blob: 4e1cc2f7a58bce915542263d8f182b8058f34463 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "arm/lithium-codegen-arm.h"
#include "arm/lithium-gap-resolver-arm.h"
#include "code-stubs.h"
#include "stub-cache.h"
#include "hydrogen-osr.h"
namespace v8 {
namespace internal {
class SafepointGenerator V8_FINAL : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) { }
virtual ~SafepointGenerator() {}
virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
virtual void AfterCall() const V8_OVERRIDE {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
ASSERT(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// NONE indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::NONE);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateDeoptJumpTable() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
ASSERT(is_done());
code->set_stack_slots(GetStackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
if (FLAG_weak_embedded_maps_in_optimized_code) {
RegisterDependentCodeForEmbeddedMaps(code);
}
PopulateDeoptimizationData(code);
info()->CommitDependencies(code);
}
void LCodeGen::Abort(BailoutReason reason) {
info()->set_bailout_reason(reason);
status_ = ABORTED;
}
void LCodeGen::SaveCallerDoubles() {
ASSERT(info()->saves_caller_doubles());
ASSERT(NeedsEagerFrame());
Comment(";;; Save clobbered callee double registers");
int count = 0;
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
while (!save_iterator.Done()) {
__ vstr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
void LCodeGen::RestoreCallerDoubles() {
ASSERT(info()->saves_caller_doubles());
ASSERT(NeedsEagerFrame());
Comment(";;; Restore clobbered callee double registers");
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
int count = 0;
while (!save_iterator.Done()) {
__ vldr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
bool LCodeGen::GeneratePrologue() {
ASSERT(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop_at");
}
#endif
// r1: Callee's JS function.
// cp: Callee's context.
// fp: Caller's frame pointer.
// lr: Caller's pc.
// Strict mode functions and builtins need to replace the receiver
// with undefined when called as functions (without an explicit
// receiver object). r5 is zero for method calls and non-zero for
// function calls.
if (!info_->is_classic_mode() || info_->is_native()) {
__ cmp(r5, Operand::Zero());
int receiver_offset = scope()->num_parameters() * kPointerSize;
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ str(r2, MemOperand(sp, receiver_offset), ne);
}
}
info()->set_prologue_offset(masm_->pc_offset());
if (NeedsEagerFrame()) {
__ Prologue(info()->IsStub() ? BUILD_STUB_FRAME : BUILD_FUNCTION_FRAME);
frame_is_built_ = true;
info_->AddNoFrameRange(0, masm_->pc_offset());
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ sub(sp, sp, Operand(slots * kPointerSize));
__ push(r0);
__ push(r1);
__ add(r0, sp, Operand(slots * kPointerSize));
__ mov(r1, Operand(kSlotsZapValue));
Label loop;
__ bind(&loop);
__ sub(r0, r0, Operand(kPointerSize));
__ str(r1, MemOperand(r0, 2 * kPointerSize));
__ cmp(r0, sp);
__ b(ne, &loop);
__ pop(r1);
__ pop(r0);
} else {
__ sub(sp, sp, Operand(slots * kPointerSize));
}
}
if (info()->saves_caller_doubles()) {
SaveCallerDoubles();
}
// Possibly allocate a local context.
int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment(";;; Allocate local context");
// Argument to NewContext is the function, which is in r1.
__ push(r1);
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
__ CallStub(&stub);
} else {
__ CallRuntime(Runtime::kNewFunctionContext, 1);
}
RecordSafepoint(Safepoint::kNoLazyDeopt);
// Context is returned in both r0 and cp. It replaces the context
// passed to us. It's saved in the stack and kept live in cp.
__ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ ldr(r0, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextOperand(cp, var->index());
__ str(r0, target);
// Update the write barrier. This clobbers r3 and r0.
__ RecordWriteContextSlot(
cp,
target.offset(),
r0,
r3,
GetLinkRegisterState(),
kSaveFPRegs);
}
}
Comment(";;; End allocate local context");
}
// Trace the call.
if (FLAG_trace && info()->IsOptimizing()) {
// We have not executed any compiled code yet, so cp still holds the
// incoming context.
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
ASSERT(slots >= 0);
__ sub(sp, sp, Operand(slots * kPointerSize));
}
bool LCodeGen::GenerateDeferredCode() {
ASSERT(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(value->position());
Comment(";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(),
code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
ASSERT(!frame_is_built_);
ASSERT(info()->IsStub());
frame_is_built_ = true;
__ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
__ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
__ push(scratch0());
__ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
Comment(";;; Destroy frame");
ASSERT(frame_is_built_);
__ pop(ip);
__ ldm(ia_w, sp, cp.bit() | fp.bit() | lr.bit());
frame_is_built_ = false;
}
__ jmp(code->exit());
}
}
// Force constant pool emission at the end of the deferred code to make
// sure that no constant pools are emitted after.
masm()->CheckConstPool(true, false);
return !is_aborted();
}
bool LCodeGen::GenerateDeoptJumpTable() {
// Check that the jump table is accessible from everywhere in the function
// code, i.e. that offsets to the table can be encoded in the 24bit signed
// immediate of a branch instruction.
// To simplify we consider the code size from the first instruction to the
// end of the jump table. We also don't consider the pc load delta.
// Each entry in the jump table generates one instruction and inlines one
// 32bit data after it.
if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
deopt_jump_table_.length() * 7)) {
Abort(kGeneratedCodeIsTooLarge);
}
if (deopt_jump_table_.length() > 0) {
Comment(";;; -------------------- Jump table --------------------");
}
Label table_start;
__ bind(&table_start);
Label needs_frame;
for (int i = 0; i < deopt_jump_table_.length(); i++) {
__ bind(&deopt_jump_table_[i].label);
Address entry = deopt_jump_table_[i].address;
Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type;
int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
if (id == Deoptimizer::kNotDeoptimizationEntry) {
Comment(";;; jump table entry %d.", i);
} else {
Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
}
if (deopt_jump_table_[i].needs_frame) {
ASSERT(!info()->saves_caller_doubles());
__ mov(ip, Operand(ExternalReference::ForDeoptEntry(entry)));
if (needs_frame.is_bound()) {
__ b(&needs_frame);
} else {
__ bind(&needs_frame);
__ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
ASSERT(info()->IsStub());
__ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
__ push(scratch0());
__ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
__ mov(lr, Operand(pc), LeaveCC, al);
__ mov(pc, ip);
}
} else {
if (info()->saves_caller_doubles()) {
ASSERT(info()->IsStub());
RestoreCallerDoubles();
}
__ mov(lr, Operand(pc), LeaveCC, al);
__ mov(pc, Operand(ExternalReference::ForDeoptEntry(entry)));
}
masm()->CheckConstPool(false, false);
}
// Force constant pool emission at the end of the deopt jump table to make
// sure that no constant pools are emitted after.
