blob: f959e924988a8f0a72ab1e9961b668dbea345328 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/api.h"
#include "src/arguments.h"
#include "src/ast.h"
#include "src/code-stubs.h"
#include "src/cpu-profiler.h"
#include "src/gdb-jit.h"
#include "src/ic-inl.h"
#include "src/stub-cache.h"
#include "src/type-info.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------
// StubCache implementation.
StubCache::StubCache(Isolate* isolate)
: isolate_(isolate) { }
void StubCache::Initialize() {
DCHECK(IsPowerOf2(kPrimaryTableSize));
DCHECK(IsPowerOf2(kSecondaryTableSize));
Clear();
}
static Code::Flags CommonStubCacheChecks(Name* name, Map* map,
Code::Flags flags) {
flags = Code::RemoveTypeAndHolderFromFlags(flags);
// Validate that the name does not move on scavenge, and that we
// can use identity checks instead of structural equality checks.
DCHECK(!name->GetHeap()->InNewSpace(name));
DCHECK(name->IsUniqueName());
// The state bits are not important to the hash function because the stub
// cache only contains handlers. Make sure that the bits are the least
// significant so they will be the ones masked out.
DCHECK_EQ(Code::HANDLER, Code::ExtractKindFromFlags(flags));
STATIC_ASSERT((Code::ICStateField::kMask & 1) == 1);
// Make sure that the code type and cache holder are not included in the hash.
DCHECK(Code::ExtractTypeFromFlags(flags) == 0);
DCHECK(Code::ExtractCacheHolderFromFlags(flags) == 0);
return flags;
}
Code* StubCache::Set(Name* name, Map* map, Code* code) {
Code::Flags flags = CommonStubCacheChecks(name, map, code->flags());
// Compute the primary entry.
int primary_offset = PrimaryOffset(name, flags, map);
Entry* primary = entry(primary_, primary_offset);
Code* old_code = primary->value;
// If the primary entry has useful data in it, we retire it to the
// secondary cache before overwriting it.
if (old_code != isolate_->builtins()->builtin(Builtins::kIllegal)) {
Map* old_map = primary->map;
Code::Flags old_flags =
Code::RemoveTypeAndHolderFromFlags(old_code->flags());
int seed = PrimaryOffset(primary->key, old_flags, old_map);
int secondary_offset = SecondaryOffset(primary->key, old_flags, seed);
Entry* secondary = entry(secondary_, secondary_offset);
*secondary = *primary;
}
// Update primary cache.
primary->key = name;
primary->value = code;
primary->map = map;
isolate()->counters()->megamorphic_stub_cache_updates()->Increment();
return code;
}
Code* StubCache::Get(Name* name, Map* map, Code::Flags flags) {
flags = CommonStubCacheChecks(name, map, flags);
int primary_offset = PrimaryOffset(name, flags, map);
Entry* primary = entry(primary_, primary_offset);
if (primary->key == name && primary->map == map) {
return primary->value;
}
int secondary_offset = SecondaryOffset(name, flags, primary_offset);
Entry* secondary = entry(secondary_, secondary_offset);
if (secondary->key == name && secondary->map == map) {
return secondary->value;
}
return NULL;
}
Handle<Code> PropertyICCompiler::Find(Handle<Name> name,
Handle<Map> stub_holder, Code::Kind kind,
ExtraICState extra_state,
CacheHolderFlag cache_holder) {
Code::Flags flags = Code::ComputeMonomorphicFlags(
kind, extra_state, cache_holder);
Object* probe = stub_holder->FindInCodeCache(*name, flags);
if (probe->IsCode()) return handle(Code::cast(probe));
return Handle<Code>::null();
}
Handle<Code> PropertyHandlerCompiler::Find(Handle<Name> name,
Handle<Map> stub_holder,
Code::Kind kind,
CacheHolderFlag cache_holder,
Code::StubType type) {
Code::Flags flags = Code::ComputeHandlerFlags(kind, type, cache_holder);
Object* probe = stub_holder->FindInCodeCache(*name, flags);
if (probe->IsCode()) return handle(Code::cast(probe));
return Handle<Code>::null();
}
Handle<Code> PropertyICCompiler::ComputeMonomorphic(
Code::Kind kind, Handle<Name> name, Handle<HeapType> type,
Handle<Code> handler, ExtraICState extra_ic_state) {
Isolate* isolate = name->GetIsolate();
if (handler.is_identical_to(isolate->builtins()->LoadIC_Normal()) ||
handler.is_identical_to(isolate->builtins()->StoreIC_Normal())) {
name = isolate->factory()->normal_ic_symbol();
}
CacheHolderFlag flag;
Handle<Map> stub_holder = IC::GetICCacheHolder(*type, isolate, &flag);
Handle<Code> ic;
// There are multiple string maps that all use the same prototype. That
// prototype cannot hold multiple handlers, one for each of the string maps,
// for a single name. Hence, turn off caching of the IC.
bool can_be_cached = !type->Is(HeapType::String());
if (can_be_cached) {
ic = Find(name, stub_holder, kind, extra_ic_state, flag);
if (!ic.is_null()) return ic;
}
#ifdef DEBUG
if (kind == Code::KEYED_STORE_IC) {
DCHECK(STANDARD_STORE ==
KeyedStoreIC::GetKeyedAccessStoreMode(extra_ic_state));
}
#endif
PropertyICCompiler ic_compiler(isolate, kind, extra_ic_state, flag);
ic = ic_compiler.CompileMonomorphic(type, handler, name, PROPERTY);
if (can_be_cached) Map::UpdateCodeCache(stub_holder, name, ic);
return ic;
}
Handle<Code> NamedLoadHandlerCompiler::ComputeLoadNonexistent(
Handle<Name> name, Handle<HeapType> type) {
Isolate* isolate = name->GetIsolate();
Handle<Map> receiver_map = IC::TypeToMap(*type, isolate);
if (receiver_map->prototype()->IsNull()) {
// TODO(jkummerow/verwaest): If there is no prototype and the property
// is nonexistent, introduce a builtin to handle this (fast properties
// -> return undefined, dictionary properties -> do negative lookup).
