blob: 76bb1b54e7a859137f2489d0838e43f737d851ab [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_ARM64
#include "code-stubs.h"
#include "codegen.h"
#include "compiler.h"
#include "debug.h"
#include "full-codegen.h"
#include "isolate-inl.h"
#include "parser.h"
#include "scopes.h"
#include "stub-cache.h"
#include "arm64/code-stubs-arm64.h"
#include "arm64/macro-assembler-arm64.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
class JumpPatchSite BASE_EMBEDDED {
public:
explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm), reg_(NoReg) {
#ifdef DEBUG
info_emitted_ = false;
#endif
}
~JumpPatchSite() {
if (patch_site_.is_bound()) {
ASSERT(info_emitted_);
} else {
ASSERT(reg_.IsNone());
}
}
void EmitJumpIfNotSmi(Register reg, Label* target) {
// This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
InstructionAccurateScope scope(masm_, 1);
ASSERT(!info_emitted_);
ASSERT(reg.Is64Bits());
ASSERT(!reg.Is(csp));
reg_ = reg;
__ bind(&patch_site_);
__ tbz(xzr, 0, target); // Always taken before patched.
}
void EmitJumpIfSmi(Register reg, Label* target) {
// This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
InstructionAccurateScope scope(masm_, 1);
ASSERT(!info_emitted_);
ASSERT(reg.Is64Bits());
ASSERT(!reg.Is(csp));
reg_ = reg;
__ bind(&patch_site_);
__ tbnz(xzr, 0, target); // Never taken before patched.
}
void EmitJumpIfEitherNotSmi(Register reg1, Register reg2, Label* target) {
UseScratchRegisterScope temps(masm_);
Register temp = temps.AcquireX();
__ Orr(temp, reg1, reg2);
EmitJumpIfNotSmi(temp, target);
}
void EmitPatchInfo() {
Assembler::BlockPoolsScope scope(masm_);
InlineSmiCheckInfo::Emit(masm_, reg_, &patch_site_);
#ifdef DEBUG
info_emitted_ = true;
#endif
}
private:
MacroAssembler* masm_;
Label patch_site_;
Register reg_;
#ifdef DEBUG
bool info_emitted_;
#endif
};
static void EmitStackCheck(MacroAssembler* masm_,
int pointers = 0,
Register scratch = jssp) {
Isolate* isolate = masm_->isolate();
Label ok;
ASSERT(jssp.Is(__ StackPointer()));
ASSERT(scratch.Is(jssp) == (pointers == 0));
Heap::RootListIndex index;
if (pointers != 0) {
__ Sub(scratch, jssp, pointers * kPointerSize);
index = Heap::kRealStackLimitRootIndex;
} else {
index = Heap::kStackLimitRootIndex;
}
__ CompareRoot(scratch, index);
__ B(hs, &ok);
PredictableCodeSizeScope predictable(masm_,
Assembler::kCallSizeWithRelocation);
__ Call(isolate->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
__ Bind(&ok);
}
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right. The actual
// argument count matches the formal parameter count expected by the
// function.
//
// The live registers are:
// - x1: the JS function object being called (i.e. ourselves).
// - cp: our context.
// - fp: our caller's frame pointer.
// - jssp: stack pointer.
// - lr: return address.
//
// The function builds a JS frame. See JavaScriptFrameConstants in
// frames-arm.h for its layout.
void FullCodeGenerator::Generate() {
CompilationInfo* info = info_;
handler_table_ =
isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
InitializeFeedbackVector();
profiling_counter_ = isolate()->factory()->NewCell(
Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
SetFunctionPosition(function());
Comment cmnt(masm_, "[ Function compiled by full code generator");
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
__ Debug("stop-at", __LINE__, BREAK);
}
#endif
// Sloppy mode functions and builtins need to replace the receiver with the
// global proxy when called as functions (without an explicit receiver
// object).
if (info->strict_mode() == SLOPPY && !info->is_native()) {
Label ok;
int receiver_offset = info->scope()->num_parameters() * kXRegSize;
__ Peek(x10, receiver_offset);
__ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
__ Ldr(x10, GlobalObjectMemOperand());
__ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalReceiverOffset));
__ Poke(x10, receiver_offset);
__ Bind(&ok);
}
// Open a frame scope to indicate that there is a frame on the stack.
// The MANUAL indicates that the scope shouldn't actually generate code
// to set up the frame because we do it manually below.
FrameScope frame_scope(masm_, StackFrame::MANUAL);
// This call emits the following sequence in a way that can be patched for
// code ageing support:
// Push(lr, fp, cp, x1);
// Add(fp, jssp, 2 * kPointerSize);
info->set_prologue_offset(masm_->pc_offset());
__ Prologue(BUILD_FUNCTION_FRAME);
info->AddNoFrameRange(0, masm_->pc_offset());
// Reserve space on the stack for locals.
{ Comment cmnt(masm_, "[ Allocate locals");
int locals_count = info->scope()->num_stack_slots();
// Generators allocate locals, if any, in context slots.
ASSERT(!info->function()->is_generator() || locals_count == 0);
if (locals_count > 0) {
if (locals_count >= 128) {
EmitStackCheck(masm_, locals_count, x10);
}
__ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
if (FLAG_optimize_for_size) {
__ PushMultipleTimes(x10 , locals_count);
} else {
const int kMaxPushes = 32;
if (locals_count >= kMaxPushes) {
int loop_iterations = locals_count / kMaxPushes;
__ Mov(x3, loop_iterations);
Label loop_header;
__ Bind(&loop_header);
// Do pushes.
__ PushMultipleTimes(x10 , kMaxPushes);
__ Subs(x3, x3, 1);
__ B(ne, &loop_header);
}
int remaining = locals_count % kMaxPushes;
// Emit the remaining pushes.
__ PushMultipleTimes(x10 , remaining);
}
}
}
bool function_in_register_x1 = true;
int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
// Argument to NewContext is the function, which is still in x1.
Comment cmnt(masm_, "[ Allocate context");
if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
__ Mov(x10, Operand(info->scope()->GetScopeInfo()));
__ Push(x1, x10);
__ CallRuntime(Runtime::kHiddenNewGlobalContext, 2);
} else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
__ CallStub(&stub);
} else {
__ Push(x1);
__ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
}
function_in_register_x1 = false;
// Context is returned in x0. It replaces the context passed to us.
// It's saved in the stack and kept live in cp.
__ Mov(cp, x0);
__ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = info->scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ Ldr(x10, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextMemOperand(cp, var->index());
__ Str(x10, target);
// Update the write barrier.
__ RecordWriteContextSlot(
cp, target.offset(), x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
}
}
}
Variable* arguments = scope()->arguments();
if (arguments != NULL) {
// Function uses arguments object.
Comment cmnt(masm_, "[ Allocate arguments object");
if (!function_in_register_x1) {
// Load this again, if it's used by the local context below.
__ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ Mov(x3, x1);
}
// Receiver is just before the parameters on the caller's stack.
int num_parameters = info->scope()->num_parameters();
int offset = num_parameters * kPointerSize;
__ Add(x2, fp, StandardFrameConstants::kCallerSPOffset + offset);
__ Mov(x1, Smi::FromInt(num_parameters));
__ Push(x3, x2, x1);
// Arguments to ArgumentsAccessStub:
// function, receiver address, parameter count.
// The stub will rewrite receiver and parameter count if the previous
// stack frame was an arguments adapter frame.
ArgumentsAccessStub::Type type;
if (strict_mode() == STRICT) {
type = ArgumentsAccessStub::NEW_STRICT;
} else if (function()->has_duplicate_parameters()) {
type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
} else {
type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
}
ArgumentsAccessStub stub(type);
__ CallStub(&stub);
SetVar(arguments, x0, x1, x2);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
// Visit the declarations and body unless there is an illegal
// redeclaration.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ Declarations");
scope()->VisitIllegalRedeclaration(this);
} else {
PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
{ Comment cmnt(masm_, "[ Declarations");
if (scope()->is_function_scope() && scope()->function() != NULL) {
VariableDeclaration* function = scope()->function();
ASSERT(function->proxy()->var()->mode() == CONST ||
function->proxy()->var()->mode() == CONST_LEGACY);
ASSERT(function->proxy()->var()->location() != Variable::UNALLOCATED);
VisitVariableDeclaration(function);
}
VisitDeclarations(scope()->declarations());
}
}
{ Comment cmnt(masm_, "[ Stack check");
PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
EmitStackCheck(masm_);
}
{ Comment cmnt(masm_, "[ Body");
ASSERT(loop_depth() == 0);
VisitStatements(function()->body());
ASSERT(loop_depth() == 0);
}
// Always emit a 'return undefined' in case control fell off the end of
// the body.
{ Comment cmnt(masm_, "[ return <undefined>;");
__ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
}
EmitReturnSequence();
// Force emission of the pools, so they don't get emitted in the middle
// of the back edge table.
masm()->CheckVeneerPool(true, false);
masm()->CheckConstPool(true, false);
}
void FullCodeGenerator::ClearAccumulator() {
__ Mov(x0, Smi::FromInt(0));
}
void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
__ Mov(x2, Operand(profiling_counter_));
__ Ldr(x3, FieldMemOperand(x2, Cell::kValueOffset));
__ Subs(x3, x3, Smi::FromInt(delta));
__ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
}
void FullCodeGenerator::EmitProfilingCounterReset() {
int reset_value = FLAG_interrupt_budget;
if (isolate()->IsDebuggerActive()) {
// Detect debug break requests as soon as possible.
reset_value = FLAG_interrupt_budget >> 4;
}
__ Mov(x2, Operand(profiling_counter_));
__ Mov(x3, Smi::FromInt(reset_value));
__ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
}
void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
Label* back_edge_target) {
ASSERT(jssp.Is(__ StackPointer()));
Comment cmnt(masm_, "[ Back edge bookkeeping");
// Block literal pools whilst emitting back edge code.
Assembler::BlockPoolsScope block_const_pool(masm_);
Label ok;
ASSERT(back_edge_target->is_bound());
int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
int weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kCodeSizeMultiplier));
EmitProfilingCounterDecrement(weight);
__ B(pl, &ok);
__ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
// Record a mapping of this PC offset to the OSR id. This is used to find
// the AST id from the unoptimized code in order to use it as a key into
// the deoptimization input data found in the optimized code.
RecordBackEdge(stmt->OsrEntryId());
EmitProfilingCounterReset();
__ Bind(&ok);
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
// Record a mapping of the OSR id to this PC. This is used if the OSR
// entry becomes the target of a bailout. We don't expect it to be, but
// we want it to work if it is.
PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ B(&return_label_);
} else {
__ Bind(&return_label_);
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in x0.
__ Push(result_register());
__ CallRuntime(Runtime::kTraceExit, 1);
ASSERT(x0.Is(result_register()));
}
// Pretend that the exit is a backwards jump to the entry.
int weight = 1;
if (info_->ShouldSelfOptimize()) {
weight = FLAG_interrupt_budget / FLAG_self_opt_count;
} else {
int distance = masm_->pc_offset();
weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kCodeSizeMultiplier));
}
EmitProfilingCounterDecrement(weight);
Label ok;
__ B(pl, &ok);
__ Push(x0);
__ Call(isolate()->builtins()->InterruptCheck(),
RelocInfo::CODE_TARGET);
__ Pop(x0);
EmitProfilingCounterReset();
__ Bind(&ok);
// Make sure that the constant pool is not emitted inside of the return
// sequence. This sequence can get patched when the debugger is used. See
// debug-arm64.cc:BreakLocationIterator::SetDebugBreakAtReturn().
{
InstructionAccurateScope scope(masm_,
Assembler::kJSRetSequenceInstructions);
CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
__ RecordJSReturn();
// This code is generated using Assembler methods rather than Macro
// Assembler methods because it will be patched later on, and so the size
// of the generated code must be consistent.
const Register& current_sp = __ StackPointer();
// Nothing ensures 16 bytes alignment here.
ASSERT(!current_sp.Is(csp));
__ mov(current_sp, fp);
int no_frame_start = masm_->pc_offset();
__ ldp(fp, lr, MemOperand(current_sp, 2 * kXRegSize, PostIndex));
// Drop the arguments and receiver and return.
// TODO(all): This implementation is overkill as it supports 2**31+1
// arguments, consider how to improve it without creating a security
// hole.
__ LoadLiteral(ip0, 3 * kInstructionSize);
__ add(current_sp, current_sp, ip0);
__ ret();
__ dc64(kXRegSize * (info_->scope()->num_parameters() + 1));
info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
}
}
}
void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
}
void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
}
void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
__ Push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
// For simplicity we always test the accumulator register.
codegen()->GetVar(result_register(), var);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
// Root values have no side effects.
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
}
void FullCodeGenerator::StackValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
__ Push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
false_label_);
if (index == Heap::kUndefinedValueRootIndex ||
index == Heap::kNullValueRootIndex ||
index == Heap::kFalseValueRootIndex) {
if (false_label_ != fall_through_) __ B(false_label_);
} else if (index == Heap::kTrueValueRootIndex) {
if (true_label_ != fall_through_) __ B(true_label_);
} else {
__ LoadRoot(result_register(), index);
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Handle<Object> lit) const {
__ Mov(result_register(), Operand(lit));
}
void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
// Immediates cannot be pushed directly.
__ Mov(result_register(), Operand(lit));
__ Push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals.
if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
if (false_label_ != fall_through_) __ B(false_label_);
} else if (lit->IsTrue() || lit->IsJSObject()) {
if (true_label_ != fall_through_) __ B(true_label_);
} else if (lit->IsString()) {
if (String::cast(*lit)->length() == 0) {
if (false_label_ != fall_through_) __ B(false_label_);
} else {
if (true_label_ != fall_through_) __ B(true_label_);
}
} else if (lit->IsSmi()) {
if (Smi::cast(*lit)->value() == 0) {
if (false_label_ != fall_through_) __ B(false_label_);
} else {
if (true_label_ != fall_through_) __ B(true_label_);
}
} else {
// For simplicity we always test the accumulator register.
__ Mov(result_register(), Operand(lit));
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
__ Drop(count);
}
void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
int count,
Register reg) const {
ASSERT(count > 0);
__ Drop(count);
__ Move(result_register(), reg);
}
void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
if (count > 1) __ Drop(count - 1);
__ Poke(reg, 0);
}
void FullCodeGenerator::TestContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
// For simplicity we always test the accumulator register.