masm()->CheckConstPool(true, false);
// The deoptimization jump table is the last part of the instruction
// sequence. Mark the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
ASSERT(is_done());
safepoints_.Emit(masm(), GetStackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
DwVfpRegister LCodeGen::ToDoubleRegister(int index) const {
return DwVfpRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
ASSERT(op->IsRegister());
return ToRegister(op->index());
}
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
if (op->IsRegister()) {
return ToRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk_->LookupConstant(const_op);
Handle<Object> literal = constant->handle(isolate());
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
__ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
} else if (r.IsDouble()) {
Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
} else {
ASSERT(r.IsSmiOrTagged());
__ Move(scratch, literal);
}
return scratch;
} else if (op->IsStackSlot() || op->IsArgument()) {
__ ldr(scratch, ToMemOperand(op));
return scratch;
}
UNREACHABLE();
return scratch;
}
DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
ASSERT(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
SwVfpRegister flt_scratch,
DwVfpRegister dbl_scratch) {
if (op->IsDoubleRegister()) {
return ToDoubleRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk_->LookupConstant(const_op);
Handle<Object> literal = constant->handle(isolate());
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
__ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
__ vmov(flt_scratch, ip);
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
return dbl_scratch;
} else if (r.IsDouble()) {
Abort(kUnsupportedDoubleImmediate);
} else if (r.IsTagged()) {
Abort(kUnsupportedTaggedImmediate);
}
} else if (op->IsStackSlot() || op->IsArgument()) {
// TODO(regis): Why is vldr not taking a MemOperand?
// __ vldr(dbl_scratch, ToMemOperand(op));
MemOperand mem_op = ToMemOperand(op);
__ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
return dbl_scratch;
}
UNREACHABLE();
return dbl_scratch;
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsSmi(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
ASSERT(r.IsSmiOrTagged());
return reinterpret_cast<int32_t>(Smi::FromInt(value));
}
Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
return Smi::FromInt(constant->Integer32Value());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
ASSERT(constant->HasDoubleValue());
return constant->DoubleValue();
}
Operand LCodeGen::ToOperand(LOperand* op) {
if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk()->LookupConstant(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsSmi()) {
ASSERT(constant->HasSmiValue());
return Operand(Smi::FromInt(constant->Integer32Value()));
} else if (r.IsInteger32()) {
ASSERT(constant->HasInteger32Value());
return Operand(constant->Integer32Value());
} else if (r.IsDouble()) {
Abort(kToOperandUnsupportedDoubleImmediate);
}
ASSERT(r.IsTagged());
return Operand(constant->handle(isolate()));
} else if (op->IsRegister()) {
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
Abort(kToOperandIsDoubleRegisterUnimplemented);
return Operand::Zero();
}
// Stack slots not implemented, use ToMemOperand instead.
UNREACHABLE();
return Operand::Zero();
}
static int ArgumentsOffsetWithoutFrame(int index) {
ASSERT(index < 0);
return -(index + 1) * kPointerSize;
}
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
ASSERT(!op->IsRegister());
ASSERT(!op->IsDoubleRegister());
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, StackSlotOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
ASSERT(op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(
sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
bool has_closure_id = !info()->closure().is_null() &&
!info()->closure().is_identical_to(environment->closure());
int closure_id = has_closure_id
? DefineDeoptimizationLiteral(environment->closure())
: Translation::kSelfLiteralId;
switch (environment->frame_type()) {
case JS_FUNCTION:
translation->BeginJSFrame(environment->ast_id(), closure_id, height);
break;
case JS_CONSTRUCT:
translation->BeginConstructStubFrame(closure_id, translation_size);
break;
case JS_GETTER:
ASSERT(translation_size == 1);
ASSERT(height == 0);
translation->BeginGetterStubFrame(closure_id);
break;
case JS_SETTER:
ASSERT(translation_size == 2);
ASSERT(height == 0);
translation->BeginSetterStubFrame(closure_id);
break;
case STUB:
translation->BeginCompiledStubFrame();
break;
case ARGUMENTS_ADAPTOR:
translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
break;
}
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i),
&object_index,
&dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer,
dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else if (is_uint32) {
translation->StoreUint32StackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsArgument()) {
ASSERT(is_tagged);
int src_index = GetStackSlotCount() + op->index();
translation->StoreStackSlot(src_index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
DoubleRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
TargetAddressStorageMode storage_mode) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode);
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode,
TargetAddressStorageMode storage_mode) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
ASSERT(instr != NULL);
// Block literal pool emission to ensure nop indicating no inlined smi code
// is in the correct position.
Assembler::BlockConstPoolScope block_const_pool(masm());
__ Call(code, mode, TypeFeedbackId::None(), al, storage_mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr,
SaveFPRegsMode save_doubles) {
ASSERT(instr != NULL);
__ CallRuntime(function, num_arguments, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
__ Move(cp, ToRegister(context));
} else if (context->IsStackSlot()) {
__ ldr(cp, ToMemOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, zone());
}
}
void LCodeGen::DeoptimizeIf(Condition condition,
LEnvironment* environment,
Deoptimizer::BailoutType bailout_type) {
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
ASSERT(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
ASSERT(info()->IsOptimizing() || info()->IsStub());
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
Register scratch = scratch0();
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
// Store the condition on the stack if necessary
if (condition != al) {
__ mov(scratch, Operand::Zero(), LeaveCC, NegateCondition(condition));
__ mov(scratch, Operand(1), LeaveCC, condition);
__ push(scratch);
}
__ push(r1);
__ mov(scratch, Operand(count));
__ ldr(r1, MemOperand(scratch));
__ sub(r1, r1, Operand(1), SetCC);
__ movw(r1, FLAG_deopt_every_n_times, eq);
__ str(r1, MemOperand(scratch));
__ pop(r1);
if (condition != al) {
// Clean up the stack before the deoptimizer call
__ pop(scratch);
}
__ Call(entry, RelocInfo::RUNTIME_ENTRY, eq);
// 'Restore' the condition in a slightly hacky way. (It would be better
// to use 'msr' and 'mrs' instructions here, but they are not supported by
// our ARM simulator).