return Handle<Code>();
}
CacheHolderFlag flag;
Handle<Map> stub_holder_map =
IC::GetHandlerCacheHolder(*type, false, isolate, &flag);
// If no dictionary mode objects are present in the prototype chain, the load
// nonexistent IC stub can be shared for all names for a given map and we use
// the empty string for the map cache in that case. If there are dictionary
// mode objects involved, we need to do negative lookups in the stub and
// therefore the stub will be specific to the name.
Handle<Name> cache_name =
receiver_map->is_dictionary_map()
? name
: Handle<Name>::cast(isolate->factory()->nonexistent_symbol());
Handle<Map> current_map = stub_holder_map;
Handle<JSObject> last(JSObject::cast(receiver_map->prototype()));
while (true) {
if (current_map->is_dictionary_map()) cache_name = name;
if (current_map->prototype()->IsNull()) break;
last = handle(JSObject::cast(current_map->prototype()));
current_map = handle(last->map());
}
// Compile the stub that is either shared for all names or
// name specific if there are global objects involved.
Handle<Code> handler = PropertyHandlerCompiler::Find(
cache_name, stub_holder_map, Code::LOAD_IC, flag, Code::FAST);
if (!handler.is_null()) return handler;
NamedLoadHandlerCompiler compiler(isolate, type, last, flag);
handler = compiler.CompileLoadNonexistent(cache_name);
Map::UpdateCodeCache(stub_holder_map, cache_name, handler);
return handler;
}
Handle<Code> PropertyICCompiler::ComputeKeyedLoadMonomorphic(
Handle<Map> receiver_map) {
Isolate* isolate = receiver_map->GetIsolate();
Code::Flags flags = Code::ComputeMonomorphicFlags(Code::KEYED_LOAD_IC);
Handle<Name> name = isolate->factory()->KeyedLoadMonomorphic_string();
Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags), isolate);
if (probe->IsCode()) return Handle<Code>::cast(probe);
ElementsKind elements_kind = receiver_map->elements_kind();
Handle<Code> stub;
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements() ||
receiver_map->has_fixed_typed_array_elements()) {
stub = LoadFastElementStub(isolate,
receiver_map->instance_type() == JS_ARRAY_TYPE,
elements_kind).GetCode();
} else {
stub = FLAG_compiled_keyed_dictionary_loads
? LoadDictionaryElementStub(isolate).GetCode()
: LoadDictionaryElementPlatformStub(isolate).GetCode();
}
PropertyICCompiler compiler(isolate, Code::KEYED_LOAD_IC);
Handle<Code> code =
compiler.CompileMonomorphic(HeapType::Class(receiver_map, isolate), stub,
isolate->factory()->empty_string(), ELEMENT);
Map::UpdateCodeCache(receiver_map, name, code);
return code;
}
Handle<Code> PropertyICCompiler::ComputeKeyedStoreMonomorphic(
Handle<Map> receiver_map, StrictMode strict_mode,
KeyedAccessStoreMode store_mode) {
Isolate* isolate = receiver_map->GetIsolate();
ExtraICState extra_state =
KeyedStoreIC::ComputeExtraICState(strict_mode, store_mode);
Code::Flags flags =
Code::ComputeMonomorphicFlags(Code::KEYED_STORE_IC, extra_state);
DCHECK(store_mode == STANDARD_STORE ||
store_mode == STORE_AND_GROW_NO_TRANSITION ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW);
Handle<String> name = isolate->factory()->KeyedStoreMonomorphic_string();
Handle<Object> probe(receiver_map->FindInCodeCache(*name, flags), isolate);
if (probe->IsCode()) return Handle<Code>::cast(probe);
PropertyICCompiler compiler(isolate, Code::KEYED_STORE_IC, extra_state);
Handle<Code> code =
compiler.CompileKeyedStoreMonomorphic(receiver_map, store_mode);
Map::UpdateCodeCache(receiver_map, name, code);
DCHECK(KeyedStoreIC::GetKeyedAccessStoreMode(code->extra_ic_state())
== store_mode);
return code;
}
#define CALL_LOGGER_TAG(kind, type) (Logger::KEYED_##type)
static void FillCache(Isolate* isolate, Handle<Code> code) {
Handle<UnseededNumberDictionary> dictionary =
UnseededNumberDictionary::Set(isolate->factory()->non_monomorphic_cache(),
code->flags(),
code);
isolate->heap()->public_set_non_monomorphic_cache(*dictionary);
}
Code* PropertyICCompiler::FindPreMonomorphic(Isolate* isolate, Code::Kind kind,
ExtraICState state) {
Code::Flags flags = Code::ComputeFlags(kind, PREMONOMORPHIC, state);
UnseededNumberDictionary* dictionary =
isolate->heap()->non_monomorphic_cache();
int entry = dictionary->FindEntry(isolate, flags);
DCHECK(entry != -1);
Object* code = dictionary->ValueAt(entry);
// This might be called during the marking phase of the collector
// hence the unchecked cast.