__ Drop(count);
__ Mov(result_register(), reg);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
Label* materialize_false) const {
ASSERT(materialize_true == materialize_false);
__ Bind(materialize_true);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ Bind(materialize_true);
__ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
__ B(&done);
__ Bind(materialize_false);
__ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
__ Bind(&done);
}
void FullCodeGenerator::StackValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ Bind(materialize_true);
__ LoadRoot(x10, Heap::kTrueValueRootIndex);
__ B(&done);
__ Bind(materialize_false);
__ LoadRoot(x10, Heap::kFalseValueRootIndex);
__ Bind(&done);
__ Push(x10);
}
void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
Label* materialize_false) const {
ASSERT(materialize_true == true_label_);
ASSERT(materialize_false == false_label_);
}
void FullCodeGenerator::EffectContext::Plug(bool flag) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(result_register(), value_root_index);
}
void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(x10, value_root_index);
__ Push(x10);
}
void FullCodeGenerator::TestContext::Plug(bool flag) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
if (flag) {
if (true_label_ != fall_through_) {
__ B(true_label_);
}
} else {
if (false_label_ != fall_through_) {
__ B(false_label_);
}
}
}
void FullCodeGenerator::DoTest(Expression* condition,
Label* if_true,
Label* if_false,
Label* fall_through) {
Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(ic, condition->test_id());
__ CompareAndSplit(result_register(), 0, ne, if_true, if_false, fall_through);
}
// If (cond), branch to if_true.
// If (!cond), branch to if_false.
// fall_through is used as an optimization in cases where only one branch
// instruction is necessary.
void FullCodeGenerator::Split(Condition cond,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (if_false == fall_through) {
__ B(cond, if_true);
} else if (if_true == fall_through) {
ASSERT(if_false != fall_through);
__ B(InvertCondition(cond), if_false);
} else {
__ B(cond, if_true);
__ B(if_false);
}
}
MemOperand FullCodeGenerator::StackOperand(Variable* var) {
// Offset is negative because higher indexes are at lower addresses.
int offset = -var->index() * kXRegSize;
// Adjust by a (parameter or local) base offset.
if (var->IsParameter()) {
offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
} else {
offset += JavaScriptFrameConstants::kLocal0Offset;
}
return MemOperand(fp, offset);
}
MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
ASSERT(var->IsContextSlot() || var->IsStackAllocated());
if (var->IsContextSlot()) {
int context_chain_length = scope()->ContextChainLength(var->scope());
__ LoadContext(scratch, context_chain_length);
return ContextMemOperand(scratch, var->index());
} else {
return StackOperand(var);
}
}
void FullCodeGenerator::GetVar(Register dest, Variable* var) {
// Use destination as scratch.
MemOperand location = VarOperand(var, dest);
__ Ldr(dest, location);
}
void FullCodeGenerator::SetVar(Variable* var,
Register src,
Register scratch0,
Register scratch1) {
ASSERT(var->IsContextSlot() || var->IsStackAllocated());
ASSERT(!AreAliased(src, scratch0, scratch1));
MemOperand location = VarOperand(var, scratch0);
__ Str(src, location);
// Emit the write barrier code if the location is in the heap.
if (var->IsContextSlot()) {
// scratch0 contains the correct context.
__ RecordWriteContextSlot(scratch0,
location.offset(),
src,
scratch1,
kLRHasBeenSaved,
kDontSaveFPRegs);
}
}
void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
bool should_normalize,
Label* if_true,
Label* if_false) {
// Only prepare for bailouts before splits if we're in a test
// context. Otherwise, we let the Visit function deal with the
// preparation to avoid preparing with the same AST id twice.
if (!context()->IsTest() || !info_->IsOptimizable()) return;
// TODO(all): Investigate to see if there is something to work on here.
Label skip;
if (should_normalize) {
__ B(&skip);
}
PrepareForBailout(expr, TOS_REG);
if (should_normalize) {
__ CompareRoot(x0, Heap::kTrueValueRootIndex);
Split(eq, if_true, if_false, NULL);
__ Bind(&skip);
}
}
void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
// The variable in the declaration always resides in the current function
// context.
ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
if (generate_debug_code_) {
// Check that we're not inside a with or catch context.
__ Ldr(x1, FieldMemOperand(cp, HeapObject::kMapOffset));
__ CompareRoot(x1, Heap::kWithContextMapRootIndex);
__ Check(ne, kDeclarationInWithContext);
__ CompareRoot(x1, Heap::kCatchContextMapRootIndex);
__ Check(ne, kDeclarationInCatchContext);
}
}
void FullCodeGenerator::VisitVariableDeclaration(
VariableDeclaration* declaration) {
// If it was not possible to allocate the variable at compile time, we
// need to "declare" it at runtime to make sure it actually exists in the
// local context.
VariableProxy* proxy = declaration->proxy();
VariableMode mode = declaration->mode();
Variable* variable = proxy->var();
bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
switch (variable->location()) {
case Variable::UNALLOCATED:
globals_->Add(variable->name(), zone());
globals_->Add(variable->binding_needs_init()
? isolate()->factory()->the_hole_value()
: isolate()->factory()->undefined_value(),
zone());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
__ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
__ Str(x10, StackOperand(variable));
}
break;
case Variable::CONTEXT:
if (hole_init) {
Comment cmnt(masm_, "[ VariableDeclaration");
EmitDebugCheckDeclarationContext(variable);
__ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
__ Str(x10, ContextMemOperand(cp, variable->index()));
// No write barrier since the_hole_value is in old space.
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
}
break;
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ VariableDeclaration");
__ Mov(x2, Operand(variable->name()));
// Declaration nodes are always introduced in one of four modes.
ASSERT(IsDeclaredVariableMode(mode));
PropertyAttributes attr = IsImmutableVariableMode(mode) ? READ_ONLY
: NONE;
__ Mov(x1, Smi::FromInt(attr));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (hole_init) {
__ LoadRoot(x0, Heap::kTheHoleValueRootIndex);
__ Push(cp, x2, x1, x0);
} else {
// Pushing 0 (xzr) indicates no initial value.
__ Push(cp, x2, x1, xzr);
}
__ CallRuntime(Runtime::kHiddenDeclareContextSlot, 4);
break;
}
}
}
void FullCodeGenerator::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
globals_->Add(variable->name(), zone());
Handle<SharedFunctionInfo> function =
Compiler::BuildFunctionInfo(declaration->fun(), script());
// Check for stack overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_->Add(function, zone());
break;
}
case Variable::PARAMETER:
case Variable::LOCAL: {
Comment cmnt(masm_, "[ Function Declaration");
VisitForAccumulatorValue(declaration->fun());
__ Str(result_register(), StackOperand(variable));
break;
}
case Variable::CONTEXT: {
Comment cmnt(masm_, "[ Function Declaration");
EmitDebugCheckDeclarationContext(variable);
VisitForAccumulatorValue(declaration->fun());
__ Str(result_register(), ContextMemOperand(cp, variable->index()));
int offset = Context::SlotOffset(variable->index());
// We know that we have written a function, which is not a smi.
__ RecordWriteContextSlot(cp,
offset,
result_register(),
x2,
kLRHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
break;
}
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ Function Declaration");
__ Mov(x2, Operand(variable->name()));
__ Mov(x1, Smi::FromInt(NONE));
__ Push(cp, x2, x1);
// Push initial value for function declaration.
VisitForStackValue(declaration->fun());
__ CallRuntime(Runtime::kHiddenDeclareContextSlot, 4);
break;
}
}
}
void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
Variable* variable = declaration->proxy()->var();
ASSERT(variable->location() == Variable::CONTEXT);
ASSERT(variable->interface()->IsFrozen());
Comment cmnt(masm_, "[ ModuleDeclaration");
EmitDebugCheckDeclarationContext(variable);
// Load instance object.
__ LoadContext(x1, scope_->ContextChainLength(scope_->GlobalScope()));
__ Ldr(x1, ContextMemOperand(x1, variable->interface()->Index()));
__ Ldr(x1, ContextMemOperand(x1, Context::EXTENSION_INDEX));
// Assign it.
__ Str(x1, ContextMemOperand(cp, variable->index()));
// We know that we have written a module, which is not a smi.
__ RecordWriteContextSlot(cp,
Context::SlotOffset(variable->index()),
x1,
x3,
kLRHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
// Traverse info body.
Visit(declaration->module());
}
void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED:
// TODO(rossberg)
break;
case Variable::CONTEXT: {
Comment cmnt(masm_, "[ ImportDeclaration");
EmitDebugCheckDeclarationContext(variable);
// TODO(rossberg)
break;
}
case Variable::PARAMETER:
case Variable::LOCAL:
case Variable::LOOKUP:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
// TODO(rossberg)
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
__ Mov(x11, Operand(pairs));
Register flags = xzr;
if (Smi::FromInt(DeclareGlobalsFlags())) {
flags = x10;
__ Mov(flags, Smi::FromInt(DeclareGlobalsFlags()));
}
__ Push(cp, x11, flags);
__ CallRuntime(Runtime::kHiddenDeclareGlobals, 3);
// Return value is ignored.
}
void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
// Call the runtime to declare the modules.
__ Push(descriptions);
__ CallRuntime(Runtime::kHiddenDeclareModules, 1);
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
ASM_LOCATION("FullCodeGenerator::VisitSwitchStatement");
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForStackValue(stmt->tag());
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
clause->body_target()->Unuse();
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ Bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForAccumulatorValue(clause->label());
// Perform the comparison as if via '==='.
__ Peek(x1, 0); // Switch value.
JumpPatchSite patch_site(masm_);
if (ShouldInlineSmiCase(Token::EQ_STRICT)) {
Label slow_case;
patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
__ Cmp(x1, x0);
__ B(ne, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ B(clause->body_target());
__ Bind(&slow_case);
}
// Record position before stub call for type feedback.
SetSourcePosition(clause->position());
Handle<Code> ic = CompareIC::GetUninitialized(isolate(), Token::EQ_STRICT);
CallIC(ic, clause->CompareId());
patch_site.EmitPatchInfo();
Label skip;
__ B(&skip);
PrepareForBailout(clause, TOS_REG);
__ JumpIfNotRoot(x0, Heap::kTrueValueRootIndex, &next_test);
__ Drop(1);
__ B(clause->body_target());
__ Bind(&skip);
__ Cbnz(x0, &next_test);
__ Drop(1); // Switch value is no longer needed.
__ B(clause->body_target());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ Bind(&next_test);
__ Drop(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ B(nested_statement.break_label());
} else {
__ B(default_clause->body_target());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ Bind(clause->body_target());
PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
VisitStatements(clause->statements());
}
__ Bind(nested_statement.break_label());
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
ASM_LOCATION("FullCodeGenerator::VisitForInStatement");
Comment cmnt(masm_, "[ ForInStatement");
int slot = stmt->ForInFeedbackSlot();
// TODO(all): This visitor probably needs better comments and a revisit.
SetStatementPosition(stmt);
Label loop, exit;
ForIn loop_statement(this, stmt);
increment_loop_depth();
// Get the object to enumerate over. If the object is null or undefined, skip
// over the loop. See ECMA-262 version 5, section 12.6.4.
VisitForAccumulatorValue(stmt->enumerable());
__ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, &exit);
Register null_value = x15;
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
__ Cmp(x0, null_value);
__ B(eq, &exit);
PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
// Convert the object to a JS object.
Label convert, done_convert;
__ JumpIfSmi(x0, &convert);
__ JumpIfObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE, &done_convert, ge);
__ Bind(&convert);
__ Push(x0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ Bind(&done_convert);
__ Push(x0);
// Check for proxies.
Label call_runtime;
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ JumpIfObjectType(x0, x10, x11, LAST_JS_PROXY_TYPE, &call_runtime, le);
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
__ CheckEnumCache(x0, null_value, x10, x11, x12, x13, &call_runtime);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
Label use_cache;
__ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
__ B(&use_cache);
// Get the set of properties to enumerate.
__ Bind(&call_runtime);
__ Push(x0); // Duplicate the enumerable object on the stack.
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
Label fixed_array, no_descriptors;
__ Ldr(x2, FieldMemOperand(x0, HeapObject::kMapOffset));
__ JumpIfNotRoot(x2, Heap::kMetaMapRootIndex, &fixed_array);
// We got a map in register x0. Get the enumeration cache from it.
__ Bind(&use_cache);
__ EnumLengthUntagged(x1, x0);
__ Cbz(x1, &no_descriptors);
__ LoadInstanceDescriptors(x0, x2);
__ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheOffset));
__ Ldr(x2,
FieldMemOperand(x2, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Set up the four remaining stack slots.
__ Push(x0); // Map.
__ Mov(x0, Smi::FromInt(0));
// Push enumeration cache, enumeration cache length (as smi) and zero.
__ SmiTag(x1);
__ Push(x2, x1, x0);
__ B(&loop);
__ Bind(&no_descriptors);
__ Drop(1);
__ B(&exit);
// We got a fixed array in register x0. Iterate through that.
__ Bind(&fixed_array);
Handle<Object> feedback = Handle<Object>(
Smi::FromInt(TypeFeedbackInfo::kForInFastCaseMarker),
isolate());
StoreFeedbackVectorSlot(slot, feedback);
__ LoadObject(x1, FeedbackVector());
__ Mov(x10, Smi::FromInt(TypeFeedbackInfo::kForInSlowCaseMarker));
__ Str(x10, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(slot)));
__ Mov(x1, Smi::FromInt(1)); // Smi indicates slow check.
__ Peek(x10, 0); // Get enumerated object.
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
// TODO(all): similar check was done already. Can we avoid it here?
__ CompareObjectType(x10, x11, x12, LAST_JS_PROXY_TYPE);
ASSERT(Smi::FromInt(0) == 0);
__ CzeroX(x1, le); // Zero indicates proxy.
__ Push(x1, x0); // Smi and array
__ Ldr(x1, FieldMemOperand(x0, FixedArray::kLengthOffset));
__ Push(x1, xzr); // Fixed array length (as smi) and initial index.
// Generate code for doing the condition check.
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
__ Bind(&loop);
// Load the current count to x0, load the length to x1.
__ PeekPair(x0, x1, 0);
__ Cmp(x0, x1); // Compare to the array length.
__ B(hs, loop_statement.break_label());
// Get the current entry of the array into register r3.
__ Peek(x10, 2 * kXRegSize);
__ Add(x10, x10, Operand::UntagSmiAndScale(x0, kPointerSizeLog2));
__ Ldr(x3, MemOperand(x10, FixedArray::kHeaderSize - kHeapObjectTag));
// Get the expected map from the stack or a smi in the
// permanent slow case into register x10.
__ Peek(x2, 3 * kXRegSize);
// Check if the expected map still matches that of the enumerable.
// If not, we may have to filter the key.
Label update_each;
__ Peek(x1, 4 * kXRegSize);
__ Ldr(x11, FieldMemOperand(x1, HeapObject::kMapOffset));
__ Cmp(x11, x2);
__ B(eq, &update_each);
// For proxies, no filtering is done.
// TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
STATIC_ASSERT(kSmiTag == 0);
__ Cbz(x2, &update_each);
// Convert the entry to a string or (smi) 0 if it isn't a property
// any more. If the property has been removed while iterating, we
// just skip it.
__ Push(x1, x3);
__ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
__ Mov(x3, x0);
__ Cbz(x0, loop_statement.continue_label());
// Update the 'each' property or variable from the possibly filtered
// entry in register x3.
__ Bind(&update_each);
__ Mov(result_register(), x3);
// Perform the assignment as if via '='.
{ EffectContext context(this);
EmitAssignment(stmt->each());
}
// Generate code for the body of the loop.
Visit(stmt->body());
// Generate code for going to the next element by incrementing
// the index (smi) stored on top of the stack.
__ Bind(loop_statement.continue_label());
// TODO(all): We could use a callee saved register to avoid popping.
__ Pop(x0);
__ Add(x0, x0, Smi::FromInt(1));
__ Push(x0);
EmitBackEdgeBookkeeping(stmt, &loop);
__ B(&loop);
// Remove the pointers stored on the stack.
__ Bind(loop_statement.break_label());
__ Drop(5);
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ Bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
Comment cmnt(masm_, "[ ForOfStatement");
SetStatementPosition(stmt);
Iteration loop_statement(this, stmt);
increment_loop_depth();
// var iterator = iterable[@@iterator]()
VisitForAccumulatorValue(stmt->assign_iterator());
// As with for-in, skip the loop if the iterator is null or undefined.
Register iterator = x0;
__ JumpIfRoot(iterator, Heap::kUndefinedValueRootIndex,
loop_statement.break_label());
__ JumpIfRoot(iterator, Heap::kNullValueRootIndex,
loop_statement.break_label());
// Convert the iterator to a JS object.
Label convert, done_convert;
__ JumpIfSmi(iterator, &convert);
__ CompareObjectType(iterator, x1, x1, FIRST_SPEC_OBJECT_TYPE);
__ B(ge, &done_convert);
__ Bind(&convert);
__ Push(iterator);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ Bind(&done_convert);
__ Push(iterator);
// Loop entry.
__ Bind(loop_statement.continue_label());
// result = iterator.next()
VisitForEffect(stmt->next_result());
// if (result.done) break;
Label result_not_done;
VisitForControl(stmt->result_done(),
loop_statement.break_label(),
&result_not_done,
&result_not_done);
__ Bind(&result_not_done);
// each = result.value
VisitForEffect(stmt->assign_each());
// Generate code for the body of the loop.
Visit(stmt->body());
// Check stack before looping.
PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
__ B(loop_statement.continue_label());
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ Bind(loop_statement.break_label());
decrement_loop_depth();
}
void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
bool pretenure) {
// Use the fast case closure allocation code that allocates in new space for
// nested functions that don't need literals cloning. If we're running with
// the --always-opt or the --prepare-always-opt flag, we need to use the
// runtime function so that the new function we are creating here gets a
// chance to have its code optimized and doesn't just get a copy of the
// existing unoptimized code.
if (!FLAG_always_opt &&
!FLAG_prepare_always_opt &&
!pretenure &&
scope()->is_function_scope() &&
info->num_literals() == 0) {
FastNewClosureStub stub(info->strict_mode(), info->is_generator());
__ Mov(x2, Operand(info));
__ CallStub(&stub);
} else {
__ Mov(x11, Operand(info));
__ LoadRoot(x10, pretenure ? Heap::kTrueValueRootIndex
: Heap::kFalseValueRootIndex);
__ Push(cp, x11, x10);
__ CallRuntime(Runtime::kHiddenNewClosure, 3);
}
context()->Plug(x0);
}
void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
EmitVariableLoad(expr);
}
void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
TypeofState typeof_state,
Label* slow) {
Register current = cp;
Register next = x10;
Register temp = x11;
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is NULL.
__ Ldr(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
__ Cbnz(temp, slow);
}
// Load next context in chain.
__ Ldr(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
current = next;
}
// If no outer scope calls eval, we do not need to check more
// context extensions.
if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
Label loop, fast;
__ Mov(next, current);
__ Bind(&loop);
// Terminate at native context.
__ Ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
__ JumpIfRoot(temp, Heap::kNativeContextMapRootIndex, &fast);
// Check that extension is NULL.
__ Ldr(temp, ContextMemOperand(next, Context::EXTENSION_INDEX));
__ Cbnz(temp, slow);
// Load next context in chain.
__ Ldr(next, ContextMemOperand(next, Context::PREVIOUS_INDEX));
__ B(&loop);
__ Bind(&fast);
}
__ Ldr(x0, GlobalObjectMemOperand());
__ Mov(x2, Operand(var->name()));
ContextualMode mode = (typeof_state == INSIDE_TYPEOF) ? NOT_CONTEXTUAL
: CONTEXTUAL;
CallLoadIC(mode);
}
MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
Label* slow) {
ASSERT(var->IsContextSlot());
Register context = cp;
Register next = x10;
Register temp = x11;
for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_sloppy_eval()) {
// Check that extension is NULL.
__ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
__ Cbnz(temp, slow);
}
__ Ldr(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
context = next;
}
}
// Check that last extension is NULL.
__ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
__ Cbnz(temp, slow);
// This function is used only for loads, not stores, so it's safe to
// return an cp-based operand (the write barrier cannot be allowed to
// destroy the cp register).
return ContextMemOperand(context, var->index());
}
void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
TypeofState typeof_state,
Label* slow,
Label* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (var->mode() == DYNAMIC_GLOBAL) {
EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
__ B(done);
} else if (var->mode() == DYNAMIC_LOCAL) {
Variable* local = var->local_if_not_shadowed();
__ Ldr(x0, ContextSlotOperandCheckExtensions(local, slow));
if (local->mode() == LET || local->mode() == CONST ||
local->mode() == CONST_LEGACY) {
__ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, done);
if (local->mode() == CONST_LEGACY) {
__ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
} else { // LET || CONST
__ Mov(x0, Operand(var->name()));
__ Push(x0);
__ CallRuntime(Runtime::kHiddenThrowReferenceError, 1);
}
}
__ B(done);
}
}
void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
// Record position before possible IC call.
SetSourcePosition(proxy->position());
Variable* var = proxy->var();
// Three cases: global variables, lookup variables, and all other types of
// variables.
switch (var->location()) {
case Variable::UNALLOCATED: {
Comment cmnt(masm_, "Global variable");
// Use inline caching. Variable name is passed in x2 and the global
// object (receiver) in x0.
__ Ldr(x0, GlobalObjectMemOperand());
__ Mov(x2, Operand(var->name()));
CallLoadIC(CONTEXTUAL);
context()->Plug(x0);
break;
}
case Variable::PARAMETER:
case Variable::LOCAL:
case Variable::CONTEXT: {
Comment cmnt(masm_, var->IsContextSlot()
? "Context variable"
: "Stack variable");
if (var->binding_needs_init()) {
// var->scope() may be NULL when the proxy is located in eval code and
// refers to a potential outside binding. Currently those bindings are
// always looked up dynamically, i.e. in that case
// var->location() == LOOKUP.
// always holds.
ASSERT(var->scope() != NULL);
// Check if the binding really needs an initialization check. The check
// can be skipped in the following situation: we have a LET or CONST
// binding in harmony mode, both the Variable and the VariableProxy have
// the same declaration scope (i.e. they are both in global code, in the
// same function or in the same eval code) and the VariableProxy is in
// the source physically located after the initializer of the variable.
//
// We cannot skip any initialization checks for CONST in non-harmony
// mode because const variables may be declared but never initialized:
// if (false) { const x; }; var y = x;
//
// The condition on the declaration scopes is a conservative check for
// nested functions that access a binding and are called before the
// binding is initialized:
// function() { f(); let x = 1; function f() { x = 2; } }
//
bool skip_init_check;
if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
skip_init_check = false;
} else {
// Check that we always have valid source position.
ASSERT(var->initializer_position() != RelocInfo::kNoPosition);
ASSERT(proxy->position() != RelocInfo::kNoPosition);
skip_init_check = var->mode() != CONST_LEGACY &&
var->initializer_position() < proxy->position();
}
if (!skip_init_check) {
// Let and const need a read barrier.
GetVar(x0, var);
Label done;
__ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, &done);
if (var->mode() == LET || var->mode() == CONST) {
// Throw a reference error when using an uninitialized let/const
// binding in harmony mode.
__ Mov(x0, Operand(var->name()));
__ Push(x0);
__ CallRuntime(Runtime::kHiddenThrowReferenceError, 1);
__ Bind(&done);
} else {
// Uninitalized const bindings outside of harmony mode are unholed.
ASSERT(var->mode() == CONST_LEGACY);
__ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
__ Bind(&done);
}
context()->Plug(x0);
break;
}
}
context()->Plug(var);
break;
}
case Variable::LOOKUP: {
Label done, slow;
// Generate code for loading from variables potentially shadowed by
// eval-introduced variables.
EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
__ Bind(&slow);
Comment cmnt(masm_, "Lookup variable");
__ Mov(x1, Operand(var->name()));
__ Push(cp, x1); // Context and name.
__ CallRuntime(Runtime::kHiddenLoadContextSlot, 2);
__ Bind(&done);
context()->Plug(x0);
break;
}
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
Label materialized;
// Registers will be used as follows:
// x5 = materialized value (RegExp literal)
// x4 = JS function, literals array
// x3 = literal index
// x2 = RegExp pattern
// x1 = RegExp flags
// x0 = RegExp literal clone
__ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ldr(x4, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ Ldr(x5, FieldMemOperand(x4, literal_offset));
__ JumpIfNotRoot(x5, Heap::kUndefinedValueRootIndex, &materialized);
// Create regexp literal using runtime function.
// Result will be in x0.
__ Mov(x3, Smi::FromInt(expr->literal_index()));
__ Mov(x2, Operand(expr->pattern()));
__ Mov(x1, Operand(expr->flags()));
__ Push(x4, x3, x2, x1);
__ CallRuntime(Runtime::kHiddenMaterializeRegExpLiteral, 4);
__ Mov(x5, x0);
__ Bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ Allocate(size, x0, x2, x3, &runtime_allocate, TAG_OBJECT);
__ B(&allocated);
__ Bind(&runtime_allocate);
__ Mov(x10, Smi::FromInt(size));
__ Push(x5, x10);
__ CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1);
__ Pop(x5);
__ Bind(&allocated);
// After this, registers are used as follows:
// x0: Newly allocated regexp.
// x5: Materialized regexp.
// x10, x11, x12: temps.
__ CopyFields(x0, x5, CPURegList(x10, x11, x12), size / kPointerSize);
context()->Plug(x0);
}
void FullCodeGenerator::EmitAccessor(Expression* expression) {
if (expression == NULL) {
__ LoadRoot(x10, Heap::kNullValueRootIndex);
__ Push(x10);
} else {
VisitForStackValue(expression);
}
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
expr->BuildConstantProperties(isolate());
Handle<FixedArray> constant_properties = expr->constant_properties();
__ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ldr(x3, FieldMemOperand(x3, JSFunction::kLiteralsOffset));
__ Mov(x2, Smi::FromInt(expr->literal_index()));
__ Mov(x1, Operand(constant_properties));
int flags = expr->fast_elements()
? ObjectLiteral::kFastElements
: ObjectLiteral::kNoFlags;
flags |= expr->has_function()
? ObjectLiteral::kHasFunction
: ObjectLiteral::kNoFlags;
__ Mov(x0, Smi::FromInt(flags));
int properties_count = constant_properties->length() / 2;
const int max_cloned_properties =
FastCloneShallowObjectStub::kMaximumClonedProperties;
if (expr->may_store_doubles() || expr->depth() > 1 || Serializer::enabled() ||
flags != ObjectLiteral::kFastElements ||
properties_count > max_cloned_properties) {
__ Push(x3, x2, x1, x0);
__ CallRuntime(Runtime::kHiddenCreateObjectLiteral, 4);
} else {
FastCloneShallowObjectStub stub(properties_count);
__ CallStub(&stub);
}
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in x0.
bool result_saved = false;
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
expr->CalculateEmitStore(zone());
AccessorTable accessor_table(zone());
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ Push(x0); // Save result on stack
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->value()->IsInternalizedString()) {
if (property->emit_store()) {
VisitForAccumulatorValue(value);
__ Mov(x2, Operand(key->value()));
__ Peek(x1, 0);
CallStoreIC(key->LiteralFeedbackId());
PrepareForBailoutForId(key->id(), NO_REGISTERS);
} else {
VisitForEffect(value);
}
break;
}
if (property->emit_store()) {
// Duplicate receiver on stack.
__ Peek(x0, 0);
__ Push(x0);
VisitForStackValue(key);
VisitForStackValue(value);
__ Mov(x0, Smi::FromInt(NONE)); // PropertyAttributes
__ Push(x0);
__ CallRuntime(Runtime::kSetProperty, 4);
} else {
VisitForEffect(key);
VisitForEffect(value);
}
break;
case ObjectLiteral::Property::PROTOTYPE:
if (property->emit_store()) {
// Duplicate receiver on stack.
__ Peek(x0, 0);
__ Push(x0);
VisitForStackValue(value);
__ CallRuntime(Runtime::kSetPrototype, 2);
} else {
VisitForEffect(value);
}
break;
case ObjectLiteral::Property::GETTER:
accessor_table.lookup(key)->second->getter = value;
break;
case ObjectLiteral::Property::SETTER:
accessor_table.lookup(key)->second->setter = value;
break;
}
}
// Emit code to define accessors, using only a single call to the runtime for
// each pair of corresponding getters and setters.
for (AccessorTable::Iterator it = accessor_table.begin();
it != accessor_table.end();
++it) {
__ Peek(x10, 0); // Duplicate receiver.
__ Push(x10);
VisitForStackValue(it->first);
EmitAccessor(it->second->getter);
EmitAccessor(it->second->setter);
__ Mov(x10, Smi::FromInt(NONE));
__ Push(x10);
__ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5);
}
if (expr->has_function()) {
ASSERT(result_saved);
__ Peek(x0, 0);
__ Push(x0);
__ CallRuntime(Runtime::kToFastProperties, 1);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(x0);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
expr->BuildConstantElements(isolate());
int flags = (expr->depth() == 1) ? ArrayLiteral::kShallowElements
: ArrayLiteral::kNoFlags;
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
Handle<FixedArray> constant_elements = expr->constant_elements();
ASSERT_EQ(2, constant_elements->length());
ElementsKind constant_elements_kind =
static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
Handle<FixedArrayBase> constant_elements_values(
FixedArrayBase::cast(constant_elements->get(1)));
AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
// If the only customer of allocation sites is transitioning, then
// we can turn it off if we don't have anywhere else to transition to.
allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
}
__ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ldr(x3, FieldMemOperand(x3, JSFunction::kLiteralsOffset));
__ Mov(x2, Smi::FromInt(expr->literal_index()));
__ Mov(x1, Operand(constant_elements));
if (has_fast_elements && constant_elements_values->map() ==
isolate()->heap()->fixed_cow_array_map()) {
FastCloneShallowArrayStub stub(
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS,
allocation_site_mode,
length);
__ CallStub(&stub);
__ IncrementCounter(
isolate()->counters()->cow_arrays_created_stub(), 1, x10, x11);
} else if ((expr->depth() > 1) || Serializer::enabled() ||
length > FastCloneShallowArrayStub::kMaximumClonedLength) {
__ Mov(x0, Smi::FromInt(flags));
__ Push(x3, x2, x1, x0);
__ CallRuntime(Runtime::kHiddenCreateArrayLiteral, 4);
} else {
ASSERT(IsFastSmiOrObjectElementsKind(constant_elements_kind) ||
FLAG_smi_only_arrays);
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS;
if (has_fast_elements) {
mode = FastCloneShallowArrayStub::CLONE_ELEMENTS;
}
FastCloneShallowArrayStub stub(mode, allocation_site_mode, length);
__ CallStub(&stub);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
if (!result_saved) {
__ Push(x0);
__ Push(Smi::FromInt(expr->literal_index()));
result_saved = true;
}
VisitForAccumulatorValue(subexpr);
if (IsFastObjectElementsKind(constant_elements_kind)) {
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ Peek(x6, kPointerSize); // Copy of array literal.