if (condition != al) {
condition = ne;
__ cmp(scratch, Operand::Zero());
}
}
if (info()->ShouldTrapOnDeopt()) {
__ stop("trap_on_deopt", condition);
}
ASSERT(info()->IsStub() || frame_is_built_);
// Go through jump table if we need to handle condition, build frame, or
// restore caller doubles.
if (condition == al && frame_is_built_ &&
!info()->saves_caller_doubles()) {
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (deopt_jump_table_.is_empty() ||
(deopt_jump_table_.last().address != entry) ||
(deopt_jump_table_.last().bailout_type != bailout_type) ||
(deopt_jump_table_.last().needs_frame != !frame_is_built_)) {
Deoptimizer::JumpTableEntry table_entry(entry,
bailout_type,
!frame_is_built_);
deopt_jump_table_.Add(table_entry, zone());
}
__ b(condition, &deopt_jump_table_.last().label);
}
}
void LCodeGen::DeoptimizeIf(Condition condition,
LEnvironment* environment) {
Deoptimizer::BailoutType bailout_type = info()->IsStub()
? Deoptimizer::LAZY
: Deoptimizer::EAGER;
DeoptimizeIf(condition, environment, bailout_type);
}
void LCodeGen::RegisterDependentCodeForEmbeddedMaps(Handle<Code> code) {
ZoneList<Handle<Map> > maps(1, zone());
ZoneList<Handle<JSObject> > objects(1, zone());
int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) {
if (Code::IsWeakEmbeddedObject(code->kind(), it.rinfo()->target_object())) {
if (it.rinfo()->target_object()->IsMap()) {
Handle<Map> map(Map::cast(it.rinfo()->target_object()));
maps.Add(map, zone());
} else if (it.rinfo()->target_object()->IsJSObject()) {
Handle<JSObject> object(JSObject::cast(it.rinfo()->target_object()));
objects.Add(object, zone());
}
}
}
#ifdef VERIFY_HEAP
// This disables verification of weak embedded objects after full GC.
// AddDependentCode can cause a GC, which would observe the state where
// this code is not yet in the depended code lists of the embedded maps.
NoWeakObjectVerificationScope disable_verification_of_embedded_objects;
#endif
for (int i = 0; i < maps.length(); i++) {
maps.at(i)->AddDependentCode(DependentCode::kWeaklyEmbeddedGroup, code);
}
for (int i = 0; i < objects.length(); i++) {
AddWeakObjectToCodeDependency(isolate()->heap(), objects.at(i), code);
}
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
Handle<DeoptimizationInputData> data =
factory()->NewDeoptimizationInputData(length, TENURED);
Handle<ByteArray> translations =
translations_.CreateByteArray(isolate()->factory());
data->SetTranslationByteArray(*translations);
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
Handle<FixedArray> literals =
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
{ AllowDeferredHandleDereference copy_handles;
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
}
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, env->ast_id());
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
data->SetPc(i, Smi::FromInt(env->pc_offset()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal, zone());
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
ASSERT(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
ASSERT(expected_safepoint_kind_ == kind);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(
pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegistersAndDoubles(
LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(
pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
}
void LCodeGen::RecordAndWritePosition(int position) {
if (position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
masm()->positions_recorder()->WriteRecordedPositions();
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_,
label->hydrogen_value()->id(),
label->block_id(),
LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
ASSERT(ToRegister(instr->context()).is(cp));
ASSERT(ToRegister(instr->result()).is(r0));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpConstructResult: {
RegExpConstructResultStub stub;
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::RegExpExec: {
RegExpExecStub stub;
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub;
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub;
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::TranscendentalCache: {
__ ldr(r0, MemOperand(sp, 0));
TranscendentalCacheStub stub(instr->transcendental_type(),
TranscendentalCacheStub::TAGGED);
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
HValue* left = hmod->left();
HValue* right = hmod->right();
if (hmod->HasPowerOf2Divisor()) {
// TODO(svenpanne) We should really do the strength reduction on the
// Hydrogen level.
Register left_reg = ToRegister(instr->left());
Register result_reg = ToRegister(instr->result());
// Note: The code below even works when right contains kMinInt.
int32_t divisor = Abs(right->GetInteger32Constant());
Label left_is_not_negative, done;
if (left->CanBeNegative()) {
__ cmp(left_reg, Operand::Zero());
__ b(pl, &left_is_not_negative);
__ rsb(result_reg, left_reg, Operand::Zero());
__ and_(result_reg, result_reg, Operand(divisor - 1));
__ rsb(result_reg, result_reg, Operand::Zero(), SetCC);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr->environment());
}
__ b(&done);
}
__ bind(&left_is_not_negative);
__ and_(result_reg, left_reg, Operand(divisor - 1));
__ bind(&done);
} else if (CpuFeatures::IsSupported(SUDIV)) {
CpuFeatureScope scope(masm(), SUDIV);
Register left_reg = ToRegister(instr->left());
Register right_reg = ToRegister(instr->right());
Register result_reg = ToRegister(instr->result());
Label done;
// Check for x % 0, sdiv might signal an exception. We have to deopt in this
// case because we can't return a NaN.
if (right->CanBeZero()) {
__ cmp(right_reg, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
}
// Check for kMinInt % -1, sdiv will return kMinInt, which is not what we
// want. We have to deopt if we care about -0, because we can't return that.
if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) {
Label no_overflow_possible;
__ cmp(left_reg, Operand(kMinInt));
__ b(ne, &no_overflow_possible);
__ cmp(right_reg, Operand(-1));
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr->environment());
} else {
__ b(ne, &no_overflow_possible);
__ mov(result_reg, Operand::Zero());
__ jmp(&done);
}
__ bind(&no_overflow_possible);
}
// For 'r3 = r1 % r2' we can have the following ARM code:
// sdiv r3, r1, r2
// mls r3, r3, r2, r1
__ sdiv(result_reg, left_reg, right_reg);
__ mls(result_reg, result_reg, right_reg, left_reg);
// If we care about -0, test if the dividend is <0 and the result is 0.
if (left->CanBeNegative() &&
hmod->CanBeZero() &&
hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ cmp(result_reg, Operand::Zero());
__ b(ne, &done);
__ cmp(left_reg, Operand::Zero());
DeoptimizeIf(lt, instr->environment());
}
__ bind(&done);
} else {
// General case, without any SDIV support.