return reinterpret_cast<Code*>(code);
}
Handle<Code> PropertyICCompiler::ComputeLoad(Isolate* isolate,
InlineCacheState ic_state,
ExtraICState extra_state) {
Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, ic_state, extra_state);
Handle<UnseededNumberDictionary> cache =
isolate->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
PropertyICCompiler compiler(isolate, Code::LOAD_IC);
Handle<Code> code;
if (ic_state == UNINITIALIZED) {
code = compiler.CompileLoadInitialize(flags);
} else if (ic_state == PREMONOMORPHIC) {
code = compiler.CompileLoadPreMonomorphic(flags);
} else if (ic_state == MEGAMORPHIC) {
code = compiler.CompileLoadMegamorphic(flags);
} else {
UNREACHABLE();
}
FillCache(isolate, code);
return code;
}
Handle<Code> PropertyICCompiler::ComputeStore(Isolate* isolate,
InlineCacheState ic_state,
ExtraICState extra_state) {
Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, ic_state, extra_state);
Handle<UnseededNumberDictionary> cache =
isolate->factory()->non_monomorphic_cache();
int entry = cache->FindEntry(isolate, flags);
if (entry != -1) return Handle<Code>(Code::cast(cache->ValueAt(entry)));
PropertyICCompiler compiler(isolate, Code::STORE_IC);
Handle<Code> code;
if (ic_state == UNINITIALIZED) {
code = compiler.CompileStoreInitialize(flags);
} else if (ic_state == PREMONOMORPHIC) {
code = compiler.CompileStorePreMonomorphic(flags);
} else if (ic_state == GENERIC) {
code = compiler.CompileStoreGeneric(flags);
} else if (ic_state == MEGAMORPHIC) {
code = compiler.CompileStoreMegamorphic(flags);
} else {
UNREACHABLE();
}
FillCache(isolate, code);
return code;
}
Handle<Code> PropertyICCompiler::ComputeCompareNil(Handle<Map> receiver_map,
CompareNilICStub* stub) {
Isolate* isolate = receiver_map->GetIsolate();
Handle<String> name(isolate->heap()->empty_string());
if (!receiver_map->is_dictionary_map()) {
Handle<Code> cached_ic =
Find(name, receiver_map, Code::COMPARE_NIL_IC, stub->GetExtraICState());
if (!cached_ic.is_null()) return cached_ic;
}
Code::FindAndReplacePattern pattern;
pattern.Add(isolate->factory()->meta_map(), receiver_map);
Handle<Code> ic = stub->GetCodeCopy(pattern);
if (!receiver_map->is_dictionary_map()) {
Map::UpdateCodeCache(receiver_map, name, ic);
}
return ic;
}
// TODO(verwaest): Change this method so it takes in a TypeHandleList.
Handle<Code> PropertyICCompiler::ComputeKeyedLoadPolymorphic(
MapHandleList* receiver_maps) {
Isolate* isolate = receiver_maps->at(0)->GetIsolate();
Code::Flags flags = Code::ComputeFlags(Code::KEYED_LOAD_IC, POLYMORPHIC);
Handle<PolymorphicCodeCache> cache =
isolate->factory()->polymorphic_code_cache();
Handle<Object> probe = cache->Lookup(receiver_maps, flags);
if (probe->IsCode()) return Handle<Code>::cast(probe);
TypeHandleList types(receiver_maps->length());
for (int i = 0; i < receiver_maps->length(); i++) {
types.Add(HeapType::Class(receiver_maps->at(i), isolate));
}
CodeHandleList handlers(receiver_maps->length());
ElementHandlerCompiler compiler(isolate);
compiler.CompileElementHandlers(receiver_maps, &handlers);
PropertyICCompiler ic_compiler(isolate, Code::KEYED_LOAD_IC);
Handle<Code> code = ic_compiler.CompilePolymorphic(
&types, &handlers, isolate->factory()->empty_string(), Code::NORMAL,
ELEMENT);
isolate->counters()->keyed_load_polymorphic_stubs()->Increment();
PolymorphicCodeCache::Update(cache, receiver_maps, flags, code);
return code;
}
Handle<Code> PropertyICCompiler::ComputePolymorphic(
Code::Kind kind, TypeHandleList* types, CodeHandleList* handlers,
int valid_types, Handle<Name> name, ExtraICState extra_ic_state) {
Handle<Code> handler = handlers->at(0);
Code::StubType type = valid_types == 1 ? handler->type() : Code::NORMAL;
DCHECK(kind == Code::LOAD_IC || kind == Code::STORE_IC);
PropertyICCompiler ic_compiler(name->GetIsolate(), kind, extra_ic_state);
return ic_compiler.CompilePolymorphic(types, handlers, name, type, PROPERTY);
}
Handle<Code> PropertyICCompiler::ComputeKeyedStorePolymorphic(
MapHandleList* receiver_maps, KeyedAccessStoreMode store_mode,
StrictMode strict_mode) {
Isolate* isolate = receiver_maps->at(0)->GetIsolate();
DCHECK(store_mode == STANDARD_STORE ||
store_mode == STORE_AND_GROW_NO_TRANSITION ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW);
Handle<PolymorphicCodeCache> cache =
isolate->factory()->polymorphic_code_cache();
ExtraICState extra_state = KeyedStoreIC::ComputeExtraICState(
strict_mode, store_mode);
Code::Flags flags =
Code::ComputeFlags(Code::KEYED_STORE_IC, POLYMORPHIC, extra_state);
Handle<Object> probe = cache->Lookup(receiver_maps, flags);
if (probe->IsCode()) return Handle<Code>::cast(probe);
PropertyICCompiler compiler(isolate, Code::KEYED_STORE_IC, extra_state);
Handle<Code> code =
compiler.CompileKeyedStorePolymorphic(receiver_maps, store_mode);
PolymorphicCodeCache::Update(cache, receiver_maps, flags, code);
return code;
}
void StubCache::Clear() {
Code* empty = isolate_->builtins()->builtin(Builtins::kIllegal);
for (int i = 0; i < kPrimaryTableSize; i++) {
primary_[i].key = isolate()->heap()->empty_string();
primary_[i].map = NULL;
primary_[i].value = empty;
}
for (int j = 0; j < kSecondaryTableSize; j++) {
secondary_[j].key = isolate()->heap()->empty_string();
secondary_[j].map = NULL;
secondary_[j].value = empty;
}
}
void StubCache::CollectMatchingMaps(SmallMapList* types,
Handle<Name> name,
Code::Flags flags,
Handle<Context> native_context,
Zone* zone) {
for (int i = 0; i < kPrimaryTableSize; i++) {
if (primary_[i].key == *name) {
Map* map = primary_[i].map;
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
int offset = PrimaryOffset(*name, flags, map);
if (entry(primary_, offset) == &primary_[i] &&
!TypeFeedbackOracle::CanRetainOtherContext(map, *native_context)) {
types->AddMapIfMissing(Handle<Map>(map), zone);
}
}
}
for (int i = 0; i < kSecondaryTableSize; i++) {
if (secondary_[i].key == *name) {
Map* map = secondary_[i].map;
// Map can be NULL, if the stub is constant function call
// with a primitive receiver.