__ Ldr(x1, FieldMemOperand(x6, JSObject::kElementsOffset));
__ Str(result_register(), FieldMemOperand(x1, offset));
// Update the write barrier for the array store.
__ RecordWriteField(x1, offset, result_register(), x10,
kLRHasBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
} else {
__ Mov(x3, Smi::FromInt(i));
StoreArrayLiteralElementStub stub;
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
}
if (result_saved) {
__ Drop(1); // literal index
context()->PlugTOS();
} else {
context()->Plug(x0);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
ASSERT(expr->target()->IsValidReferenceExpression());
Comment cmnt(masm_, "[ Assignment");
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* property = expr->target()->AsProperty();
if (property != NULL) {
assign_type = (property->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the accumulator.
VisitForAccumulatorValue(property->obj());
__ Push(result_register());
} else {
VisitForStackValue(property->obj());
}
break;
case KEYED_PROPERTY:
if (expr->is_compound()) {
VisitForStackValue(property->obj());
VisitForAccumulatorValue(property->key());
__ Peek(x1, 0);
__ Push(x0);
} else {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
}
break;
}
// For compound assignments we need another deoptimization point after the
// variable/property load.
if (expr->is_compound()) {
{ AccumulatorValueContext context(this);
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy());
PrepareForBailout(expr->target(), TOS_REG);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(property);
PrepareForBailoutForId(property->LoadId(), TOS_REG);
break;
}
}
Token::Value op = expr->binary_op();
__ Push(x0); // Left operand goes on the stack.
VisitForAccumulatorValue(expr->value());
OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
? OVERWRITE_RIGHT
: NO_OVERWRITE;
SetSourcePosition(expr->position() + 1);
AccumulatorValueContext context(this);
if (ShouldInlineSmiCase(op)) {
EmitInlineSmiBinaryOp(expr->binary_operation(),
op,
mode,
expr->target(),
expr->value());
} else {
EmitBinaryOp(expr->binary_operation(), op, mode);
}
// Deoptimization point in case the binary operation may have side effects.
PrepareForBailout(expr->binary_operation(), TOS_REG);
} else {
VisitForAccumulatorValue(expr->value());
}
// Record source position before possible IC call.
SetSourcePosition(expr->position());
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
expr->op());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(x0);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
__ Mov(x2, Operand(key->value()));
// Call load IC. It has arguments receiver and property name x0 and x2.
CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
// Call keyed load IC. It has arguments key and receiver in r0 and r1.
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallIC(ic, prop->PropertyFeedbackId());
}
void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode,
Expression* left_expr,
Expression* right_expr) {
Label done, both_smis, stub_call;
// Get the arguments.
Register left = x1;
Register right = x0;
Register result = x0;
__ Pop(left);
// Perform combined smi check on both operands.
__ Orr(x10, left, right);
JumpPatchSite patch_site(masm_);
patch_site.EmitJumpIfSmi(x10, &both_smis);
__ Bind(&stub_call);
BinaryOpICStub stub(op, mode);
{
Assembler::BlockPoolsScope scope(masm_);
CallIC(stub.GetCode(isolate()), expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
}
__ B(&done);
__ Bind(&both_smis);
// Smi case. This code works in the same way as the smi-smi case in the type
// recording binary operation stub, see
// BinaryOpStub::GenerateSmiSmiOperation for comments.
// TODO(all): That doesn't exist any more. Where are the comments?
//
// The set of operations that needs to be supported here is controlled by
// FullCodeGenerator::ShouldInlineSmiCase().
switch (op) {
case Token::SAR:
__ Ubfx(right, right, kSmiShift, 5);
__ Asr(result, left, right);
__ Bic(result, result, kSmiShiftMask);
break;
case Token::SHL:
__ Ubfx(right, right, kSmiShift, 5);
__ Lsl(result, left, right);
break;
case Token::SHR: {
Label right_not_zero;
__ Cbnz(right, &right_not_zero);
__ Tbnz(left, kXSignBit, &stub_call);
__ Bind(&right_not_zero);
__ Ubfx(right, right, kSmiShift, 5);
__ Lsr(result, left, right);
__ Bic(result, result, kSmiShiftMask);
break;
}
case Token::ADD:
__ Adds(x10, left, right);
__ B(vs, &stub_call);
__ Mov(result, x10);
break;
case Token::SUB:
__ Subs(x10, left, right);
__ B(vs, &stub_call);
__ Mov(result, x10);
break;
case Token::MUL: {
Label not_minus_zero, done;
__ Smulh(x10, left, right);
__ Cbnz(x10, &not_minus_zero);
__ Eor(x11, left, right);
__ Tbnz(x11, kXSignBit, &stub_call);
STATIC_ASSERT(kSmiTag == 0);
__ Mov(result, x10);
__ B(&done);
__ Bind(&not_minus_zero);
__ Cls(x11, x10);
__ Cmp(x11, kXRegSizeInBits - kSmiShift);
__ B(lt, &stub_call);
__ SmiTag(result, x10);
__ Bind(&done);
break;
}
case Token::BIT_OR:
__ Orr(result, left, right);
break;
case Token::BIT_AND:
__ And(result, left, right);
break;
case Token::BIT_XOR:
__ Eor(result, left, right);
break;
default:
UNREACHABLE();
}
__ Bind(&done);
context()->Plug(x0);
}
void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode) {
__ Pop(x1);
BinaryOpICStub stub(op, mode);
JumpPatchSite patch_site(masm_); // Unbound, signals no inlined smi code.
{
Assembler::BlockPoolsScope scope(masm_);
CallIC(stub.GetCode(isolate()), expr->BinaryOperationFeedbackId());
patch_site.EmitPatchInfo();
}
context()->Plug(x0);
}
void FullCodeGenerator::EmitAssignment(Expression* expr) {
ASSERT(expr->IsValidReferenceExpression());
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->AsProperty();
if (prop != NULL) {
assign_type = (prop->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
switch (assign_type) {
case VARIABLE: {
Variable* var = expr->AsVariableProxy()->var();
EffectContext context(this);
EmitVariableAssignment(var, Token::ASSIGN);
break;
}
case NAMED_PROPERTY: {
__ Push(x0); // Preserve value.
VisitForAccumulatorValue(prop->obj());
// TODO(all): We could introduce a VisitForRegValue(reg, expr) to avoid
// this copy.
__ Mov(x1, x0);
__ Pop(x0); // Restore value.
__ Mov(x2, Operand(prop->key()->AsLiteral()->value()));
CallStoreIC();
break;
}
case KEYED_PROPERTY: {
__ Push(x0); // Preserve value.
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ Mov(x1, x0);
__ Pop(x2, x0);
Handle<Code> ic = strict_mode() == SLOPPY
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic);
break;
}
}
context()->Plug(x0);
}
void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
Variable* var, MemOperand location) {
__ Str(result_register(), location);
if (var->IsContextSlot()) {
// RecordWrite may destroy all its register arguments.
__ Mov(x10, result_register());
int offset = Context::SlotOffset(var->index());
__ RecordWriteContextSlot(
x1, offset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
}
}
void FullCodeGenerator::EmitCallStoreContextSlot(
Handle<String> name, StrictMode strict_mode) {
__ Mov(x11, Operand(name));
__ Mov(x10, Smi::FromInt(strict_mode));
// jssp[0] : mode.
// jssp[8] : name.
// jssp[16] : context.
// jssp[24] : value.
__ Push(x0, cp, x11, x10);
__ CallRuntime(Runtime::kHiddenStoreContextSlot, 4);
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var,
Token::Value op) {
ASM_LOCATION("FullCodeGenerator::EmitVariableAssignment");
if (var->IsUnallocated()) {
// Global var, const, or let.
__ Mov(x2, Operand(var->name()));
__ Ldr(x1, GlobalObjectMemOperand());
CallStoreIC();
} else if (op == Token::INIT_CONST_LEGACY) {
// Const initializers need a write barrier.
ASSERT(!var->IsParameter()); // No const parameters.
if (var->IsLookupSlot()) {
__ Push(x0);
__ Mov(x0, Operand(var->name()));
__ Push(cp, x0); // Context and name.
__ CallRuntime(Runtime::kHiddenInitializeConstContextSlot, 3);
} else {
ASSERT(var->IsStackLocal() || var->IsContextSlot());
Label skip;
MemOperand location = VarOperand(var, x1);
__ Ldr(x10, location);
__ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &skip);
EmitStoreToStackLocalOrContextSlot(var, location);
__ Bind(&skip);
}
} else if (var->mode() == LET && op != Token::INIT_LET) {
// Non-initializing assignment to let variable needs a write barrier.
if (var->IsLookupSlot()) {
EmitCallStoreContextSlot(var->name(), strict_mode());
} else {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
Label assign;
MemOperand location = VarOperand(var, x1);
__ Ldr(x10, location);
__ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &assign);
__ Mov(x10, Operand(var->name()));
__ Push(x10);
__ CallRuntime(Runtime::kHiddenThrowReferenceError, 1);
// Perform the assignment.
__ Bind(&assign);
EmitStoreToStackLocalOrContextSlot(var, location);
}
} else if (!var->is_const_mode() || op == Token::INIT_CONST) {
// Assignment to var or initializing assignment to let/const
// in harmony mode.
if (var->IsLookupSlot()) {
EmitCallStoreContextSlot(var->name(), strict_mode());
} else {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
MemOperand location = VarOperand(var, x1);
if (FLAG_debug_code && op == Token::INIT_LET) {
__ Ldr(x10, location);
__ CompareRoot(x10, Heap::kTheHoleValueRootIndex);
__ Check(eq, kLetBindingReInitialization);
}
EmitStoreToStackLocalOrContextSlot(var, location);
}
}
// Non-initializing assignments to consts are ignored.
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
ASM_LOCATION("FullCodeGenerator::EmitNamedPropertyAssignment");
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->AsLiteral() != NULL);
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ Mov(x2, Operand(prop->key()->AsLiteral()->value()));
__ Pop(x1);
CallStoreIC(expr->AssignmentFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(x0);
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
ASM_LOCATION("FullCodeGenerator::EmitKeyedPropertyAssignment");
// Assignment to a property, using a keyed store IC.
// Record source code position before IC call.
SetSourcePosition(expr->position());
// TODO(all): Could we pass this in registers rather than on the stack?
__ Pop(x1, x2); // Key and object holding the property.
Handle<Code> ic = strict_mode() == SLOPPY
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic, expr->AssignmentFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(x0);
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
if (key->IsPropertyName()) {
VisitForAccumulatorValue(expr->obj());
EmitNamedPropertyLoad(expr);
PrepareForBailoutForId(expr->LoadId(), TOS_REG);
context()->Plug(x0);
} else {
VisitForStackValue(expr->obj());
VisitForAccumulatorValue(expr->key());
__ Pop(x1);
EmitKeyedPropertyLoad(expr);
context()->Plug(x0);
}
}
void FullCodeGenerator::CallIC(Handle<Code> code,
TypeFeedbackId ast_id) {
ic_total_count_++;
// All calls must have a predictable size in full-codegen code to ensure that
// the debugger can patch them correctly.
__ Call(code, RelocInfo::CODE_TARGET, ast_id);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitCallWithIC(Call* expr) {
ASM_LOCATION("EmitCallWithIC");
Expression* callee = expr->expression();
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
CallFunctionFlags flags;
// Get the target function.
if (callee->IsVariableProxy()) {
{ StackValueContext context(this);
EmitVariableLoad(callee->AsVariableProxy());
PrepareForBailout(callee, NO_REGISTERS);
}
// Push undefined as receiver. This is patched in the method prologue if it
// is a sloppy mode method.
__ Push(isolate()->factory()->undefined_value());
flags = NO_CALL_FUNCTION_FLAGS;
} else {
// Load the function from the receiver.
ASSERT(callee->IsProperty());
__ Peek(x0, 0);
EmitNamedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ Pop(x10);
__ Push(x0, x10);
flags = CALL_AS_METHOD;
}
// Load the arguments.
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(arg_count, flags);
__ Peek(x1, (arg_count + 1) * kPointerSize);
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, x0);
}
// Code common for calls using the IC.
void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
Expression* key) {
// Load the key.
VisitForAccumulatorValue(key);
Expression* callee = expr->expression();
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
// Load the function from the receiver.
ASSERT(callee->IsProperty());
__ Peek(x1, 0);
EmitKeyedPropertyLoad(callee->AsProperty());
PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
// Push the target function under the receiver.
__ Pop(x10);
__ Push(x0, x10);
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(arg_count, CALL_AS_METHOD);
__ Peek(x1, (arg_count + 1) * kPointerSize);
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, x0);
}
void FullCodeGenerator::EmitCallWithStub(Call* expr) {
// Code common for calls using the call stub.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position for debugger.
SetSourcePosition(expr->position());
Handle<Object> uninitialized =
TypeFeedbackInfo::UninitializedSentinel(isolate());
StoreFeedbackVectorSlot(expr->CallFeedbackSlot(), uninitialized);
__ LoadObject(x2, FeedbackVector());
__ Mov(x3, Smi::FromInt(expr->CallFeedbackSlot()));
// Record call targets in unoptimized code.