Register left_reg = ToRegister(instr->left());
Register right_reg = ToRegister(instr->right());
Register result_reg = ToRegister(instr->result());
Register scratch = scratch0();
ASSERT(!scratch.is(left_reg));
ASSERT(!scratch.is(right_reg));
ASSERT(!scratch.is(result_reg));
DwVfpRegister dividend = ToDoubleRegister(instr->temp());
DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
ASSERT(!divisor.is(dividend));
LowDwVfpRegister quotient = double_scratch0();
ASSERT(!quotient.is(dividend));
ASSERT(!quotient.is(divisor));
Label done;
// Check for x % 0, we have to deopt in this case because we can't return a
// NaN.
if (right->CanBeZero()) {
__ cmp(right_reg, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
}
__ Move(result_reg, left_reg);
// Load the arguments in VFP registers. The divisor value is preloaded
// before. Be careful that 'right_reg' is only live on entry.
// TODO(svenpanne) The last comments seems to be wrong nowadays.
__ vmov(double_scratch0().low(), left_reg);
__ vcvt_f64_s32(dividend, double_scratch0().low());
__ vmov(double_scratch0().low(), right_reg);
__ vcvt_f64_s32(divisor, double_scratch0().low());
// We do not care about the sign of the divisor. Note that we still handle
// the kMinInt % -1 case correctly, though.
__ vabs(divisor, divisor);
// Compute the quotient and round it to a 32bit integer.
__ vdiv(quotient, dividend, divisor);
__ vcvt_s32_f64(quotient.low(), quotient);
__ vcvt_f64_s32(quotient, quotient.low());
// Compute the remainder in result.
__ vmul(double_scratch0(), divisor, quotient);
__ vcvt_s32_f64(double_scratch0().low(), double_scratch0());
__ vmov(scratch, double_scratch0().low());
__ sub(result_reg, left_reg, scratch, SetCC);
// If we care about -0, test if the dividend is <0 and the result is 0.
if (left->CanBeNegative() &&
hmod->CanBeZero() &&
hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ b(ne, &done);
__ cmp(left_reg, Operand::Zero());
DeoptimizeIf(mi, instr->environment());
}
__ bind(&done);
}
}
void LCodeGen::EmitSignedIntegerDivisionByConstant(
Register result,
Register dividend,
int32_t divisor,
Register remainder,
Register scratch,
LEnvironment* environment) {
ASSERT(!AreAliased(dividend, scratch, ip));
ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor));
uint32_t divisor_abs = abs(divisor);
int32_t power_of_2_factor =
CompilerIntrinsics::CountTrailingZeros(divisor_abs);
switch (divisor_abs) {
case 0:
DeoptimizeIf(al, environment);
return;
case 1:
if (divisor > 0) {
__ Move(result, dividend);
} else {
__ rsb(result, dividend, Operand::Zero(), SetCC);
DeoptimizeIf(vs, environment);
}
// Compute the remainder.
__ mov(remainder, Operand::Zero());
return;
default:
if (IsPowerOf2(divisor_abs)) {
// Branch and condition free code for integer division by a power
// of two.
int32_t power = WhichPowerOf2(divisor_abs);
if (power > 1) {
__ mov(scratch, Operand(dividend, ASR, power - 1));
}
__ add(scratch, dividend, Operand(scratch, LSR, 32 - power));
__ mov(result, Operand(scratch, ASR, power));
// Negate if necessary.
// We don't need to check for overflow because the case '-1' is
// handled separately.
if (divisor < 0) {
ASSERT(divisor != -1);
__ rsb(result, result, Operand::Zero());
}
// Compute the remainder.
if (divisor > 0) {
__ sub(remainder, dividend, Operand(result, LSL, power));
} else {
__ add(remainder, dividend, Operand(result, LSL, power));
}
return;
} else {
// Use magic numbers for a few specific divisors.
// Details and proofs can be found in:
// - Hacker's Delight, Henry S. Warren, Jr.
// - The PowerPC Compiler Writer’s Guide
// and probably many others.
//
// We handle
// <divisor with magic numbers> * <power of 2>
// but not
// <divisor with magic numbers> * <other divisor with magic numbers>
DivMagicNumbers magic_numbers =
DivMagicNumberFor(divisor_abs >> power_of_2_factor);
// Branch and condition free code for integer division by a power
// of two.
const int32_t M = magic_numbers.M;
const int32_t s = magic_numbers.s + power_of_2_factor;
__ mov(ip, Operand(M));
__ smull(ip, scratch, dividend, ip);
if (M < 0) {
__ add(scratch, scratch, Operand(dividend));
}
if (s > 0) {
__ mov(scratch, Operand(scratch, ASR, s));
}
__ add(result, scratch, Operand(dividend, LSR, 31));
if (divisor < 0) __ rsb(result, result, Operand::Zero());
// Compute the remainder.
__ mov(ip, Operand(divisor));
// This sequence could be replaced with 'mls' when
// it gets implemented.
__ mul(scratch, result, ip);
__ sub(remainder, dividend, scratch);
}
}
}
void LCodeGen::DoDivI(LDivI* instr) {
if (instr->hydrogen()->HasPowerOf2Divisor()) {
const Register dividend = ToRegister(instr->left());
const Register result = ToRegister(instr->result());
int32_t divisor = instr->hydrogen()->right()->GetInteger32Constant();
int32_t test_value = 0;
int32_t power = 0;
if (divisor > 0) {
test_value = divisor - 1;
power = WhichPowerOf2(divisor);
} else {
// Check for (0 / -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ cmp(dividend, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
}
// Check for (kMinInt / -1).
if (divisor == -1 && instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
__ cmp(dividend, Operand(kMinInt));
DeoptimizeIf(eq, instr->environment());
}
test_value = - divisor - 1;
power = WhichPowerOf2(-divisor);
}
if (test_value != 0) {
if (instr->hydrogen()->CheckFlag(
HInstruction::kAllUsesTruncatingToInt32)) {
__ sub(result, dividend, Operand::Zero(), SetCC);
__ rsb(result, result, Operand::Zero(), LeaveCC, lt);
__ mov(result, Operand(result, ASR, power));
if (divisor > 0) __ rsb(result, result, Operand::Zero(), LeaveCC, lt);
if (divisor < 0) __ rsb(result, result, Operand::Zero(), LeaveCC, gt);
return; // Don't fall through to "__ rsb" below.