if (map == NULL) continue;
// Lookup in primary table and skip duplicates.
int primary_offset = PrimaryOffset(*name, flags, map);
// Lookup in secondary table and add matches.
int offset = SecondaryOffset(*name, flags, primary_offset);
if (entry(secondary_, offset) == &secondary_[i] &&
!TypeFeedbackOracle::CanRetainOtherContext(map, *native_context)) {
types->AddMapIfMissing(Handle<Map>(map), zone);
}
}
}
}
// ------------------------------------------------------------------------
// StubCompiler implementation.
RUNTIME_FUNCTION(StoreCallbackProperty) {
Handle<JSObject> receiver = args.at<JSObject>(0);
Handle<JSObject> holder = args.at<JSObject>(1);
Handle<ExecutableAccessorInfo> callback = args.at<ExecutableAccessorInfo>(2);
Handle<Name> name = args.at<Name>(3);
Handle<Object> value = args.at<Object>(4);
HandleScope scope(isolate);
DCHECK(callback->IsCompatibleReceiver(*receiver));
Address setter_address = v8::ToCData<Address>(callback->setter());
v8::AccessorSetterCallback fun =
FUNCTION_CAST<v8::AccessorSetterCallback>(setter_address);
DCHECK(fun != NULL);
// TODO(rossberg): Support symbols in the API.
if (name->IsSymbol()) return *value;
Handle<String> str = Handle<String>::cast(name);
LOG(isolate, ApiNamedPropertyAccess("store", *receiver, *name));
PropertyCallbackArguments custom_args(isolate, callback->data(), *receiver,
*holder);
custom_args.Call(fun, v8::Utils::ToLocal(str), v8::Utils::ToLocal(value));
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return *value;
}
/**
* Attempts to load a property with an interceptor (which must be present),
* but doesn't search the prototype chain.
*
* Returns |Heap::no_interceptor_result_sentinel()| if interceptor doesn't
* provide any value for the given name.
*/
RUNTIME_FUNCTION(LoadPropertyWithInterceptorOnly) {
DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength);
Handle<Name> name_handle =
args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex);
Handle<InterceptorInfo> interceptor_info = args.at<InterceptorInfo>(
NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex);
// TODO(rossberg): Support symbols in the API.
if (name_handle->IsSymbol())
return isolate->heap()->no_interceptor_result_sentinel();
Handle<String> name = Handle<String>::cast(name_handle);
Address getter_address = v8::ToCData<Address>(interceptor_info->getter());
v8::NamedPropertyGetterCallback getter =
FUNCTION_CAST<v8::NamedPropertyGetterCallback>(getter_address);
DCHECK(getter != NULL);
Handle<JSObject> receiver =
args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex);
Handle<JSObject> holder =
args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex);
PropertyCallbackArguments callback_args(
isolate, interceptor_info->data(), *receiver, *holder);
{
// Use the interceptor getter.
HandleScope scope(isolate);
v8::Handle<v8::Value> r =
callback_args.Call(getter, v8::Utils::ToLocal(name));
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
if (!r.IsEmpty()) {
Handle<Object> result = v8::Utils::OpenHandle(*r);
result->VerifyApiCallResultType();
return *v8::Utils::OpenHandle(*r);
}
}
return isolate->heap()->no_interceptor_result_sentinel();
}
static Object* ThrowReferenceError(Isolate* isolate, Name* name) {
// If the load is non-contextual, just return the undefined result.
// Note that both keyed and non-keyed loads may end up here.
HandleScope scope(isolate);
LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
if (ic.contextual_mode() != CONTEXTUAL) {
return isolate->heap()->undefined_value();
}
// Throw a reference error.
Handle<Name> name_handle(name);
Handle<Object> error =
isolate->factory()->NewReferenceError("not_defined",
HandleVector(&name_handle, 1));
return isolate->Throw(*error);
}
/**
* Loads a property with an interceptor performing post interceptor
* lookup if interceptor failed.