CallFunctionStub stub(arg_count, RECORD_CALL_TARGET);
__ Peek(x1, (arg_count + 1) * kXRegSize);
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, x0);
}
void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
ASM_LOCATION("FullCodeGenerator::EmitResolvePossiblyDirectEval");
// Prepare to push a copy of the first argument or undefined if it doesn't
// exist.
if (arg_count > 0) {
__ Peek(x10, arg_count * kXRegSize);
} else {
__ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
}
// Prepare to push the receiver of the enclosing function.
int receiver_offset = 2 + info_->scope()->num_parameters();
__ Ldr(x11, MemOperand(fp, receiver_offset * kPointerSize));
// Push.
__ Push(x10, x11);
// Prepare to push the language mode.
__ Mov(x10, Smi::FromInt(strict_mode()));
// Prepare to push the start position of the scope the calls resides in.
__ Mov(x11, Smi::FromInt(scope()->start_position()));
// Push.
__ Push(x10, x11);
// Do the runtime call.
__ CallRuntime(Runtime::kHiddenResolvePossiblyDirectEval, 5);
}
void FullCodeGenerator::VisitCall(Call* expr) {
#ifdef DEBUG
// We want to verify that RecordJSReturnSite gets called on all paths
// through this function. Avoid early returns.
expr->return_is_recorded_ = false;
#endif
Comment cmnt(masm_, "[ Call");
Expression* callee = expr->expression();
Call::CallType call_type = expr->GetCallType(isolate());
if (call_type == Call::POSSIBLY_EVAL_CALL) {
// In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
// to resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{
PreservePositionScope pos_scope(masm()->positions_recorder());
VisitForStackValue(callee);
__ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
__ Push(x10); // Reserved receiver slot.
// Push the arguments.
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Push a copy of the function (found below the arguments) and
// resolve eval.
__ Peek(x10, (arg_count + 1) * kPointerSize);
__ Push(x10);
EmitResolvePossiblyDirectEval(arg_count);
// The runtime call returns a pair of values in x0 (function) and
// x1 (receiver). Touch up the stack with the right values.
__ PokePair(x1, x0, arg_count * kPointerSize);
}
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the evaluated function.
CallFunctionStub stub(arg_count, NO_CALL_FUNCTION_FLAGS);
__ Peek(x1, (arg_count + 1) * kXRegSize);
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, x0);
} else if (call_type == Call::GLOBAL_CALL) {
EmitCallWithIC(expr);
} else if (call_type == Call::LOOKUP_SLOT_CALL) {
// Call to a lookup slot (dynamically introduced variable).
VariableProxy* proxy = callee->AsVariableProxy();
Label slow, done;
{ PreservePositionScope scope(masm()->positions_recorder());
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
}
__ Bind(&slow);
// Call the runtime to find the function to call (returned in x0)
// and the object holding it (returned in x1).
__ Push(context_register());
__ Mov(x10, Operand(proxy->name()));
__ Push(x10);
__ CallRuntime(Runtime::kHiddenLoadContextSlot, 2);
__ Push(x0, x1); // Receiver, function.
// If fast case code has been generated, emit code to push the
// function and receiver and have the slow path jump around this
// code.
if (done.is_linked()) {
Label call;
__ B(&call);
__ Bind(&done);
// Push function.
__ Push(x0);
// The receiver is implicitly the global receiver. Indicate this
// by passing the undefined to the call function stub.
__ LoadRoot(x1, Heap::kUndefinedValueRootIndex);
__ Push(x1);
__ Bind(&call);
}
// The receiver is either the global receiver or an object found
// by LoadContextSlot.
EmitCallWithStub(expr);
} else if (call_type == Call::PROPERTY_CALL) {
Property* property = callee->AsProperty();
{ PreservePositionScope scope(masm()->positions_recorder());
VisitForStackValue(property->obj());
}
if (property->key()->IsPropertyName()) {
EmitCallWithIC(expr);
} else {
EmitKeyedCallWithIC(expr, property->key());
}
} else {
ASSERT(call_type == Call::OTHER_CALL);
// Call to an arbitrary expression not handled specially above.
{ PreservePositionScope scope(masm()->positions_recorder());
VisitForStackValue(callee);
}
__ LoadRoot(x1, Heap::kUndefinedValueRootIndex);
__ Push(x1);
// Emit function call.
EmitCallWithStub(expr);
}
#ifdef DEBUG
// RecordJSReturnSite should have been called.
ASSERT(expr->return_is_recorded_);
#endif
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
VisitForStackValue(expr->expression());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(expr->position());
// Load function and argument count into x1 and x0.
__ Mov(x0, arg_count);
__ Peek(x1, arg_count * kXRegSize);
// Record call targets in unoptimized code.
Handle<Object> uninitialized =
TypeFeedbackInfo::UninitializedSentinel(isolate());
StoreFeedbackVectorSlot(expr->CallNewFeedbackSlot(), uninitialized);
if (FLAG_pretenuring_call_new) {
StoreFeedbackVectorSlot(expr->AllocationSiteFeedbackSlot(),
isolate()->factory()->NewAllocationSite());
ASSERT(expr->AllocationSiteFeedbackSlot() ==
expr->CallNewFeedbackSlot() + 1);
}
__ LoadObject(x2, FeedbackVector());
__ Mov(x3, Smi::FromInt(expr->CallNewFeedbackSlot()));
CallConstructStub stub(RECORD_CALL_TARGET);
__ Call(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL);
PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
context()->Plug(x0);
}
void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ TestAndSplit(x0, kSmiTagMask, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ TestAndSplit(x0, kSmiTagMask | (0x80000000UL << kSmiShift), if_true,
if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(x0, if_false);
__ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true);
__ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ Ldrb(x11, FieldMemOperand(x10, Map::kBitFieldOffset));
__ Tbnz(x11, Map::kIsUndetectable, if_false);
__ Ldrb(x12, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Cmp(x12, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ B(lt, if_false);
__ Cmp(x12, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(le, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(x0, if_false);
__ CompareObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ge, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
ASM_LOCATION("FullCodeGenerator::EmitIsUndetectableObject");
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(x0, if_false);
__ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset));
__ Ldrb(x11, FieldMemOperand(x10, Map::kBitFieldOffset));
__ Tst(x11, 1 << Map::kIsUndetectable);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ne, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false, skip_lookup;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
Register object = x0;
__ AssertNotSmi(object);
Register map = x10;
Register bitfield2 = x11;
__ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
__ Ldrb(bitfield2, FieldMemOperand(map, Map::kBitField2Offset));
__ Tbnz(bitfield2, Map::kStringWrapperSafeForDefaultValueOf, &skip_lookup);
// Check for fast case object. Generate false result for slow case object.
Register props = x12;
Register props_map = x12;
Register hash_table_map = x13;
__ Ldr(props, FieldMemOperand(object, JSObject::kPropertiesOffset));
__ Ldr(props_map, FieldMemOperand(props, HeapObject::kMapOffset));
__ LoadRoot(hash_table_map, Heap::kHashTableMapRootIndex);
__ Cmp(props_map, hash_table_map);
__ B(eq, if_false);
// Look for valueOf name in the descriptor array, and indicate false if found.
// Since we omit an enumeration index check, if it is added via a transition
// that shares its descriptor array, this is a false positive.
Label loop, done;
// Skip loop if no descriptors are valid.
Register descriptors = x12;
Register descriptors_length = x13;
__ NumberOfOwnDescriptors(descriptors_length, map);
__ Cbz(descriptors_length, &done);
__ LoadInstanceDescriptors(map, descriptors);
// Calculate the end of the descriptor array.
Register descriptors_end = x14;
__ Mov(x15, DescriptorArray::kDescriptorSize);
__ Mul(descriptors_length, descriptors_length, x15);
// Calculate location of the first key name.
__ Add(descriptors, descriptors,
DescriptorArray::kFirstOffset - kHeapObjectTag);
// Calculate the end of the descriptor array.
__ Add(descriptors_end, descriptors,
Operand(descriptors_length, LSL, kPointerSizeLog2));
// Loop through all the keys in the descriptor array. If one of these is the
// string "valueOf" the result is false.
Register valueof_string = x1;
int descriptor_size = DescriptorArray::kDescriptorSize * kPointerSize;
__ Mov(valueof_string, Operand(isolate()->factory()->value_of_string()));
__ Bind(&loop);
__ Ldr(x15, MemOperand(descriptors, descriptor_size, PostIndex));
__ Cmp(x15, valueof_string);
__ B(eq, if_false);
__ Cmp(descriptors, descriptors_end);
__ B(ne, &loop);
__ Bind(&done);
// Set the bit in the map to indicate that there is no local valueOf field.
__ Ldrb(x2, FieldMemOperand(map, Map::kBitField2Offset));
__ Orr(x2, x2, 1 << Map::kStringWrapperSafeForDefaultValueOf);
__ Strb(x2, FieldMemOperand(map, Map::kBitField2Offset));
__ Bind(&skip_lookup);
// If a valueOf property is not found on the object check that its prototype
// is the unmodified String prototype. If not result is false.
Register prototype = x1;
Register global_idx = x2;
Register native_context = x2;
Register string_proto = x3;
Register proto_map = x4;
__ Ldr(prototype, FieldMemOperand(map, Map::kPrototypeOffset));
__ JumpIfSmi(prototype, if_false);
__ Ldr(proto_map, FieldMemOperand(prototype, HeapObject::kMapOffset));
__ Ldr(global_idx, GlobalObjectMemOperand());
__ Ldr(native_context,
FieldMemOperand(global_idx, GlobalObject::kNativeContextOffset));
__ Ldr(string_proto,
ContextMemOperand(native_context,
Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
__ Cmp(proto_map, string_proto);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(x0, if_false);
__ CompareObjectType(x0, x10, x11, JS_FUNCTION_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
// Only a HeapNumber can be -0.0, so return false if we have something else.
__ CheckMap(x0, x1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
// Test the bit pattern.
__ Ldr(x10, FieldMemOperand(x0, HeapNumber::kValueOffset));
__ Cmp(x10, 1); // Set V on 0x8000000000000000.
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(vs, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(x0, if_false);
__ CompareObjectType(x0, x10, x11, JS_ARRAY_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(x0, if_false);
__ CompareObjectType(x0, x10, x11, JS_REGEXP_TYPE);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
ASSERT(expr->arguments()->length() == 0);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
// Get the frame pointer for the calling frame.
__ Ldr(x2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ Ldr(x1, MemOperand(x2, StandardFrameConstants::kContextOffset));
__ Cmp(x1, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ B(ne, &check_frame_marker);
__ Ldr(x2, MemOperand(x2, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ Bind(&check_frame_marker);
__ Ldr(x1, MemOperand(x2, StandardFrameConstants::kMarkerOffset));
__ Cmp(x1, Smi::FromInt(StackFrame::CONSTRUCT));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ Pop(x1);
__ Cmp(x0, x1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
// ArgumentsAccessStub expects the key in x1.
VisitForAccumulatorValue(args->at(0));
__ Mov(x1, x0);
__ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
__ CallStub(&stub);
context()->Plug(x0);
}
void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
ASSERT(expr->arguments()->length() == 0);
Label exit;
// Get the number of formal parameters.
__ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
// Check if the calling frame is an arguments adaptor frame.
__ Ldr(x12, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(x13, MemOperand(x12, StandardFrameConstants::kContextOffset));
__ Cmp(x13, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ B(ne, &exit);
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ Ldr(x0, MemOperand(x12, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Bind(&exit);
context()->Plug(x0);
}
void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
ASM_LOCATION("FullCodeGenerator::EmitClassOf");
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForAccumulatorValue(args->at(0));
// If the object is a smi, we return null.
__ JumpIfSmi(x0, &null);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
// Assume that there are only two callable types, and one of them is at
// either end of the type range for JS object types. Saves extra comparisons.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ CompareObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE);
// x10: object's map.
// x11: object's type.
__ B(lt, &null);
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
FIRST_SPEC_OBJECT_TYPE + 1);
__ B(eq, &function);
__ Cmp(x11, LAST_SPEC_OBJECT_TYPE);
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
LAST_SPEC_OBJECT_TYPE - 1);
__ B(eq, &function);
// Assume that there is no larger type.
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
// Check if the constructor in the map is a JS function.
__ Ldr(x12, FieldMemOperand(x10, Map::kConstructorOffset));
__ JumpIfNotObjectType(x12, x13, x14, JS_FUNCTION_TYPE,
&non_function_constructor);
// x12 now contains the constructor function. Grab the
// instance class name from there.
__ Ldr(x13, FieldMemOperand(x12, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x0,
FieldMemOperand(x13, SharedFunctionInfo::kInstanceClassNameOffset));
__ B(&done);
// Functions have class 'Function'.
__ Bind(&function);
__ LoadRoot(x0, Heap::kfunction_class_stringRootIndex);
__ B(&done);
// Objects with a non-function constructor have class 'Object'.
__ Bind(&non_function_constructor);
__ LoadRoot(x0, Heap::kObject_stringRootIndex);
__ B(&done);
// Non-JS objects have class null.
__ Bind(&null);
__ LoadRoot(x0, Heap::kNullValueRootIndex);
// All done.
__ Bind(&done);
context()->Plug(x0);
}
void FullCodeGenerator::EmitLog(CallRuntime* expr) {
// Conditionally generate a log call.
// Args:
// 0 (literal string): The type of logging (corresponds to the flags).
// This is used to determine whether or not to generate the log call.
// 1 (string): Format string. Access the string at argument index 2
// with '%2s' (see Logger::LogRuntime for all the formats).
// 2 (array): Arguments to the format string.
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(args->length(), 3);
if (CodeGenerator::ShouldGenerateLog(isolate(), args->at(0))) {
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
__ CallRuntime(Runtime::kHiddenLog, 2);
}
// Finally, we're expected to leave a value on the top of the stack.
__ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
context()->Plug(x0);
}
void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
// Load the arguments on the stack and call the stub.
SubStringStub stub;
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
__ CallStub(&stub);
context()->Plug(x0);
}
void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
// Load the arguments on the stack and call the stub.
RegExpExecStub stub;
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 4);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
VisitForStackValue(args->at(3));
__ CallStub(&stub);
context()->Plug(x0);
}
void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
ASM_LOCATION("FullCodeGenerator::EmitValueOf");
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label done;
// If the object is a smi return the object.
__ JumpIfSmi(x0, &done);
// If the object is not a value type, return the object.