} else {
// Deoptimize if remainder is not 0.
__ tst(dividend, Operand(test_value));
DeoptimizeIf(ne, instr->environment());
__ mov(result, Operand(dividend, ASR, power));
if (divisor < 0) __ rsb(result, result, Operand(0));
}
} else {
if (divisor < 0) {
__ rsb(result, dividend, Operand(0));
} else {
__ Move(result, dividend);
}
}
return;
}
const Register left = ToRegister(instr->left());
const Register right = ToRegister(instr->right());
const Register result = ToRegister(instr->result());
// Check for x / 0.
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ cmp(right, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive;
if (!instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
// Do the test only if it hadn't be done above.
__ cmp(right, Operand::Zero());
}
__ b(pl, &positive);
__ cmp(left, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
__ bind(&positive);
}
// Check for (kMinInt / -1).
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
Label left_not_min_int;
__ cmp(left, Operand(kMinInt));
__ b(ne, &left_not_min_int);
__ cmp(right, Operand(-1));
DeoptimizeIf(eq, instr->environment());
__ bind(&left_not_min_int);
}
if (CpuFeatures::IsSupported(SUDIV)) {
CpuFeatureScope scope(masm(), SUDIV);
__ sdiv(result, left, right);
if (!instr->hydrogen()->CheckFlag(
HInstruction::kAllUsesTruncatingToInt32)) {
// Compute remainder and deopt if it's not zero.
const Register remainder = scratch0();
__ mls(remainder, result, right, left);
__ cmp(remainder, Operand::Zero());
DeoptimizeIf(ne, instr->environment());
}
} else {
const DoubleRegister vleft = ToDoubleRegister(instr->temp());
const DoubleRegister vright = double_scratch0();
__ vmov(double_scratch0().low(), left);
__ vcvt_f64_s32(vleft, double_scratch0().low());
__ vmov(double_scratch0().low(), right);
__ vcvt_f64_s32(vright, double_scratch0().low());
__ vdiv(vleft, vleft, vright); // vleft now contains the result.
__ vcvt_s32_f64(double_scratch0().low(), vleft);
__ vmov(result, double_scratch0().low());
if (!instr->hydrogen()->CheckFlag(
HInstruction::kAllUsesTruncatingToInt32)) {
// Deopt if exact conversion to integer was not possible.
// Use vright as scratch register.
__ vcvt_f64_s32(double_scratch0(), double_scratch0().low());
__ VFPCompareAndSetFlags(vleft, double_scratch0());
DeoptimizeIf(ne, instr->environment());
}
}
}
void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
DwVfpRegister addend = ToDoubleRegister(instr->addend());
DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
// This is computed in-place.
ASSERT(addend.is(ToDoubleRegister(instr->result())));
__ vmla(addend, multiplier, multiplicand);
}
void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
DwVfpRegister minuend = ToDoubleRegister(instr->minuend());
DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
// This is computed in-place.
ASSERT(minuend.is(ToDoubleRegister(instr->result())));
__ vmls(minuend, multiplier, multiplicand);
}
void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) {
const Register result = ToRegister(instr->result());
const Register left = ToRegister(instr->left());
const Register remainder = ToRegister(instr->temp());
const Register scratch = scratch0();
if (!CpuFeatures::IsSupported(SUDIV)) {
// If the CPU doesn't support sdiv instruction, we only optimize when we
// have magic numbers for the divisor. The standard integer division routine
// is usually slower than transitionning to VFP.
ASSERT(instr->right()->IsConstantOperand());
int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right()));
ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor));
if (divisor < 0) {
__ cmp(left, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
}
EmitSignedIntegerDivisionByConstant(result,
left,
divisor,
remainder,
scratch,
instr->environment());
// We performed a truncating division. Correct the result if necessary.
__ cmp(remainder, Operand::Zero());
__ teq(remainder, Operand(divisor), ne);
__ sub(result, result, Operand(1), LeaveCC, mi);
} else {
CpuFeatureScope scope(masm(), SUDIV);
const Register right = ToRegister(instr->right());
// Check for x / 0.
__ cmp(right, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
// Check for (kMinInt / -1).
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
Label left_not_min_int;
__ cmp(left, Operand(kMinInt));
__ b(ne, &left_not_min_int);
__ cmp(right, Operand(-1));
DeoptimizeIf(eq, instr->environment());
__ bind(&left_not_min_int);
}
// Check for (0 / -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ cmp(right, Operand::Zero());
__ cmp(left, Operand::Zero(), mi);
// "right" can't be null because the code would have already been
// deoptimized. The Z flag is set only if (right < 0) and (left == 0).
// In this case we need to deoptimize to produce a -0.
DeoptimizeIf(eq, instr->environment());
}
Label done;
__ sdiv(result, left, right);
// If both operands have the same sign then we are done.
__ eor(remainder, left, Operand(right), SetCC);
__ b(pl, &done);
// Check if the result needs to be corrected.
__ mls(remainder, result, right, left);
__ cmp(remainder, Operand::Zero());
__ sub(result, result, Operand(1), LeaveCC, ne);
__ bind(&done);
}
}
void LCodeGen::DoMulI(LMulI* instr) {
Register result = ToRegister(instr->result());
// Note that result may alias left.
Register left = ToRegister(instr->left());
LOperand* right_op = instr->right();
bool bailout_on_minus_zero =
instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (right_op->IsConstantOperand()) {
int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
if (bailout_on_minus_zero && (constant < 0)) {
// The case of a null constant will be handled separately.
// If constant is negative and left is null, the result should be -0.