*/
RUNTIME_FUNCTION(LoadPropertyWithInterceptor) {
HandleScope scope(isolate);
DCHECK(args.length() == NamedLoadHandlerCompiler::kInterceptorArgsLength);
Handle<Name> name =
args.at<Name>(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex);
Handle<JSObject> receiver =
args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex);
Handle<JSObject> holder =
args.at<JSObject>(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex);
Handle<Object> result;
LookupIterator it(receiver, name, holder);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, JSObject::GetProperty(&it));
if (it.IsFound()) return *result;
return ThrowReferenceError(isolate, Name::cast(args[0]));
}
RUNTIME_FUNCTION(StorePropertyWithInterceptor) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Handle<JSObject> receiver = args.at<JSObject>(0);
Handle<Name> name = args.at<Name>(1);
Handle<Object> value = args.at<Object>(2);
#ifdef DEBUG
if (receiver->IsJSGlobalProxy()) {
PrototypeIterator iter(isolate, receiver);
DCHECK(iter.IsAtEnd() ||
Handle<JSGlobalObject>::cast(PrototypeIterator::GetCurrent(iter))
->HasNamedInterceptor());
} else {
DCHECK(receiver->HasNamedInterceptor());
}
#endif
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
JSObject::SetProperty(receiver, name, value, ic.strict_mode()));
return *result;
}
RUNTIME_FUNCTION(LoadElementWithInterceptor) {
HandleScope scope(isolate);
Handle<JSObject> receiver = args.at<JSObject>(0);
DCHECK(args.smi_at(1) >= 0);
uint32_t index = args.smi_at(1);
Handle<Object> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
JSObject::GetElementWithInterceptor(receiver, receiver, index));
return *result;
}
Handle<Code> PropertyICCompiler::CompileLoadInitialize(Code::Flags flags) {
LoadIC::GenerateInitialize(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileLoadInitialize");
PROFILE(isolate(),
CodeCreateEvent(Logger::LOAD_INITIALIZE_TAG, *code, 0));
return code;
}
Handle<Code> PropertyICCompiler::CompileLoadPreMonomorphic(Code::Flags flags) {
LoadIC::GeneratePreMonomorphic(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileLoadPreMonomorphic");
PROFILE(isolate(),
CodeCreateEvent(Logger::LOAD_PREMONOMORPHIC_TAG, *code, 0));
return code;
}
Handle<Code> PropertyICCompiler::CompileLoadMegamorphic(Code::Flags flags) {
LoadIC::GenerateMegamorphic(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileLoadMegamorphic");
PROFILE(isolate(),
CodeCreateEvent(Logger::LOAD_MEGAMORPHIC_TAG, *code, 0));
return code;
}
Handle<Code> PropertyICCompiler::CompileStoreInitialize(Code::Flags flags) {
StoreIC::GenerateInitialize(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileStoreInitialize");
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_INITIALIZE_TAG, *code, 0));
return code;
}
Handle<Code> PropertyICCompiler::CompileStorePreMonomorphic(Code::Flags flags) {
StoreIC::GeneratePreMonomorphic(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileStorePreMonomorphic");
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_PREMONOMORPHIC_TAG, *code, 0));
return code;
}
Handle<Code> PropertyICCompiler::CompileStoreGeneric(Code::Flags flags) {
ExtraICState extra_state = Code::ExtractExtraICStateFromFlags(flags);
StrictMode strict_mode = StoreIC::GetStrictMode(extra_state);
StoreIC::GenerateRuntimeSetProperty(masm(), strict_mode);
Handle<Code> code = GetCodeWithFlags(flags, "CompileStoreGeneric");
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_GENERIC_TAG, *code, 0));
return code;
}
Handle<Code> PropertyICCompiler::CompileStoreMegamorphic(Code::Flags flags) {
StoreIC::GenerateMegamorphic(masm());
Handle<Code> code = GetCodeWithFlags(flags, "CompileStoreMegamorphic");
PROFILE(isolate(),
CodeCreateEvent(Logger::STORE_MEGAMORPHIC_TAG, *code, 0));
return code;
}
#undef CALL_LOGGER_TAG
Handle<Code> PropertyAccessCompiler::GetCodeWithFlags(Code::Flags flags,
const char* name) {
// Create code object in the heap.
CodeDesc desc;
masm()->GetCode(&desc);
Handle<Code> code = factory()->NewCode(desc, flags, masm()->CodeObject());
if (code->IsCodeStubOrIC()) code->set_stub_key(CodeStub::NoCacheKey());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_code_stubs) {
OFStream os(stdout);
code->Disassemble(name, os);
}
#endif
return code;
}
Handle<Code> PropertyAccessCompiler::GetCodeWithFlags(Code::Flags flags,
Handle<Name> name) {
return (FLAG_print_code_stubs && !name.is_null() && name->IsString())
? GetCodeWithFlags(flags, Handle<String>::cast(name)->ToCString().get())
: GetCodeWithFlags(flags, NULL);
}
#define __ ACCESS_MASM(masm())
Register NamedLoadHandlerCompiler::FrontendHeader(Register object_reg,
Handle<Name> name,
Label* miss) {
PrototypeCheckType check_type = CHECK_ALL_MAPS;
int function_index = -1;
if (type()->Is(HeapType::String())) {
function_index = Context::STRING_FUNCTION_INDEX;
} else if (type()->Is(HeapType::Symbol())) {
function_index = Context::SYMBOL_FUNCTION_INDEX;
} else if (type()->Is(HeapType::Number())) {
function_index = Context::NUMBER_FUNCTION_INDEX;
} else if (type()->Is(HeapType::Boolean())) {
function_index = Context::BOOLEAN_FUNCTION_INDEX;
} else {
check_type = SKIP_RECEIVER;
}
if (check_type == CHECK_ALL_MAPS) {
GenerateDirectLoadGlobalFunctionPrototype(
masm(), function_index, scratch1(), miss);
Object* function = isolate()->native_context()->get(function_index);
Object* prototype = JSFunction::cast(function)->instance_prototype();
set_type_for_object(handle(prototype, isolate()));
object_reg = scratch1();
}
// Check that the maps starting from the prototype haven't changed.
return CheckPrototypes(object_reg, scratch1(), scratch2(), scratch3(), name,
miss, check_type);
}
// Frontend for store uses the name register. It has to be restored before a
// miss.
