerWantsEagerCompilation(&info, allow_lazy_without_ctx);
Handle<ScopeInfo> scope_info(ScopeInfo::Empty(isolate));
// Generate code
if (FLAG_lazy && allow_lazy && !literal->is_parenthesized()) {
Handle<Code> code = isolate->builtins()->LazyCompile();
info.SetCode(code);
} else if (GenerateCode(&info)) {
ASSERT(!info.code().is_null());
scope_info = ScopeInfo::Create(info.scope(), info.zone());
} else {
return Handle<SharedFunctionInfo>::null();
}
// Create a shared function info object.
Handle<SharedFunctionInfo> result =
factory->NewSharedFunctionInfo(literal->name(),
literal->materialized_literal_count(),
literal->is_generator(),
info.code(),
scope_info);
SetFunctionInfo(result, literal, false, script);
RecordFunctionCompilation(Logger::FUNCTION_TAG, &info, result);
result->set_allows_lazy_compilation(allow_lazy);
result->set_allows_lazy_compilation_without_context(allow_lazy_without_ctx);
// Set the expected number of properties for instances and return
// the resulting function.
SetExpectedNofPropertiesFromEstimate(result,
literal->expected_property_count());
live_edit_tracker.RecordFunctionInfo(result, literal, info.zone());
return result;
}
// Sets the function info on a function.
// The start_position points to the first '(' character after the function name
// in the full script source. When counting characters in the script source the
// the first character is number 0 (not 1).
void Compiler::SetFunctionInfo(Handle<SharedFunctionInfo> function_info,
FunctionLiteral* lit,
bool is_toplevel,
Handle<Script> script) {
function_info->set_length(lit->parameter_count());
function_info->set_formal_parameter_count(lit->parameter_count());
function_info->set_script(*script);
function_info->set_function_token_position(lit->function_token_position());
function_info->set_start_position(lit->start_position());
function_info->set_end_position(lit->end_position());
function_info->set_is_expression(lit->is_expression());
function_info->set_is_anonymous(lit->is_anonymous());
function_info->set_is_toplevel(is_toplevel);
function_info->set_inferred_name(*lit->inferred_name());
function_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation());
function_info->set_allows_lazy_compilation_without_context(
lit->AllowsLazyCompilationWithoutContext());
function_info->set_language_mode(lit->language_mode());
function_info->set_uses_arguments(lit->scope()->arguments() != NULL);
function_info->set_has_duplicate_parameters(lit->has_duplicate_parameters());
function_info->set_ast_node_count(lit->ast_node_count());
function_info->set_is_function(lit->is_function());
function_info->set_dont_optimize_reason(lit->dont_optimize_reason());
function_info->set_dont_inline(lit->flags()->Contains(kDontInline));
function_info->set_dont_cache(lit->flags()->Contains(kDontCache));
function_info->set_is_generator(lit->is_generator());
}
void Compiler::RecordFunctionCompilation(Logger::LogEventsAndTags tag,
CompilationInfo* info,
Handle<SharedFunctionInfo> shared) {
// SharedFunctionInfo is passed separately, because if CompilationInfo
// was created using Script object, it will not have it.
// Log the code generation. If source information is available include
// script name and line number. Check explicitly whether logging is
// enabled as finding the line number is not free.
if (info->isolate()->logger()->is_logging_code_events() ||
info->isolate()->cpu_profiler()->is_profiling()) {
Handle<Script> script = info->script();
Handle<Code> code = info->code();
if (*code == info->isolate()->builtins()->builtin(Builtins::kLazyCompile))
return;
int line_num = GetScriptLineNumber(script, shared->start_position()) + 1;
int column_num =
GetScriptColumnNumber(script, shared->start_position()) + 1;
USE(line_num);
if (script->name()->IsString()) {
PROFILE(info->isolate(),
CodeCreateEvent(Logger::ToNativeByScript(tag, *script),
*code,
*shared,
info,
String::cast(script->name()),
line_num,
column_num));
} else {
PROFILE(info->isolate(),
CodeCreateEvent(Logger::ToNativeByScript(tag, *script),
*code,
*shared,
info,
info->isolate()->heap()->empty_string(),
line_num,
column_num));
}
}
GDBJIT(AddCode(Handle<String>(shared->DebugName()),
Handle<Script>(info->script()),
Handle<Code>(info->code()),
info));
}
CompilationPhase::CompilationPhase(const char* name, CompilationInfo* info)
: name_(name), info_(info), zone_(info->isolate()) {
if (FLAG_hydrogen_stats) {
info_zone_start_allocation_size_ = info->zone()->allocation_size();
timer_.Start();
}
}
CompilationPhase::~CompilationPhase() {
if (FLAG_hydrogen_stats) {
unsigned size = zone()->allocation_size();
size += info_->zone()->allocation_size() - info_zone_start_allocation_size_;
isolate()->GetHStatistics()->SaveTiming(name_, timer_.Elapsed(), size);
}
}
bool CompilationPhase::ShouldProduceTraceOutput() const {
// Trace if the appropriate trace flag is set and the phase name's first
// character is in the FLAG_trace_phase command line parameter.
AllowHandleDereference allow_deref;
bool tracing_on = info()->IsStub()
? FLAG_trace_hydrogen_stubs
: (FLAG_trace_hydrogen &&
info()->closure()->PassesFilter(FLAG_trace_hydrogen_filter));
return (tracing_on &&
OS::StrChr(const_cast<char*>(FLAG_trace_phase), name_[0]) != NULL);
}
} } // namespace v8::internal