__ cmp(left, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
}
switch (constant) {
case -1:
if (overflow) {
__ rsb(result, left, Operand::Zero(), SetCC);
DeoptimizeIf(vs, instr->environment());
} else {
__ rsb(result, left, Operand::Zero());
}
break;
case 0:
if (bailout_on_minus_zero) {
// If left is strictly negative and the constant is null, the
// result is -0. Deoptimize if required, otherwise return 0.
__ cmp(left, Operand::Zero());
DeoptimizeIf(mi, instr->environment());
}
__ mov(result, Operand::Zero());
break;
case 1:
__ Move(result, left);
break;
default:
// Multiplying by powers of two and powers of two plus or minus
// one can be done faster with shifted operands.
// For other constants we emit standard code.
int32_t mask = constant >> 31;
uint32_t constant_abs = (constant + mask) ^ mask;
if (IsPowerOf2(constant_abs)) {
int32_t shift = WhichPowerOf2(constant_abs);
__ mov(result, Operand(left, LSL, shift));
// Correct the sign of the result is the constant is negative.
if (constant < 0) __ rsb(result, result, Operand::Zero());
} else if (IsPowerOf2(constant_abs - 1)) {
int32_t shift = WhichPowerOf2(constant_abs - 1);
__ add(result, left, Operand(left, LSL, shift));
// Correct the sign of the result is the constant is negative.
if (constant < 0) __ rsb(result, result, Operand::Zero());
} else if (IsPowerOf2(constant_abs + 1)) {
int32_t shift = WhichPowerOf2(constant_abs + 1);
__ rsb(result, left, Operand(left, LSL, shift));
// Correct the sign of the result is the constant is negative.
if (constant < 0) __ rsb(result, result, Operand::Zero());
} else {
// Generate standard code.
__ mov(ip, Operand(constant));
__ mul(result, left, ip);
}
}
} else {
ASSERT(right_op->IsRegister());
Register right = ToRegister(right_op);
if (overflow) {
Register scratch = scratch0();
// scratch:result = left * right.
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ smull(result, scratch, result, right);
} else {
__ smull(result, scratch, left, right);
}
__ cmp(scratch, Operand(result, ASR, 31));
DeoptimizeIf(ne, instr->environment());
} else {
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ mul(result, result, right);
} else {
__ mul(result, left, right);
}
}
if (bailout_on_minus_zero) {
Label done;
__ teq(left, Operand(right));
__ b(pl, &done);
// Bail out if the result is minus zero.
__ cmp(result, Operand::Zero());
DeoptimizeIf(eq, instr->environment());
__ bind(&done);
}
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left_op = instr->left();
LOperand* right_op = instr->right();
ASSERT(left_op->IsRegister());
Register left = ToRegister(left_op);
Register result = ToRegister(instr->result());
Operand right(no_reg);
if (right_op->IsStackSlot() || right_op->IsArgument()) {
right = Operand(EmitLoadRegister(right_op, ip));
} else {
ASSERT(right_op->IsRegister() || right_op->IsConstantOperand());
right = ToOperand(right_op);
}
switch (instr->op()) {
case Token::BIT_AND:
__ and_(result, left, right);
break;
case Token::BIT_OR:
__ orr(result, left, right);
break;
case Token::BIT_XOR:
if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
__ mvn(result, Operand(left));
} else {
__ eor(result, left, right);
}
break;
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
// Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
// result may alias either of them.
LOperand* right_op = instr->right();
Register left = ToRegister(instr->left());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
if (right_op->IsRegister()) {
// Mask the right_op operand.
__ and_(scratch, ToRegister(right_op), Operand(0x1F));
switch (instr->op()) {
case Token::ROR:
__ mov(result, Operand(left, ROR, scratch));
break;
case Token::SAR:
__ mov(result, Operand(left, ASR, scratch));
break;
case Token::SHR:
if (instr->can_deopt()) {
__ mov(result, Operand(left, LSR, scratch), SetCC);
DeoptimizeIf(mi, instr->environment());
} else {
__ mov(result, Operand(left, LSR, scratch));
}
break;
case Token::SHL:
__ mov(result, Operand(left, LSL, scratch));
break;
default:
UNREACHABLE();
break;
}
} else {
// Mask the right_op operand.
int value = ToInteger32(LConstantOperand::cast(right_op));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count != 0) {
__ mov(result, Operand(left, ROR, shift_count));
} else {
__ Move(result, left);
}
break;
case Token::SAR:
if (shift_count != 0) {
__ mov(result, Operand(left, ASR, shift_count));
} else {
__ Move(result, left);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ mov(result, Operand(left, LSR, shift_count));
} else {
if (instr->can_deopt()) {
__ tst(left, Operand(0x80000000));
DeoptimizeIf(ne, instr->environment());
}
__ Move(result, left);
}
break;
case Token::SHL:
if (shift_count != 0) {
if (instr->hydrogen_value()->representation().IsSmi() &&
instr->can_deopt()) {
if (shift_count != 1) {
__ mov(result, Operand(left, LSL, shift_count - 1));
__ SmiTag(result, result, SetCC);
} else {
__ SmiTag(result, left, SetCC);
}
DeoptimizeIf(vs, instr->environment());
} else {
__ mov(result, Operand(left, LSL, shift_count));
}
} else {
__ Move(result, left);
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot() || right->IsArgument()) {
Register right_reg = EmitLoadRegister(right, ip);
__ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
} else {
ASSERT(right->IsRegister() || right->IsConstantOperand());
__ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoRSubI(LRSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot() || right->IsArgument()) {
Register right_reg = EmitLoadRegister(right, ip);
__ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
} else {
ASSERT(right->IsRegister() || right->IsConstantOperand());
__ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
ASSERT(instr->result()->IsDoubleRegister());
DwVfpRegister result = ToDoubleRegister(instr->result());
double v = instr->value();
__ Vmov(result, v, scratch0());
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> value = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ Move(ToRegister(instr->result()), value);
}
void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->value());
__ EnumLength(result, map);
}
void LCodeGen::DoElementsKind(LElementsKind* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->value());
// Load map into |result|.
__ ldr(result, FieldMemOperand(input, HeapObject::kMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following bit field extraction takes care of that anyway.