Register NamedStoreHandlerCompiler::FrontendHeader(Register object_reg,
Handle<Name> name,
Label* miss) {
return CheckPrototypes(object_reg, this->name(), scratch1(), scratch2(), name,
miss, SKIP_RECEIVER);
}
bool PropertyICCompiler::IncludesNumberType(TypeHandleList* types) {
for (int i = 0; i < types->length(); ++i) {
if (types->at(i)->Is(HeapType::Number())) return true;
}
return false;
}
Register PropertyHandlerCompiler::Frontend(Register object_reg,
Handle<Name> name) {
Label miss;
Register reg = FrontendHeader(object_reg, name, &miss);
FrontendFooter(name, &miss);
return reg;
}
void PropertyHandlerCompiler::NonexistentFrontendHeader(Handle<Name> name,
Label* miss,
Register scratch1,
Register scratch2) {
Register holder_reg;
Handle<Map> last_map;
if (holder().is_null()) {
holder_reg = receiver();
last_map = IC::TypeToMap(*type(), isolate());
// If |type| has null as its prototype, |holder()| is
// Handle<JSObject>::null().
DCHECK(last_map->prototype() == isolate()->heap()->null_value());
} else {
holder_reg = FrontendHeader(receiver(), name, miss);
last_map = handle(holder()->map());
}
if (last_map->is_dictionary_map()) {
if (last_map->IsJSGlobalObjectMap()) {
Handle<JSGlobalObject> global =
holder().is_null()
? Handle<JSGlobalObject>::cast(type()->AsConstant()->Value())
: Handle<JSGlobalObject>::cast(holder());
GenerateCheckPropertyCell(masm(), global, name, scratch1, miss);
} else {
if (!name->IsUniqueName()) {
DCHECK(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
DCHECK(holder().is_null() ||
holder()->property_dictionary()->FindEntry(name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, holder_reg, name, scratch1,
scratch2);
}
}
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadField(Handle<Name> name,
FieldIndex field) {
Register reg = Frontend(receiver(), name);
__ Move(receiver(), reg);
LoadFieldStub stub(isolate(), field);
GenerateTailCall(masm(), stub.GetCode());
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadConstant(Handle<Name> name,
int constant_index) {
Register reg = Frontend(receiver(), name);
__ Move(receiver(), reg);
LoadConstantStub stub(isolate(), constant_index);
GenerateTailCall(masm(), stub.GetCode());
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadNonexistent(
Handle<Name> name) {
Label miss;
NonexistentFrontendHeader(name, &miss, scratch2(), scratch3());
GenerateLoadConstant(isolate()->factory()->undefined_value());
FrontendFooter(name, &miss);
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadCallback(
Handle<Name> name, Handle<ExecutableAccessorInfo> callback) {
Register reg = Frontend(receiver(), name);
GenerateLoadCallback(reg, callback);
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadCallback(
Handle<Name> name, const CallOptimization& call_optimization) {
DCHECK(call_optimization.is_simple_api_call());
Frontend(receiver(), name);
Handle<Map> receiver_map = IC::TypeToMap(*type(), isolate());
GenerateFastApiCall(
masm(), call_optimization, receiver_map,
receiver(), scratch1(), false, 0, NULL);
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadInterceptor(
Handle<Name> name) {
// Perform a lookup after the interceptor.
LookupResult lookup(isolate());
holder()->LookupOwnRealNamedProperty(name, &lookup);
if (!lookup.IsFound()) {
PrototypeIterator iter(holder()->GetIsolate(), holder());
if (!iter.IsAtEnd()) {
PrototypeIterator::GetCurrent(iter)->Lookup(name, &lookup);
}
}
Register reg = Frontend(receiver(), name);
// TODO(368): Compile in the whole chain: all the interceptors in
// prototypes and ultimate answer.
GenerateLoadInterceptor(reg, &lookup, name);
return GetCode(kind(), Code::FAST, name);
}
void NamedLoadHandlerCompiler::GenerateLoadPostInterceptor(
Register interceptor_reg, Handle<Name> name, LookupResult* lookup) {
Handle<JSObject> real_named_property_holder(lookup->holder());
set_type_for_object(holder());
set_holder(real_named_property_holder);
Register reg = Frontend(interceptor_reg, name);
if (lookup->IsField()) {
__ Move(receiver(), reg);
LoadFieldStub stub(isolate(), lookup->GetFieldIndex());
GenerateTailCall(masm(), stub.GetCode());
} else {
DCHECK(lookup->type() == CALLBACKS);
Handle<ExecutableAccessorInfo> callback(
ExecutableAccessorInfo::cast(lookup->GetCallbackObject()));
DCHECK(callback->getter() != NULL);
GenerateLoadCallback(reg, callback);
}
}
Handle<Code> PropertyICCompiler::CompileMonomorphic(Handle<HeapType> type,
Handle<Code> handler,
Handle<Name> name,
IcCheckType check) {
TypeHandleList types(1);
CodeHandleList handlers(1);
types.Add(type);
handlers.Add(handler);
Code::StubType stub_type = handler->type();
return CompilePolymorphic(&types, &handlers, name, stub_type, check);
}
Handle<Code> NamedLoadHandlerCompiler::CompileLoadViaGetter(
Handle<Name> name, Handle<JSFunction> getter) {
Frontend(receiver(), name);
GenerateLoadViaGetter(masm(), type(), receiver(), getter);
return GetCode(kind(), Code::FAST, name);
}
// TODO(verwaest): Cleanup. holder() is actually the receiver.