__ JumpIfNotObjectType(x0, x10, x11, JS_VALUE_TYPE, &done);
__ Ldr(x0, FieldMemOperand(x0, JSValue::kValueOffset));
__ Bind(&done);
context()->Plug(x0);
}
void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
ASSERT_NE(NULL, args->at(1)->AsLiteral());
Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label runtime, done, not_date_object;
Register object = x0;
Register result = x0;
Register stamp_addr = x10;
Register stamp_cache = x11;
__ JumpIfSmi(object, &not_date_object);
__ JumpIfNotObjectType(object, x10, x10, JS_DATE_TYPE, &not_date_object);
if (index->value() == 0) {
__ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
__ B(&done);
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ Mov(x10, stamp);
__ Ldr(stamp_addr, MemOperand(x10));
__ Ldr(stamp_cache, FieldMemOperand(object, JSDate::kCacheStampOffset));
__ Cmp(stamp_addr, stamp_cache);
__ B(ne, &runtime);
__ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ B(&done);
}
__ Bind(&runtime);
__ Mov(x1, index);
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ B(&done);
}
__ Bind(&not_date_object);
__ CallRuntime(Runtime::kHiddenThrowNotDateError, 0);
__ Bind(&done);
context()->Plug(x0);
}
void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(3, args->length());
Register string = x0;
Register index = x1;
Register value = x2;
Register scratch = x10;
VisitForStackValue(args->at(1)); // index
VisitForStackValue(args->at(2)); // value
VisitForAccumulatorValue(args->at(0)); // string
__ Pop(value, index);
if (FLAG_debug_code) {
__ AssertSmi(value, kNonSmiValue);
__ AssertSmi(index, kNonSmiIndex);
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
__ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
one_byte_seq_type);
}
__ Add(scratch, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ SmiUntag(value);
__ SmiUntag(index);
__ Strb(value, MemOperand(scratch, index));
context()->Plug(string);
}
void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(3, args->length());
Register string = x0;
Register index = x1;
Register value = x2;
Register scratch = x10;
VisitForStackValue(args->at(1)); // index
VisitForStackValue(args->at(2)); // value
VisitForAccumulatorValue(args->at(0)); // string
__ Pop(value, index);
if (FLAG_debug_code) {
__ AssertSmi(value, kNonSmiValue);
__ AssertSmi(index, kNonSmiIndex);
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
two_byte_seq_type);
}
__ Add(scratch, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
__ SmiUntag(value);
__ SmiUntag(index);
__ Strh(value, MemOperand(scratch, index, LSL, 1));
context()->Plug(string);
}
void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
// Load the arguments on the stack and call the MathPow stub.
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
MathPowStub stub(MathPowStub::ON_STACK);
__ CallStub(&stub);
context()->Plug(x0);
}
void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0)); // Load the object.
VisitForAccumulatorValue(args->at(1)); // Load the value.
__ Pop(x1);
// x0 = value.
// x1 = object.
Label done;
// If the object is a smi, return the value.
__ JumpIfSmi(x1, &done);
// If the object is not a value type, return the value.
__ JumpIfNotObjectType(x1, x10, x11, JS_VALUE_TYPE, &done);
// Store the value.
__ Str(x0, FieldMemOperand(x1, JSValue::kValueOffset));
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
__ Mov(x10, x0);
__ RecordWriteField(
x1, JSValue::kValueOffset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
__ Bind(&done);
context()->Plug(x0);
}
void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(args->length(), 1);
// Load the argument into x0 and call the stub.
VisitForAccumulatorValue(args->at(0));
NumberToStringStub stub;
__ CallStub(&stub);
context()->Plug(x0);
}
void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label done;
Register code = x0;
Register result = x1;
StringCharFromCodeGenerator generator(code, result);
generator.GenerateFast(masm_);
__ B(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ Bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = x1;
Register index = x0;
Register result = x3;
__ Pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object,
index,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ B(&done);
__ Bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return NaN.
__ LoadRoot(result, Heap::kNanValueRootIndex);
__ B(&done);
__ Bind(&need_conversion);
// Load the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ B(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ Bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Register object = x1;
Register index = x0;
Register result = x0;
__ Pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharAtGenerator generator(object,
index,
x3,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ B(&done);
__ Bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result, Heap::kempty_stringRootIndex);
__ B(&done);
__ Bind(&need_conversion);
// Move smi zero into the result register, which will trigger conversion.
__ Mov(result, Smi::FromInt(0));
__ B(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ Bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
ASM_LOCATION("FullCodeGenerator::EmitStringAdd");
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
__ Pop(x1);
StringAddStub stub(STRING_ADD_CHECK_BOTH, NOT_TENURED);
__ CallStub(&stub);
context()->Plug(x0);
}
void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
StringCompareStub stub;
__ CallStub(&stub);
context()->Plug(x0);
}
void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
ASM_LOCATION("FullCodeGenerator::EmitCallFunction");
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() >= 2);
int arg_count = args->length() - 2; // 2 ~ receiver and function.
for (int i = 0; i < arg_count + 1; i++) {
VisitForStackValue(args->at(i));
}
VisitForAccumulatorValue(args->last()); // Function.
Label runtime, done;
// Check for non-function argument (including proxy).
__ JumpIfSmi(x0, &runtime);
__ JumpIfNotObjectType(x0, x1, x1, JS_FUNCTION_TYPE, &runtime);
// InvokeFunction requires the function in x1. Move it in there.
__ Mov(x1, x0);
ParameterCount count(arg_count);
__ InvokeFunction(x1, count, CALL_FUNCTION, NullCallWrapper());
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ B(&done);
__ Bind(&runtime);
__ Push(x0);
__ CallRuntime(Runtime::kCall, args->length());
__ Bind(&done);
context()->Plug(x0);
}
void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
RegExpConstructResultStub stub;
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForAccumulatorValue(args->at(2));
__ Pop(x1, x2);
__ CallStub(&stub);
context()->Plug(x0);
}
void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
ASSERT_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
Handle<FixedArray> jsfunction_result_caches(
isolate()->native_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort(kAttemptToUseUndefinedCache);
__ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
context()->Plug(x0);
return;
}
VisitForAccumulatorValue(args->at(1));
Register key = x0;
Register cache = x1;
__ Ldr(cache, GlobalObjectMemOperand());
__ Ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
__ Ldr(cache, ContextMemOperand(cache,
Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ Ldr(cache,
FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
Label done;
__ Ldrsw(x2, UntagSmiFieldMemOperand(cache,
JSFunctionResultCache::kFingerOffset));
__ Add(x3, cache, FixedArray::kHeaderSize - kHeapObjectTag);
__ Add(x3, x3, Operand(x2, LSL, kPointerSizeLog2));
// Load the key and data from the cache.
__ Ldp(x2, x3, MemOperand(x3));
__ Cmp(key, x2);
__ CmovX(x0, x3, eq);
__ B(eq, &done);
// Call runtime to perform the lookup.
__ Push(cache, key);
__ CallRuntime(Runtime::kHiddenGetFromCache, 2);
__ Bind(&done);
context()->Plug(x0);
}
void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
__ Tst(x10, String::kContainsCachedArrayIndexMask);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
__ AssertString(x0);
__ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
__ IndexFromHash(x10, x0);
context()->Plug(x0);
}
void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
ASM_LOCATION("FullCodeGenerator::EmitFastAsciiArrayJoin");
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(1));
VisitForAccumulatorValue(args->at(0));
Register array = x0;
Register result = x0;
Register elements = x1;
Register element = x2;
Register separator = x3;
Register array_length = x4;
Register result_pos = x5;
Register map = x6;
Register string_length = x10;
Register elements_end = x11;
Register string = x12;
Register scratch1 = x13;
Register scratch2 = x14;
Register scratch3 = x7;
Register separator_length = x15;
Label bailout, done, one_char_separator, long_separator,
non_trivial_array, not_size_one_array, loop,
empty_separator_loop, one_char_separator_loop,
one_char_separator_loop_entry, long_separator_loop;
// The separator operand is on the stack.
__ Pop(separator);
// Check that the array is a JSArray.
__ JumpIfSmi(array, &bailout);
__ JumpIfNotObjectType(array, map, scratch1, JS_ARRAY_TYPE, &bailout);
// Check that the array has fast elements.
__ CheckFastElements(map, scratch1, &bailout);
// If the array has length zero, return the empty string.
// Load and untag the length of the array.
// It is an unsigned value, so we can skip sign extension.
// We assume little endianness.
__ Ldrsw(array_length,
UntagSmiFieldMemOperand(array, JSArray::kLengthOffset));
__ Cbnz(array_length, &non_trivial_array);
__ LoadRoot(result, Heap::kempty_stringRootIndex);
__ B(&done);
__ Bind(&non_trivial_array);
// Get the FixedArray containing array's elements.
__ Ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
// Check that all array elements are sequential ASCII strings, and
// accumulate the sum of their lengths.
__ Mov(string_length, 0);
__ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
// Loop condition: while (element < elements_end).
// Live values in registers:
// elements: Fixed array of strings.
// array_length: Length of the fixed array of strings (not smi)
// separator: Separator string
// string_length: Accumulated sum of string lengths (not smi).
// element: Current array element.
// elements_end: Array end.
if (FLAG_debug_code) {
__ Cmp(array_length, 0);
__ Assert(gt, kNoEmptyArraysHereInEmitFastAsciiArrayJoin);
}
__ Bind(&loop);
__ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ JumpIfSmi(string, &bailout);
__ Ldr(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
__ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
__ Ldrsw(scratch1,
UntagSmiFieldMemOperand(string, SeqOneByteString::kLengthOffset));
__ Adds(string_length, string_length, scratch1);
__ B(vs, &bailout);
__ Cmp(element, elements_end);
__ B(lt, &loop);
// If array_length is 1, return elements[0], a string.
__ Cmp(array_length, 1);
__ B(ne, &not_size_one_array);
__ Ldr(result, FieldMemOperand(elements, FixedArray::kHeaderSize));
__ B(&done);
__ Bind(&not_size_one_array);
// Live values in registers:
// separator: Separator string
// array_length: Length of the array (not smi).
// string_length: Sum of string lengths (not smi).
// elements: FixedArray of strings.
// Check that the separator is a flat ASCII string.
__ JumpIfSmi(separator, &bailout);
__ Ldr(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
__ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
// Add (separator length times array_length) - separator length to the
// string_length to get the length of the result string.
// Load the separator length as untagged.
// We assume little endianness, and that the length is positive.
__ Ldrsw(separator_length,
UntagSmiFieldMemOperand(separator,
SeqOneByteString::kLengthOffset));
__ Sub(string_length, string_length, separator_length);
__ Umaddl(string_length, array_length.W(), separator_length.W(),
string_length);
// Get first element in the array.
__ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
// Live values in registers:
// element: First array element
// separator: Separator string
// string_length: Length of result string (not smi)
// array_length: Length of the array (not smi).
__ AllocateAsciiString(result, string_length, scratch1, scratch2, scratch3,
&bailout);
// Prepare for looping. Set up elements_end to end of the array. Set
// result_pos to the position of the result where to write the first
// character.
// TODO(all): useless unless AllocateAsciiString trashes the register.
__ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
__ Add(result_pos, result, SeqOneByteString::kHeaderSize - kHeapObjectTag);
// Check the length of the separator.
__ Cmp(separator_length, 1);
__ B(eq, &one_char_separator);
__ B(gt, &long_separator);
// Empty separator case
__ Bind(&empty_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// Copy next array element to the result.
__ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ Ldrsw(string_length,
UntagSmiFieldMemOperand(string, String::kLengthOffset));
__ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(result_pos, string, string_length, scratch1);
__ Cmp(element, elements_end);
__ B(lt, &empty_separator_loop); // End while (element < elements_end).
__ B(&done);
// One-character separator case
__ Bind(&one_char_separator);
// Replace separator with its ASCII character value.
__ Ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
// Jump into the loop after the code that copies the separator, so the first
// element is not preceded by a separator
__ B(&one_char_separator_loop_entry);
__ Bind(&one_char_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Single separator ASCII char (in lower byte).
// Copy the separator character to the result.
__ Strb(separator, MemOperand(result_pos, 1, PostIndex));
// Copy next array element to the result.
__ Bind(&one_char_separator_loop_entry);
__ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ Ldrsw(string_length,
UntagSmiFieldMemOperand(string, String::kLengthOffset));
__ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(result_pos, string, string_length, scratch1);
__ Cmp(element, elements_end);
__ B(lt, &one_char_separator_loop); // End while (element < elements_end).
__ B(&done);
// Long separator case (separator is more than one character). Entry is at the
// label long_separator below.
__ Bind(&long_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Separator string.
// Copy the separator to the result.
// TODO(all): hoist next two instructions.
__ Ldrsw(string_length,
UntagSmiFieldMemOperand(separator, String::kLengthOffset));
__ Add(string, separator, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(result_pos, string, string_length, scratch1);
__ Bind(&long_separator);
__ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
__ Ldrsw(string_length,
UntagSmiFieldMemOperand(string, String::kLengthOffset));
__ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(result_pos, string, string_length, scratch1);
__ Cmp(element, elements_end);
__ B(lt, &long_separator_loop); // End while (element < elements_end).
__ B(&done);
__ Bind(&bailout);
// Returning undefined will force slower code to handle it.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ Bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
if (expr->function() != NULL &&
expr->function()->intrinsic_type == Runtime::INLINE) {
Comment cmnt(masm_, "[ InlineRuntimeCall");
EmitInlineRuntimeCall(expr);
return;
}
Comment cmnt(masm_, "[ CallRunTime");
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
if (expr->is_jsruntime()) {
// Push the builtins object as the receiver.
__ Ldr(x10, GlobalObjectMemOperand());
__ Ldr(x0, FieldMemOperand(x10, GlobalObject::kBuiltinsOffset));
__ Push(x0);
// Load the function from the receiver.
Handle<String> name = expr->name();
__ Mov(x2, Operand(name));
CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
// Push the target function under the receiver.
__ Pop(x10);
__ Push(x0, x10);
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Record source position of the IC call.
SetSourcePosition(expr->position());
CallFunctionStub stub(arg_count, NO_CALL_FUNCTION_FLAGS);
__ Peek(x1, (arg_count + 1) * kPointerSize);
__ CallStub(&stub);
// Restore context register.
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, x0);
} else {
// Push the arguments ("left-to-right").
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the C runtime function.
__ CallRuntime(expr->function(), arg_count);
context()->Plug(x0);
}
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* property = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (property != NULL) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
__ Mov(x10, Smi::FromInt(strict_mode()));
__ Push(x10);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
context()->Plug(x0);
} else if (proxy != NULL) {
Variable* var = proxy->var();
// Delete of an unqualified identifier is disallowed in strict mode
// but "delete this" is allowed.
ASSERT(strict_mode() == SLOPPY || var->is_this());
if (var->IsUnallocated()) {
__ Ldr(x12, GlobalObjectMemOperand());
__ Mov(x11, Operand(var->name()));
__ Mov(x10, Smi::FromInt(SLOPPY));
__ Push(x12, x11, x10);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
context()->Plug(x0);
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global, non-dynamic variables is false.
// The subexpression does not have side effects.
context()->Plug(var->is_this());
} else {
// Non-global variable. Call the runtime to try to delete from the
// context where the variable was introduced.