__ ldr(result, FieldMemOperand(result, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
}
void LCodeGen::DoValueOf(LValueOf* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
Register map = ToRegister(instr->temp());
Label done;
if (!instr->hydrogen()->value()->IsHeapObject()) {
// If the object is a smi return the object.
__ SmiTst(input);
__ Move(result, input, eq);
__ b(eq, &done);
}
// If the object is not a value type, return the object.
__ CompareObjectType(input, map, map, JS_VALUE_TYPE);
__ Move(result, input, ne);
__ b(ne, &done);
__ ldr(result, FieldMemOperand(input, JSValue::kValueOffset));
__ bind(&done);
}
void LCodeGen::DoDateField(LDateField* instr) {
Register object = ToRegister(instr->date());
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->temp());
Smi* index = instr->index();
Label runtime, done;
ASSERT(object.is(result));
ASSERT(object.is(r0));
ASSERT(!scratch.is(scratch0()));
ASSERT(!scratch.is(object));
__ SmiTst(object);
DeoptimizeIf(eq, instr->environment());
__ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE);
DeoptimizeIf(ne, instr->environment());
if (index->value() == 0) {
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ mov(scratch, Operand(stamp));
__ ldr(scratch, MemOperand(scratch));
__ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
__ cmp(scratch, scratch0());
__ b(ne, &runtime);
__ ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch);
__ mov(r1, Operand(index));
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ bind(&done);
}
}
MemOperand LCodeGen::BuildSeqStringOperand(Register string,
LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToInteger32(LConstantOperand::cast(index));
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldMemOperand(string, SeqString::kHeaderSize + offset);
}
Register scratch = scratch0();
ASSERT(!scratch.is(string));
ASSERT(!scratch.is(ToRegister(index)));
if (encoding == String::ONE_BYTE_ENCODING) {
__ add(scratch, string, Operand(ToRegister(index)));
} else {
STATIC_ASSERT(kUC16Size == 2);
__ add(scratch, string, Operand(ToRegister(index), LSL, 1));
}
return FieldMemOperand(scratch, SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
if (FLAG_debug_code) {
Register scratch = scratch0();
__ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ and_(scratch, scratch,
Operand(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type));
__ Check(eq, kUnexpectedStringType);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ ldrb(result, operand);
} else {
__ ldrh(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register value = ToRegister(instr->value());
if (FLAG_debug_code) {
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ strb(value, operand);
} else {
__ strh(value, operand);
}
}
void LCodeGen::DoThrow(LThrow* instr) {
Register input_reg = EmitLoadRegister(instr->value(), ip);
__ push(input_reg);
ASSERT(ToRegister(instr->context()).is(cp));
CallRuntime(Runtime::kThrow, 1, instr);
if (FLAG_debug_code) {
__ stop("Unreachable code.");
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
SBit set_cond = can_overflow ? SetCC : LeaveCC;
if (right->IsStackSlot() || right->IsArgument()) {
Register right_reg = EmitLoadRegister(right, ip);
__ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
} else {
ASSERT(right->IsRegister() || right->IsConstantOperand());
__ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
}
if (can_overflow) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
HMathMinMax::Operation operation = instr->hydrogen()->operation();
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
Register left_reg = ToRegister(left);
Operand right_op = (right->IsRegister() || right->IsConstantOperand())
? ToOperand(right)
: Operand(EmitLoadRegister(right, ip));
Register result_reg = ToRegister(instr->result());
__ cmp(left_reg, right_op);
__ Move(result_reg, left_reg, condition);
__ mov(result_reg, right_op, LeaveCC, NegateCondition(condition));
} else {
ASSERT(instr->hydrogen()->representation().IsDouble());
DwVfpRegister left_reg = ToDoubleRegister(left);
DwVfpRegister right_reg = ToDoubleRegister(right);
DwVfpRegister result_reg = ToDoubleRegister(instr->result());
Label result_is_nan, return_left, return_right, check_zero, done;
__ VFPCompareAndSetFlags(left_reg, right_reg);
if (operation == HMathMinMax::kMathMin) {
__ b(mi, &return_left);
__ b(gt, &return_right);
} else {
__ b(mi, &return_right);
__ b(gt, &return_left);
}
__ b(vs, &result_is_nan);
// Left equals right => check for -0.
__ VFPCompareAndSetFlags(left_reg, 0.0);
if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
__ b(ne, &done); // left == right != 0.
} else {
__ b(ne, &return_left); // left == right != 0.
}
// At this point, both left and right are either 0 or -0.
if (operation == HMathMinMax::kMathMin) {
// We could use a single 'vorr' instruction here if we had NEON support.
__ vneg(left_reg, left_reg);
__ vsub(result_reg, left_reg, right_reg);
__ vneg(result_reg, result_reg);
} else {
// Since we operate on +0 and/or -0, vadd and vand have the same effect;
// the decision for vadd is easy because vand is a NEON instruction.
__ vadd(result_reg, left_reg, right_reg);
}
__ b(&done);
__ bind(&result_is_nan);
__ vadd(result_reg, left_reg, right_reg);
__ b(&done);
__ bind(&return_right);
__ Move(result_reg, right_reg);
if (!left_reg.is(result_reg)) {
__ b(&done);
}
__ bind(&return_left);
__ Move(result_reg, left_reg);
__ bind(&done);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DwVfpRegister left = ToDoubleRegister(instr->left());
DwVfpRegister right = ToDoubleRegister(instr->right());
DwVfpRegister result = ToDoubleRegister(instr->result());
switch (instr->op()) {
case Token::ADD:
__ vadd(result, left, right);
break;
case Token::SUB:
__ vsub(result, left, right);
break;
case Token::MUL:
__ vmul(result, left, right);
break;
case Token::DIV:
__ vdiv(result, left, right);
break;
case Token::MOD: {
__ PrepareCallCFunction(0, 2, scratch0());
__ SetCallCDoubleArguments(left, right);
__ CallCFunction(
ExternalReference::double_fp_operation(Token::MOD, isolate()),
0, 2);
// Move the result in the double result register.
__ GetCFunctionDoubleResult(result);
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->context()).is(cp));
ASSERT(ToRegister(instr->left()).is(r1));
ASSERT(ToRegister(instr->right()).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
BinaryOpStub stub(instr->op(), NO_OVERWRITE);
// Block literal pool emission to ensure nop indicating no inlined smi code
// is in the correct position.