Handle<Code> NamedStoreHandlerCompiler::CompileStoreTransition(
Handle<Map> transition, Handle<Name> name) {
Label miss, slow;
// Ensure no transitions to deprecated maps are followed.
__ CheckMapDeprecated(transition, scratch1(), &miss);
// Check that we are allowed to write this.
bool is_nonexistent = holder()->map() == transition->GetBackPointer();
if (is_nonexistent) {
// Find the top object.
Handle<JSObject> last;
PrototypeIterator iter(isolate(), holder());
while (!iter.IsAtEnd()) {
last = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
iter.Advance();
}
if (!last.is_null()) set_holder(last);
NonexistentFrontendHeader(name, &miss, scratch1(), scratch2());
} else {
FrontendHeader(receiver(), name, &miss);
DCHECK(holder()->HasFastProperties());
}
GenerateStoreTransition(transition, name, receiver(), this->name(), value(),
scratch1(), scratch2(), scratch3(), &miss, &slow);
GenerateRestoreName(&miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
GenerateRestoreName(&slow, name);
TailCallBuiltin(masm(), SlowBuiltin(kind()));
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreField(LookupResult* lookup,
Handle<Name> name) {
Label miss;
GenerateStoreField(lookup, value(), &miss);
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreViaSetter(
Handle<JSObject> object, Handle<Name> name, Handle<JSFunction> setter) {
Frontend(receiver(), name);
GenerateStoreViaSetter(masm(), type(), receiver(), setter);
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
Handle<JSObject> object, Handle<Name> name,
const CallOptimization& call_optimization) {
Frontend(receiver(), name);
Register values[] = { value() };
GenerateFastApiCall(
masm(), call_optimization, handle(object->map()),
receiver(), scratch1(), true, 1, values);
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> PropertyICCompiler::CompileKeyedStoreMonomorphic(
Handle<Map> receiver_map, KeyedAccessStoreMode store_mode) {
ElementsKind elements_kind = receiver_map->elements_kind();
bool is_jsarray = receiver_map->instance_type() == JS_ARRAY_TYPE;
Handle<Code> stub;
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements() ||
receiver_map->has_fixed_typed_array_elements()) {
stub = StoreFastElementStub(isolate(), is_jsarray, elements_kind,
store_mode).GetCode();
} else {
stub = StoreElementStub(isolate(), is_jsarray, elements_kind, store_mode)
.GetCode();
}
__ DispatchMap(receiver(), scratch1(), receiver_map, stub, DO_SMI_CHECK);
TailCallBuiltin(masm(), Builtins::kKeyedStoreIC_Miss);
return GetCode(kind(), Code::NORMAL, factory()->empty_string());
}
#undef __
void PropertyAccessCompiler::TailCallBuiltin(MacroAssembler* masm,
Builtins::Name name) {
Handle<Code> code(masm->isolate()->builtins()->builtin(name));
GenerateTailCall(masm, code);
}
Register* PropertyAccessCompiler::GetCallingConvention(Code::Kind kind) {
if (kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC) {
return load_calling_convention();
}
DCHECK(kind == Code::STORE_IC || kind == Code::KEYED_STORE_IC);
return store_calling_convention();
}
Handle<Code> PropertyICCompiler::GetCode(Code::Kind kind, Code::StubType type,
Handle<Name> name,
InlineCacheState state) {
Code::Flags flags =
Code::ComputeFlags(kind, state, extra_ic_state_, type, cache_holder());
Handle<Code> code = GetCodeWithFlags(flags, name);
IC::RegisterWeakMapDependency(code);
PROFILE(isolate(), CodeCreateEvent(log_kind(code), *code, *name));
return code;
}
Handle<Code> PropertyHandlerCompiler::GetCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name) {
Code::Flags flags = Code::ComputeHandlerFlags(kind, type, cache_holder());
Handle<Code> code = GetCodeWithFlags(flags, name);
PROFILE(isolate(), CodeCreateEvent(Logger::STUB_TAG, *code, *name));
return code;
}
void ElementHandlerCompiler::CompileElementHandlers(
MapHandleList* receiver_maps, CodeHandleList* handlers) {
for (int i = 0; i < receiver_maps->length(); ++i) {
Handle<Map> receiver_map = receiver_maps->at(i);
Handle<Code> cached_stub;
if ((receiver_map->instance_type() & kNotStringTag) == 0) {
cached_stub = isolate()->builtins()->KeyedLoadIC_String();
} else if (receiver_map->instance_type() < FIRST_JS_RECEIVER_TYPE) {
cached_stub = isolate()->builtins()->KeyedLoadIC_Slow();
} else {
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
ElementsKind elements_kind = receiver_map->elements_kind();
if (IsFastElementsKind(elements_kind) ||
IsExternalArrayElementsKind(elements_kind) ||
IsFixedTypedArrayElementsKind(elements_kind)) {
cached_stub = LoadFastElementStub(isolate(), is_js_array, elements_kind)
.GetCode();
} else if (elements_kind == SLOPPY_ARGUMENTS_ELEMENTS) {
cached_stub = isolate()->builtins()->KeyedLoadIC_SloppyArguments();
} else {
DCHECK(elements_kind == DICTIONARY_ELEMENTS);
cached_stub = LoadDictionaryElementStub(isolate()).GetCode();
}
}
handlers->Add(cached_stub);
}
}
Handle<Code> PropertyICCompiler::CompileKeyedStorePolymorphic(
MapHandleList* receiver_maps, KeyedAccessStoreMode store_mode) {
// Collect MONOMORPHIC stubs for all |receiver_maps|.