__ Mov(x2, Operand(var->name()));
__ Push(context_register(), x2);
__ CallRuntime(Runtime::kHiddenDeleteContextSlot, 2);
context()->Plug(x0);
}
} else {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
context()->Plug(true);
}
break;
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
context()->Plug(Heap::kUndefinedValueRootIndex);
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
if (context()->IsEffect()) {
// Unary NOT has no side effects so it's only necessary to visit the
// subexpression. Match the optimizing compiler by not branching.
VisitForEffect(expr->expression());
} else if (context()->IsTest()) {
const TestContext* test = TestContext::cast(context());
// The labels are swapped for the recursive call.
VisitForControl(expr->expression(),
test->false_label(),
test->true_label(),
test->fall_through());
context()->Plug(test->true_label(), test->false_label());
} else {
ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue());
// TODO(jbramley): This could be much more efficient using (for
// example) the CSEL instruction.
Label materialize_true, materialize_false, done;
VisitForControl(expr->expression(),
&materialize_false,
&materialize_true,
&materialize_true);
__ Bind(&materialize_true);
PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
__ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
__ B(&done);
__ Bind(&materialize_false);
PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
__ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
__ B(&done);
__ Bind(&done);
if (context()->IsStackValue()) {
__ Push(result_register());
}
}
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
{
StackValueContext context(this);
VisitForTypeofValue(expr->expression());
}
__ CallRuntime(Runtime::kTypeof, 1);
context()->Plug(x0);
break;
}
default:
UNREACHABLE();
}
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
ASSERT(expr->expression()->IsValidReferenceExpression());
Comment cmnt(masm_, "[ CountOperation");
SetSourcePosition(expr->position());
// Expression can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->expression()->AsProperty();
// In case of a property we use the uninitialized expression context
// of the key to detect a named property.
if (prop != NULL) {
assign_type =
(prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
}
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
AccumulatorValueContext context(this);
EmitVariableLoad(expr->expression()->AsVariableProxy());
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && !context()->IsEffect()) {
__ Push(xzr);
}
if (assign_type == NAMED_PROPERTY) {
// Put the object both on the stack and in the accumulator.
VisitForAccumulatorValue(prop->obj());
__ Push(x0);
EmitNamedPropertyLoad(prop);
} else {
// KEYED_PROPERTY
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ Peek(x1, 0);
__ Push(x0);
EmitKeyedPropertyLoad(prop);
}
}
// We need a second deoptimization point after loading the value
// in case evaluating the property load my have a side effect.
if (assign_type == VARIABLE) {
PrepareForBailout(expr->expression(), TOS_REG);
} else {
PrepareForBailoutForId(prop->LoadId(), TOS_REG);
}
// Inline smi case if we are in a loop.
Label stub_call, done;
JumpPatchSite patch_site(masm_);
int count_value = expr->op() == Token::INC ? 1 : -1;
if (ShouldInlineSmiCase(expr->op())) {
Label slow;
patch_site.EmitJumpIfNotSmi(x0, &slow);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property we
// store the result under the receiver that is currently on top of the
// stack.
switch (assign_type) {
case VARIABLE:
__ Push(x0);
break;
case NAMED_PROPERTY:
__ Poke(x0, kPointerSize);
break;
case KEYED_PROPERTY:
__ Poke(x0, kPointerSize * 2);
break;
}
}
}
__ Adds(x0, x0, Smi::FromInt(count_value));
__ B(vc, &done);
// Call stub. Undo operation first.
__ Sub(x0, x0, Smi::FromInt(count_value));
__ B(&stub_call);
__ Bind(&slow);
}
ToNumberStub convert_stub;
__ CallStub(&convert_stub);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ Push(x0);
break;
case NAMED_PROPERTY:
__ Poke(x0, kXRegSize);
break;
case KEYED_PROPERTY:
__ Poke(x0, 2 * kXRegSize);
break;
}
}
}
__ Bind(&stub_call);
__ Mov(x1, x0);
__ Mov(x0, Smi::FromInt(count_value));
// Record position before stub call.
SetSourcePosition(expr->position());
{
Assembler::BlockPoolsScope scope(masm_);
BinaryOpICStub stub(Token::ADD, NO_OVERWRITE);
CallIC(stub.GetCode(isolate()), expr->CountBinOpFeedbackId());
patch_site.EmitPatchInfo();
}
__ Bind(&done);
// Store the value returned in x0.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
{ EffectContext context(this);
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context.Plug(x0);
}
// For all contexts except EffectConstant We have the result on
// top of the stack.
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(x0);
}
break;
case NAMED_PROPERTY: {
__ Mov(x2, Operand(prop->key()->AsLiteral()->value()));
__ Pop(x1);
CallStoreIC(expr->CountStoreFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(x0);
}
break;
}
case KEYED_PROPERTY: {
__ Pop(x1); // Key.
__ Pop(x2); // Receiver.
Handle<Code> ic = strict_mode() == SLOPPY
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic, expr->CountStoreFeedbackId());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(x0);
}
break;
}
}
}
void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
ASSERT(!context()->IsEffect());
ASSERT(!context()->IsTest());
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL && proxy->var()->IsUnallocated()) {
Comment cmnt(masm_, "Global variable");
__ Ldr(x0, GlobalObjectMemOperand());
__ Mov(x2, Operand(proxy->name()));
// Use a regular load, not a contextual load, to avoid a reference
// error.
CallLoadIC(NOT_CONTEXTUAL);
PrepareForBailout(expr, TOS_REG);
context()->Plug(x0);
} else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);
__ Bind(&slow);
__ Mov(x0, Operand(proxy->name()));
__ Push(cp, x0);
__ CallRuntime(Runtime::kHiddenLoadContextSlotNoReferenceError, 2);
PrepareForBailout(expr, TOS_REG);
__ Bind(&done);
context()->Plug(x0);
} else {
// This expression cannot throw a reference error at the top level.
VisitInDuplicateContext(expr);
}
}
void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
Expression* sub_expr,
Handle<String> check) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof");
Comment cmnt(masm_, "[ EmitLiteralCompareTypeof");
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
{ AccumulatorValueContext context(this);
VisitForTypeofValue(sub_expr);
}
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Factory* factory = isolate()->factory();
if (String::Equals(check, factory->number_string())) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof number_string");
__ JumpIfSmi(x0, if_true);
__ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
__ CompareRoot(x0, Heap::kHeapNumberMapRootIndex);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->string_string())) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof string_string");
__ JumpIfSmi(x0, if_false);
// Check for undetectable objects => false.
__ JumpIfObjectType(x0, x0, x1, FIRST_NONSTRING_TYPE, if_false, ge);
__ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
__ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_true, if_false,
fall_through);
} else if (String::Equals(check, factory->symbol_string())) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof symbol_string");
__ JumpIfSmi(x0, if_false);
__ CompareObjectType(x0, x0, x1, SYMBOL_TYPE);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->boolean_string())) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof boolean_string");
__ JumpIfRoot(x0, Heap::kTrueValueRootIndex, if_true);
__ CompareRoot(x0, Heap::kFalseValueRootIndex);
Split(eq, if_true, if_false, fall_through);
} else if (FLAG_harmony_typeof &&
String::Equals(check, factory->null_string())) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof null_string");
__ CompareRoot(x0, Heap::kNullValueRootIndex);
Split(eq, if_true, if_false, fall_through);
} else if (String::Equals(check, factory->undefined_string())) {
ASM_LOCATION(
"FullCodeGenerator::EmitLiteralCompareTypeof undefined_string");
__ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, if_true);
__ JumpIfSmi(x0, if_false);
// Check for undetectable objects => true.
__ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
__ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
__ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_false, if_true,
fall_through);
} else if (String::Equals(check, factory->function_string())) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof function_string");
__ JumpIfSmi(x0, if_false);
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ JumpIfObjectType(x0, x10, x11, JS_FUNCTION_TYPE, if_true);
__ CompareAndSplit(x11, JS_FUNCTION_PROXY_TYPE, eq, if_true, if_false,
fall_through);
} else if (String::Equals(check, factory->object_string())) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof object_string");
__ JumpIfSmi(x0, if_false);
if (!FLAG_harmony_typeof) {
__ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true);
}
// Check for JS objects => true.
Register map = x10;
__ JumpIfObjectType(x0, map, x11, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE,
if_false, lt);
__ CompareInstanceType(map, x11, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ B(gt, if_false);
// Check for undetectable objects => false.
__ Ldrb(x10, FieldMemOperand(map, Map::kBitFieldOffset));
__ TestAndSplit(x10, 1 << Map::kIsUndetectable, if_true, if_false,
fall_through);
} else {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof other");
if (if_false != fall_through) __ B(if_false);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
SetSourcePosition(expr->position());
// Try to generate an optimized comparison with a literal value.
// TODO(jbramley): This only checks common values like NaN or undefined.
// Should it also handle ARM64 immediate operands?
if (TryLiteralCompare(expr)) {
return;
}
// Assign labels according to context()->PrepareTest.
Label materialize_true;
Label materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
Token::Value op = expr->op();
VisitForStackValue(expr->left());
switch (op) {
case Token::IN:
VisitForStackValue(expr->right());
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
__ CompareRoot(x0, Heap::kTrueValueRootIndex);
Split(eq, if_true, if_false, fall_through);
break;
case Token::INSTANCEOF: {
VisitForStackValue(expr->right());
InstanceofStub stub(InstanceofStub::kNoFlags);
__ CallStub(&stub);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
// The stub returns 0 for true.
__ CompareAndSplit(x0, 0, eq, if_true, if_false, fall_through);
break;
}
default: {
VisitForAccumulatorValue(expr->right());
Condition cond = CompareIC::ComputeCondition(op);
// Pop the stack value.
__ Pop(x1);
JumpPatchSite patch_site(masm_);
if (ShouldInlineSmiCase(op)) {
Label slow_case;
patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
__ Cmp(x1, x0);
Split(cond, if_true, if_false, NULL);
__ Bind(&slow_case);
}
// Record position and call the compare IC.
SetSourcePosition(expr->position());
Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
CallIC(ic, expr->CompareOperationFeedbackId());
patch_site.EmitPatchInfo();
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ CompareAndSplit(x0, 0, cond, if_true, if_false, fall_through);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil) {
ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareNil");
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
VisitForAccumulatorValue(sub_expr);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
if (expr->op() == Token::EQ_STRICT) {
Heap::RootListIndex nil_value = nil == kNullValue ?
Heap::kNullValueRootIndex :
Heap::kUndefinedValueRootIndex;
__ CompareRoot(x0, nil_value);
Split(eq, if_true, if_false, fall_through);
} else {
Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
CallIC(ic, expr->CompareOperationFeedbackId());
__ CompareAndSplit(x0, 0, ne, if_true, if_false, fall_through);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
context()->Plug(x0);
}
void FullCodeGenerator::VisitYield(Yield* expr) {
Comment cmnt(masm_, "[ Yield");
// Evaluate yielded value first; the initial iterator definition depends on
// this. It stays on the stack while we update the iterator.
VisitForStackValue(expr->expression());
// TODO(jbramley): Tidy this up once the merge is done, using named registers
// and suchlike. The implementation changes a little by bleeding_edge so I
// don't want to spend too much time on it now.
switch (expr->yield_kind()) {
case Yield::SUSPEND:
// Pop value from top-of-stack slot; box result into result register.
EmitCreateIteratorResult(false);
__ Push(result_register());
// Fall through.
case Yield::INITIAL: {
Label suspend, continuation, post_runtime, resume;
__ B(&suspend);
// TODO(jbramley): This label is bound here because the following code
// looks at its pos(). Is it possible to do something more efficient here,
// perhaps using Adr?
__ Bind(&continuation);
__ B(&resume);
__ Bind(&suspend);
VisitForAccumulatorValue(expr->generator_object());
ASSERT((continuation.pos() > 0) && Smi::IsValid(continuation.pos()));
__ Mov(x1, Smi::FromInt(continuation.pos()));
__ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
__ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
__ Mov(x1, cp);
__ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
kLRHasBeenSaved, kDontSaveFPRegs);
__ Add(x1, fp, StandardFrameConstants::kExpressionsOffset);
__ Cmp(__ StackPointer(), x1);
__ B(eq, &post_runtime);
__ Push(x0); // generator object
__ CallRuntime(Runtime::kHiddenSuspendJSGeneratorObject, 1);
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ Bind(&post_runtime);
__ Pop(result_register());
EmitReturnSequence();
__ Bind(&resume);
context()->Plug(result_register());
break;
}
case Yield::FINAL: {
VisitForAccumulatorValue(expr->generator_object());
__ Mov(x1, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
__ Str(x1, FieldMemOperand(result_register(),
JSGeneratorObject::kContinuationOffset));
// Pop value from top-of-stack slot, box result into result register.
EmitCreateIteratorResult(true);
EmitUnwindBeforeReturn();
EmitReturnSequence();
break;
}
case Yield::DELEGATING: {
VisitForStackValue(expr->generator_object());
// Initial stack layout is as follows:
// [sp + 1 * kPointerSize] iter
// [sp + 0 * kPointerSize] g
Label l_catch, l_try, l_suspend, l_continuation, l_resume;
Label l_next, l_call, l_loop;
// Initial send value is undefined.
__ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
__ B(&l_next);
// catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
__ Bind(&l_catch);
handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
__ LoadRoot(x2, Heap::kthrow_stringRootIndex); // "throw"
__ Peek(x3, 1 * kPointerSize); // iter
__ Push(x2, x3, x0); // "throw", iter, except
__ B(&l_call);
// try { received = %yield result }
// Shuffle the received result above a try handler and yield it without
// re-boxing.
__ Bind(&l_try);
__ Pop(x0); // result
__ PushTryHandler(StackHandler::CATCH, expr->index());
const int handler_size = StackHandlerConstants::kSize;
__ Push(x0); // result
__ B(&l_suspend);
// TODO(jbramley): This label is bound here because the following code
// looks at its pos(). Is it possible to do something more efficient here,
// perhaps using Adr?
__ Bind(&l_continuation);
__ B(&l_resume);
__ Bind(&l_suspend);
const int generator_object_depth = kPointerSize + handler_size;
__ Peek(x0, generator_object_depth);
__ Push(x0); // g
ASSERT((l_continuation.pos() > 0) && Smi::IsValid(l_continuation.pos()));
__ Mov(x1, Smi::FromInt(l_continuation.pos()));
__ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
__ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
__ Mov(x1, cp);
__ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
kLRHasBeenSaved, kDontSaveFPRegs);
__ CallRuntime(Runtime::kHiddenSuspendJSGeneratorObject, 1);
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ Pop(x0); // result
EmitReturnSequence();
__ Bind(&l_resume); // received in x0
__ PopTryHandler();
// receiver = iter; f = 'next'; arg = received;
__ Bind(&l_next);
__ LoadRoot(x2, Heap::knext_stringRootIndex); // "next"
__ Peek(x3, 1 * kPointerSize); // iter
__ Push(x2, x3, x0); // "next", iter, received
// result = receiver[f](arg);
__ Bind(&l_call);
__ Peek(x1, 1 * kPointerSize);
__ Peek(x0, 2 * kPointerSize);
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallIC(ic, TypeFeedbackId::None());
__ Mov(x1, x0);
__ Poke(x1, 2 * kPointerSize);
CallFunctionStub stub(1, CALL_AS_METHOD);
__ CallStub(&stub);
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ Drop(1); // The function is still on the stack; drop it.