Assembler::BlockConstPoolScope block_const_pool(masm());
CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr);
__ nop(); // Signals no inlined code.
}
template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || condition == al) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ b(condition, chunk_->GetAssemblyLabel(left_block));
} else {
__ b(condition, chunk_->GetAssemblyLabel(left_block));
__ b(chunk_->GetAssemblyLabel(right_block));
}
}
template<class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) {
int false_block = instr->FalseDestination(chunk_);
__ b(condition, chunk_->GetAssemblyLabel(false_block));
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
__ stop("LBreak");
}
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
if (r.IsInteger32() || r.IsSmi()) {
ASSERT(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ cmp(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (r.IsDouble()) {
ASSERT(!info()->IsStub());
DwVfpRegister reg = ToDoubleRegister(instr->value());
// Test the double value. Zero and NaN are false.
__ VFPCompareAndSetFlags(reg, 0.0);
__ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN -> false)
EmitBranch(instr, ne);
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
ASSERT(!info()->IsStub());
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
EmitBranch(instr, eq);
} else if (type.IsSmi()) {
ASSERT(!info()->IsStub());
__ cmp(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (type.IsJSArray()) {
ASSERT(!info()->IsStub());
EmitBranch(instr, al);
} else if (type.IsHeapNumber()) {
ASSERT(!info()->IsStub());
DwVfpRegister dbl_scratch = double_scratch0();
__ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
// Test the double value. Zero and NaN are false.
__ VFPCompareAndSetFlags(dbl_scratch, 0.0);
__ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN)
EmitBranch(instr, ne);
} else if (type.IsString()) {
ASSERT(!info()->IsStub());
__ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
__ cmp(ip, Operand::Zero());
EmitBranch(instr, ne);
} else {
ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
if (expected.Contains(ToBooleanStub::UNDEFINED)) {
// undefined -> false.
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
__ b(eq, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::BOOLEAN)) {
// Boolean -> its value.
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
__ b(eq, instr->TrueLabel(chunk_));
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
__ b(eq, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
// 'null' -> false.
__ CompareRoot(reg, Heap::kNullValueRootIndex);
__ b(eq, instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::SMI)) {
// Smis: 0 -> false, all other -> true.
__ cmp(reg, Operand::Zero());
__ b(eq, instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected.NeedsMap()) {
// If we need a map later and have a Smi -> deopt.
__ SmiTst(reg);
DeoptimizeIf(eq, instr->environment());
}
const Register map = scratch0();
if (expected.NeedsMap()) {
__ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
if (expected.CanBeUndetectable()) {
// Undetectable -> false.
__ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
__ b(ne, instr->FalseLabel(chunk_));
}
}
if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
// spec object -> true.
__ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::STRING)) {
// String value -> false iff empty.
Label not_string;
__ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
__ b(ge, &not_string);
__ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
__ cmp(ip, Operand::Zero());
__ b(ne, instr->TrueLabel(chunk_));
__ b(instr->FalseLabel(chunk_));
__ bind(&not_string);
}
if (expected.Contains(ToBooleanStub::SYMBOL)) {
// Symbol value -> true.
__ CompareInstanceType(map, ip, SYMBOL_TYPE);
__ b(eq, instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
DwVfpRegister dbl_scratch = double_scratch0();
Label not_heap_number;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ b(ne, &not_heap_number);
__ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
__ VFPCompareAndSetFlags(dbl_scratch, 0.0);
__ cmp(r0, r0, vs); // NaN -> false.
__ b(eq, instr->FalseLabel(chunk_)); // +0, -0 -> false.
__ b(instr->TrueLabel(chunk_));
__ bind(&not_heap_number);
}
if (!expected.IsGeneric()) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(al, instr->environment());
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
}
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = kNoCondition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = eq;
break;
case Token::NE:
case Token::NE_STRICT:
cond = ne;
break;
case Token::LT:
cond = is_unsigned ? lo : lt;
break;
case Token::GT:
cond = is_unsigned ? hi : gt;
break;
case Token::LTE:
cond = is_unsigned ? ls : le;
break;
case Token::GTE:
cond = is_unsigned ? hs : ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
Condition cond = TokenToCondition(instr->op(), false);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = EvalComparison(instr->op(), left_val, right_val) ?
instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Compare left and right operands as doubles and load the
// resulting flags into the normal status register.
__ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
// If a NaN is involved, i.e. the result is unordered (V set),
// jump to false block label.
__ b(vs, instr->FalseLabel(chunk_));
} else {
if (right->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(right));
if (instr->hydrogen_value()->representation().IsSmi()) {
__ cmp(ToRegister(left), Operand(Smi::FromInt(value)));
} else {
__ cmp(ToRegister(left), Operand(value));
}
} else if (left->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(left));
if (instr->hydrogen_value()->representation().IsSmi()) {
__ cmp(ToRegister(right), Operand(Smi::FromInt(value)));
} else {
__ cmp(ToRegister(right), Operand(value));
}
// We transposed the operands. Reverse the condition.
cond = ReverseCondition(cond);
} else {
__ cmp(ToRegister(left), ToRegister(right));
}
}
EmitBranch(instr, cond);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
__ cmp(left, Operand(right));
EmitBranch(instr, eq);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ mov(ip, Operand(factory()->the_hole_value()));
__ cmp(input_reg, ip);
EmitBranch(instr, eq);
return;
}
DwVfpRegister input_reg = ToDoubleRegister(instr->object());
__ VFPCompareAndSetFlags(input_reg, input_reg);
EmitFalseBranch(instr, vc);
Register scratch = scratch0();
__ VmovHigh(scratch, input_reg);
__ cmp(scratch, Operand(kHoleNanUpper32));
EmitBranch(instr, eq);
}
void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
Representation rep = instr->hydrogen()->value()->representation();
ASSERT(!rep.IsInteger32());
Register scratch = ToRegister(instr->temp());
if (rep.IsDouble()) {
DwVfpRegister value = ToDoubleRegister(instr->value());
__ VFPCompareAndSetFlags(value, 0.0);
EmitFalseBranch(instr, ne);
__ VmovHigh(scratch, value);
__ cmp(scratch, Operand(0x80000000));
} else {