CodeHandleList handlers(receiver_maps->length());
MapHandleList transitioned_maps(receiver_maps->length());
for (int i = 0; i < receiver_maps->length(); ++i) {
Handle<Map> receiver_map(receiver_maps->at(i));
Handle<Code> cached_stub;
Handle<Map> transitioned_map =
receiver_map->FindTransitionedMap(receiver_maps);
// TODO(mvstanton): The code below is doing pessimistic elements
// transitions. I would like to stop doing that and rely on Allocation Site
// Tracking to do a better job of ensuring the data types are what they need
// to be. Not all the elements are in place yet, pessimistic elements
// transitions are still important for performance.
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
ElementsKind elements_kind = receiver_map->elements_kind();
if (!transitioned_map.is_null()) {
cached_stub =
ElementsTransitionAndStoreStub(isolate(), elements_kind,
transitioned_map->elements_kind(),
is_js_array, store_mode).GetCode();
} else if (receiver_map->instance_type() < FIRST_JS_RECEIVER_TYPE) {
cached_stub = isolate()->builtins()->KeyedStoreIC_Slow();
} else {
if (receiver_map->has_fast_elements() ||
receiver_map->has_external_array_elements() ||
receiver_map->has_fixed_typed_array_elements()) {
cached_stub = StoreFastElementStub(isolate(), is_js_array,
elements_kind, store_mode).GetCode();
} else {
cached_stub = StoreElementStub(isolate(), is_js_array, elements_kind,
store_mode).GetCode();
}
}
DCHECK(!cached_stub.is_null());
handlers.Add(cached_stub);
transitioned_maps.Add(transitioned_map);
}
Handle<Code> code = CompileKeyedStorePolymorphic(receiver_maps, &handlers,
&transitioned_maps);
isolate()->counters()->keyed_store_polymorphic_stubs()->Increment();
PROFILE(isolate(), CodeCreateEvent(log_kind(code), *code, 0));
return code;
}
void ElementHandlerCompiler::GenerateStoreDictionaryElement(
MacroAssembler* masm) {
KeyedStoreIC::GenerateSlow(masm);
}
CallOptimization::CallOptimization(LookupResult* lookup) {
if (lookup->IsFound() &&
lookup->IsCacheable() &&
lookup->IsConstantFunction()) {
// We only optimize constant function calls.
Initialize(Handle<JSFunction>(lookup->GetConstantFunction()));
} else {
Initialize(Handle<JSFunction>::null());
}
}
CallOptimization::CallOptimization(Handle<JSFunction> function) {
Initialize(function);
}
Handle<JSObject> CallOptimization::LookupHolderOfExpectedType(
Handle<Map> object_map,
HolderLookup* holder_lookup) const {
DCHECK(is_simple_api_call());
if (!object_map->IsJSObjectMap()) {
*holder_lookup = kHolderNotFound;
return Handle<JSObject>::null();
}
if (expected_receiver_type_.is_null() ||
expected_receiver_type_->IsTemplateFor(*object_map)) {
*holder_lookup = kHolderIsReceiver;
return Handle<JSObject>::null();
}
while (true) {
if (!object_map->prototype()->IsJSObject()) break;
Handle<JSObject> prototype(JSObject::cast(object_map->prototype()));
if (!prototype->map()->is_hidden_prototype()) break;
object_map = handle(prototype->map());
if (expected_receiver_type_->IsTemplateFor(*object_map)) {
*holder_lookup = kHolderFound;
return prototype;
}
}
*holder_lookup = kHolderNotFound;
return Handle<JSObject>::null();
}
bool CallOptimization::IsCompatibleReceiver(Handle<Object> receiver,
Handle<JSObject> holder) const {
DCHECK(is_simple_api_call());
if (!receiver->IsJSObject()) return false;
Handle<Map> map(JSObject::cast(*receiver)->map());
HolderLookup holder_lookup;
Handle<JSObject> api_holder =
LookupHolderOfExpectedType(map, &holder_lookup);
switch (holder_lookup) {
case kHolderNotFound:
return false;
case kHolderIsReceiver:
return true;
case kHolderFound:
if (api_holder.is_identical_to(holder)) return true;
// Check if holder is in prototype chain of api_holder.
{
JSObject* object = *api_holder;
while (true) {
Object* prototype = object->map()->prototype();
if (!prototype->IsJSObject()) return false;
if (prototype == *holder) return true;
object = JSObject::cast(prototype);
}
}
break;
}
UNREACHABLE();
return false;
}
void CallOptimization::Initialize(Handle<JSFunction> function) {
constant_function_ = Handle<JSFunction>::null();
is_simple_api_call_ = false;
expected_receiver_type_ = Handle<FunctionTemplateInfo>::null();
api_call_info_ = Handle<CallHandlerInfo>::null();
if (function.is_null() || !function->is_compiled()) return;
constant_function_ = function;
AnalyzePossibleApiFunction(function);
}
void CallOptimization::AnalyzePossibleApiFunction(Handle<JSFunction> function) {
if (!function->shared()->IsApiFunction()) return;
Handle<FunctionTemplateInfo> info(function->shared()->get_api_func_data());
// Require a C++ callback.
if (info->call_code()->IsUndefined()) return;
api_call_info_ =
Handle<CallHandlerInfo>(CallHandlerInfo::cast(info->call_code()));
// Accept signatures that either have no restrictions at all or
// only have restrictions on the receiver.
if (!info->signature()->IsUndefined()) {
Handle<SignatureInfo> signature =
Handle<SignatureInfo>(SignatureInfo::cast(info->signature()));
if (!signature->args()->IsUndefined()) return;
if (!signature->receiver()->IsUndefined()) {
expected_receiver_type_ =
Handle<FunctionTemplateInfo>(
FunctionTemplateInfo::cast(signature->receiver()));
}
}
is_simple_api_call_ = true;
}
} } // namespace v8::internal