// if (!result.done) goto l_try;
__ Bind(&l_loop);
__ Push(x0); // save result
__ LoadRoot(x2, Heap::kdone_stringRootIndex); // "done"
CallLoadIC(NOT_CONTEXTUAL); // result.done in x0
// The ToBooleanStub argument (result.done) is in x0.
Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
CallIC(bool_ic);
__ Cbz(x0, &l_try);
// result.value
__ Pop(x0); // result
__ LoadRoot(x2, Heap::kvalue_stringRootIndex); // "value"
CallLoadIC(NOT_CONTEXTUAL); // result.value in x0
context()->DropAndPlug(2, x0); // drop iter and g
break;
}
}
}
void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
Expression *value,
JSGeneratorObject::ResumeMode resume_mode) {
ASM_LOCATION("FullCodeGenerator::EmitGeneratorResume");
Register value_reg = x0;
Register generator_object = x1;
Register the_hole = x2;
Register operand_stack_size = w3;
Register function = x4;
// The value stays in x0, and is ultimately read by the resumed generator, as
// if CallRuntime(Runtime::kHiddenSuspendJSGeneratorObject) returned it. Or it
// is read to throw the value when the resumed generator is already closed. r1
// will hold the generator object until the activation has been resumed.
VisitForStackValue(generator);
VisitForAccumulatorValue(value);
__ Pop(generator_object);
// Check generator state.
Label wrong_state, closed_state, done;
__ Ldr(x10, FieldMemOperand(generator_object,
JSGeneratorObject::kContinuationOffset));
STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
__ CompareAndBranch(x10, Smi::FromInt(0), eq, &closed_state);
__ CompareAndBranch(x10, Smi::FromInt(0), lt, &wrong_state);
// Load suspended function and context.
__ Ldr(cp, FieldMemOperand(generator_object,
JSGeneratorObject::kContextOffset));
__ Ldr(function, FieldMemOperand(generator_object,
JSGeneratorObject::kFunctionOffset));
// Load receiver and store as the first argument.
__ Ldr(x10, FieldMemOperand(generator_object,
JSGeneratorObject::kReceiverOffset));
__ Push(x10);
// Push holes for the rest of the arguments to the generator function.
__ Ldr(x10, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
// The number of arguments is stored as an int32_t, and -1 is a marker
// (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
// extension to correctly handle it. However, in this case, we operate on
// 32-bit W registers, so extension isn't required.
__ Ldr(w10, FieldMemOperand(x10,
SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
__ PushMultipleTimes(the_hole, w10);
// Enter a new JavaScript frame, and initialize its slots as they were when
// the generator was suspended.
Label resume_frame;
__ Bl(&resume_frame);
__ B(&done);
__ Bind(&resume_frame);
__ Push(lr, // Return address.
fp, // Caller's frame pointer.
cp, // Callee's context.
function); // Callee's JS Function.
__ Add(fp, __ StackPointer(), kPointerSize * 2);
// Load and untag the operand stack size.
__ Ldr(x10, FieldMemOperand(generator_object,
JSGeneratorObject::kOperandStackOffset));
__ Ldr(operand_stack_size,
UntagSmiFieldMemOperand(x10, FixedArray::kLengthOffset));
// If we are sending a value and there is no operand stack, we can jump back
// in directly.
if (resume_mode == JSGeneratorObject::NEXT) {
Label slow_resume;
__ Cbnz(operand_stack_size, &slow_resume);
__ Ldr(x10, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
__ Ldrsw(x11,
UntagSmiFieldMemOperand(generator_object,
JSGeneratorObject::kContinuationOffset));
__ Add(x10, x10, x11);
__ Mov(x12, Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
__ Str(x12, FieldMemOperand(generator_object,
JSGeneratorObject::kContinuationOffset));
__ Br(x10);
__ Bind(&slow_resume);
}
// Otherwise, we push holes for the operand stack and call the runtime to fix
// up the stack and the handlers.
__ PushMultipleTimes(the_hole, operand_stack_size);
__ Mov(x10, Smi::FromInt(resume_mode));
__ Push(generator_object, result_register(), x10);
__ CallRuntime(Runtime::kHiddenResumeJSGeneratorObject, 3);
// Not reached: the runtime call returns elsewhere.
__ Unreachable();
// Reach here when generator is closed.
__ Bind(&closed_state);
if (resume_mode == JSGeneratorObject::NEXT) {
// Return completed iterator result when generator is closed.
__ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
__ Push(x10);
// Pop value from top-of-stack slot; box result into result register.
EmitCreateIteratorResult(true);
} else {
// Throw the provided value.
__ Push(value_reg);
__ CallRuntime(Runtime::kHiddenThrow, 1);
}
__ B(&done);
// Throw error if we attempt to operate on a running generator.
__ Bind(&wrong_state);
__ Push(generator_object);
__ CallRuntime(Runtime::kHiddenThrowGeneratorStateError, 1);
__ Bind(&done);
context()->Plug(result_register());
}
void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
Label gc_required;
Label allocated;
Handle<Map> map(isolate()->native_context()->iterator_result_map());
// Allocate and populate an object with this form: { value: VAL, done: DONE }
Register result = x0;
__ Allocate(map->instance_size(), result, x10, x11, &gc_required, TAG_OBJECT);
__ B(&allocated);
__ Bind(&gc_required);
__ Push(Smi::FromInt(map->instance_size()));
__ CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1);
__ Ldr(context_register(),
MemOperand(fp, StandardFrameConstants::kContextOffset));
__ Bind(&allocated);
Register map_reg = x1;
Register result_value = x2;
Register boolean_done = x3;
Register empty_fixed_array = x4;
Register untagged_result = x5;
__ Mov(map_reg, Operand(map));
__ Pop(result_value);
__ Mov(boolean_done, Operand(isolate()->factory()->ToBoolean(done)));
__ Mov(empty_fixed_array, Operand(isolate()->factory()->empty_fixed_array()));
ASSERT_EQ(map->instance_size(), 5 * kPointerSize);
STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize ==
JSObject::kElementsOffset);
STATIC_ASSERT(JSGeneratorObject::kResultValuePropertyOffset + kPointerSize ==
JSGeneratorObject::kResultDonePropertyOffset);
__ ObjectUntag(untagged_result, result);
__ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset));
__ Stp(empty_fixed_array, empty_fixed_array,
MemOperand(untagged_result, JSObject::kPropertiesOffset));
__ Stp(result_value, boolean_done,
MemOperand(untagged_result,
JSGeneratorObject::kResultValuePropertyOffset));
// Only the value field needs a write barrier, as the other values are in the
// root set.
__ RecordWriteField(result, JSGeneratorObject::kResultValuePropertyOffset,
x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
}
// TODO(all): I don't like this method.
// It seems to me that in too many places x0 is used in place of this.
// Also, this function is not suitable for all places where x0 should be
// abstracted (eg. when used as an argument). But some places assume that the
// first argument register is x0, and use this function instead.
// Considering that most of the register allocation is hard-coded in the
// FullCodeGen, that it is unlikely we will need to change it extensively, and
// that abstracting the allocation through functions would not yield any
// performance benefit, I think the existence of this function is debatable.
Register FullCodeGenerator::result_register() {
return x0;
}
Register FullCodeGenerator::context_register() {
return cp;
}
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
ASSERT(POINTER_SIZE_ALIGN(frame_offset) == frame_offset);
__ Str(value, MemOperand(fp, frame_offset));
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ Ldr(dst, ContextMemOperand(cp, context_index));
}
void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
Scope* declaration_scope = scope()->DeclarationScope();
if (declaration_scope->is_global_scope() ||
declaration_scope->is_module_scope()) {
// Contexts nested in the native context have a canonical empty function
// as their closure, not the anonymous closure containing the global
// code. Pass a smi sentinel and let the runtime look up the empty
// function.
ASSERT(kSmiTag == 0);
__ Push(xzr);
} else if (declaration_scope->is_eval_scope()) {
// Contexts created by a call to eval have the same closure as the
// context calling eval, not the anonymous closure containing the eval
// code. Fetch it from the context.
__ Ldr(x10, ContextMemOperand(cp, Context::CLOSURE_INDEX));
__ Push(x10);
} else {
ASSERT(declaration_scope->is_function_scope());
__ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Push(x10);
}
}
void FullCodeGenerator::EnterFinallyBlock() {
ASM_LOCATION("FullCodeGenerator::EnterFinallyBlock");
ASSERT(!result_register().is(x10));
// Preserve the result register while executing finally block.
// Also cook the return address in lr to the stack (smi encoded Code* delta).
__ Sub(x10, lr, Operand(masm_->CodeObject()));
__ SmiTag(x10);
__ Push(result_register(), x10);
// Store pending message while executing finally block.
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ Mov(x10, pending_message_obj);
__ Ldr(x10, MemOperand(x10));
ExternalReference has_pending_message =
ExternalReference::address_of_has_pending_message(isolate());
STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof)
__ Mov(x11, has_pending_message);
__ Ldrb(x11, MemOperand(x11));
__ SmiTag(x11);
__ Push(x10, x11);
ExternalReference pending_message_script =
ExternalReference::address_of_pending_message_script(isolate());
__ Mov(x10, pending_message_script);
__ Ldr(x10, MemOperand(x10));
__ Push(x10);
}
void FullCodeGenerator::ExitFinallyBlock() {
ASM_LOCATION("FullCodeGenerator::ExitFinallyBlock");
ASSERT(!result_register().is(x10));
// Restore pending message from stack.
__ Pop(x10, x11, x12);
ExternalReference pending_message_script =
ExternalReference::address_of_pending_message_script(isolate());
__ Mov(x13, pending_message_script);
__ Str(x10, MemOperand(x13));
__ SmiUntag(x11);
ExternalReference has_pending_message =
ExternalReference::address_of_has_pending_message(isolate());
__ Mov(x13, has_pending_message);
STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof)
__ Strb(x11, MemOperand(x13));
ExternalReference pending_message_obj =
ExternalReference::address_of_pending_message_obj(isolate());
__ Mov(x13, pending_message_obj);
__ Str(x12, MemOperand(x13));
// Restore result register and cooked return address from the stack.
__ Pop(x10, result_register());
// Uncook the return address (see EnterFinallyBlock).
__ SmiUntag(x10);
__ Add(x11, x10, Operand(masm_->CodeObject()));
__ Br(x11);
}
#undef __
void BackEdgeTable::PatchAt(Code* unoptimized_code,
Address pc,
BackEdgeState target_state,
Code* replacement_code) {
// Turn the jump into a nop.
Address branch_address = pc - 3 * kInstructionSize;
PatchingAssembler patcher(branch_address, 1);
ASSERT(Instruction::Cast(branch_address)
->IsNop(Assembler::INTERRUPT_CODE_NOP) ||
(Instruction::Cast(branch_address)->IsCondBranchImm() &&
Instruction::Cast(branch_address)->ImmPCOffset() ==
6 * kInstructionSize));
switch (target_state) {
case INTERRUPT:
// <decrement profiling counter>
// .. .. .. .. b.pl ok
// .. .. .. .. ldr x16, pc+<interrupt stub address>
// .. .. .. .. blr x16
// ... more instructions.
// ok-label
// Jump offset is 6 instructions.
patcher.b(6, pl);
break;
case ON_STACK_REPLACEMENT:
case OSR_AFTER_STACK_CHECK:
// <decrement profiling counter>
// .. .. .. .. mov x0, x0 (NOP)
// .. .. .. .. ldr x16, pc+<on-stack replacement address>
// .. .. .. .. blr x16
patcher.nop(Assembler::INTERRUPT_CODE_NOP);
break;
}
// Replace the call address.
Instruction* load = Instruction::Cast(pc)->preceding(2);
Address interrupt_address_pointer =
reinterpret_cast<Address>(load) + load->ImmPCOffset();
ASSERT((Memory::uint64_at(interrupt_address_pointer) ==
reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
->builtins()
->OnStackReplacement()
->entry())) ||
(Memory::uint64_at(interrupt_address_pointer) ==
reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
->builtins()
->InterruptCheck()
->entry())) ||
(Memory::uint64_at(interrupt_address_pointer) ==
reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
->builtins()
->OsrAfterStackCheck()
->entry())) ||
(Memory::uint64_at(interrupt_address_pointer) ==
reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
->builtins()
->OnStackReplacement()
->entry())));
Memory::uint64_at(interrupt_address_pointer) =
reinterpret_cast<uint64_t>(replacement_code->entry());
unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
unoptimized_code, reinterpret_cast<Address>(load), replacement_code);
}
BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
Isolate* isolate,
Code* unoptimized_code,
Address pc) {
// TODO(jbramley): There should be some extra assertions here (as in the ARM
// back-end), but this function is gone in bleeding_edge so it might not
// matter anyway.
Instruction* jump_or_nop = Instruction::Cast(pc)->preceding(3);
if (jump_or_nop->IsNop(Assembler::INTERRUPT_CODE_NOP)) {
Instruction* load = Instruction::Cast(pc)->preceding(2);
uint64_t entry = Memory::uint64_at(reinterpret_cast<Address>(load) +
load->ImmPCOffset());
if (entry == reinterpret_cast<uint64_t>(
isolate->builtins()->OnStackReplacement()->entry())) {
return ON_STACK_REPLACEMENT;
} else if (entry == reinterpret_cast<uint64_t>(
isolate->builtins()->OsrAfterStackCheck()->entry())) {
return OSR_AFTER_STACK_CHECK;
} else {
UNREACHABLE();
}
}
return INTERRUPT;
}
#define __ ACCESS_MASM(masm())
FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
int* stack_depth,
int* context_length) {
ASM_LOCATION("FullCodeGenerator::TryFinally::Exit");
// The macros used here must preserve the result register.
// Because the handler block contains the context of the finally
// code, we can restore it directly from there for the finally code
// rather than iteratively unwinding contexts via their previous
// links.
__ Drop(*stack_depth); // Down to the handler block.
if (*context_length > 0) {
// Restore the context to its dedicated register and the stack.
__ Peek(cp, StackHandlerConstants::kContextOffset);
__ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
__ PopTryHandler();
__ Bl(finally_entry_);
*stack_depth = 0;
*context_length = 0;
return previous_;
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM64