blob: 84a47d6ac42865f1e2b08452f94ee14cfb56aba4 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_X64
#include "codegen.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm,
Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ cmpb(type, Immediate(JS_GLOBAL_OBJECT_TYPE));
__ j(equal, global_object);
__ cmpb(type, Immediate(JS_BUILTINS_OBJECT_TYPE));
__ j(equal, global_object);
__ cmpb(type, Immediate(JS_GLOBAL_PROXY_TYPE));
__ j(equal, global_object);
}
// Generated code falls through if the receiver is a regular non-global
// JS object with slow properties and no interceptors.
static void GenerateNameDictionaryReceiverCheck(MacroAssembler* masm,
Register receiver,
Register r0,
Register r1,
Label* miss) {
// Register usage:
// receiver: holds the receiver on entry and is unchanged.
// r0: used to hold receiver instance type.
// Holds the property dictionary on fall through.
// r1: used to hold receivers map.
__ JumpIfSmi(receiver, miss);
// Check that the receiver is a valid JS object.
__ movq(r1, FieldOperand(receiver, HeapObject::kMapOffset));
__ movb(r0, FieldOperand(r1, Map::kInstanceTypeOffset));
__ cmpb(r0, Immediate(FIRST_SPEC_OBJECT_TYPE));
__ j(below, miss);
// If this assert fails, we have to check upper bound too.
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
GenerateGlobalInstanceTypeCheck(masm, r0, miss);
// Check for non-global object that requires access check.
__ testb(FieldOperand(r1, Map::kBitFieldOffset),
Immediate((1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasNamedInterceptor)));
__ j(not_zero, miss);
__ movq(r0, FieldOperand(receiver, JSObject::kPropertiesOffset));
__ CompareRoot(FieldOperand(r0, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, miss);
}
// Helper function used to load a property from a dictionary backing storage.
// This function may return false negatives, so miss_label
// must always call a backup property load that is complete.
// This function is safe to call if name is not an internalized string,
// and will jump to the miss_label in that case.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm,
Label* miss_label,
Register elements,
Register name,
Register r0,
Register r1,
Register result) {
// Register use:
//
// elements - holds the property dictionary on entry and is unchanged.
//
// name - holds the name of the property on entry and is unchanged.
//
// r0 - used to hold the capacity of the property dictionary.
//
// r1 - used to hold the index into the property dictionary.
//
// result - holds the result on exit if the load succeeded.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm,
miss_label,
&done,
elements,
name,
r0,
r1);
// If probing finds an entry in the dictionary, r1 contains the
// index into the dictionary. Check that the value is a normal
// property.
__ bind(&done);
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ Test(Operand(elements, r1, times_pointer_size,
kDetailsOffset - kHeapObjectTag),
Smi::FromInt(PropertyDetails::TypeField::kMask));
__ j(not_zero, miss_label);
// Get the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ movq(result,
Operand(elements, r1, times_pointer_size,
kValueOffset - kHeapObjectTag));
}
// Helper function used to store a property to a dictionary backing
// storage. This function may fail to store a property even though it
// is in the dictionary, so code at miss_label must always call a
// backup property store that is complete. This function is safe to
// call if name is not an internalized string, and will jump to the miss_label
// in that case. The generated code assumes that the receiver has slow
// properties, is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm,
Label* miss_label,
Register elements,
Register name,
Register value,
Register scratch0,
Register scratch1) {
// Register use:
//
// elements - holds the property dictionary on entry and is clobbered.
//
// name - holds the name of the property on entry and is unchanged.
//
// value - holds the value to store and is unchanged.
//
// scratch0 - used during the positive dictionary lookup and is clobbered.
//
// scratch1 - used for index into the property dictionary and is clobbered.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm,
miss_label,
&done,
elements,
name,
scratch0,
scratch1);
// If probing finds an entry in the dictionary, scratch0 contains the
// index into the dictionary. Check that the value is a normal
// property that is not read only.
__ bind(&done);
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask =
(PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize;
__ Test(Operand(elements,
scratch1,
times_pointer_size,
kDetailsOffset - kHeapObjectTag),
Smi::FromInt(kTypeAndReadOnlyMask));
__ j(not_zero, miss_label);
// Store the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ lea(scratch1, Operand(elements,
scratch1,
times_pointer_size,
kValueOffset - kHeapObjectTag));
__ movq(Operand(scratch1, 0), value);
// Update write barrier. Make sure not to clobber the value.
__ movq(scratch0, value);
__ RecordWrite(elements, scratch1, scratch0, kDontSaveFPRegs);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver,
Register map,
int interceptor_bit,
Label* slow) {
// Register use:
// receiver - holds the receiver and is unchanged.
// Scratch registers:
// map - used to hold the map of the receiver.
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, slow);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing
// into string objects work as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ CmpObjectType(receiver, JS_OBJECT_TYPE, map);
__ j(below, slow);
// Check bit field.
__ testb(FieldOperand(map, Map::kBitFieldOffset),
Immediate((1 << Map::kIsAccessCheckNeeded) |
(1 << interceptor_bit)));
__ j(not_zero, slow);
}
// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
static void GenerateFastArrayLoad(MacroAssembler* masm,
Register receiver,
Register key,
Register elements,
Register scratch,
Register result,
Label* not_fast_array,
Label* out_of_range) {
// Register use:
//
// receiver - holds the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// elements - holds the elements of the receiver on exit.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the the same as 'receiver' or 'key'.
// Unchanged on bailout so 'receiver' and 'key' can be safely
// used by further computation.
//
// Scratch registers:
//
// scratch - used to hold elements of the receiver and the loaded value.
__ movq(elements, FieldOperand(receiver, JSObject::kElementsOffset));
if (not_fast_array != NULL) {
// Check that the object is in fast mode and writable.
__ CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, not_fast_array);
} else {
__ AssertFastElements(elements);
}
// Check that the key (index) is within bounds.
__ SmiCompare(key, FieldOperand(elements, FixedArray::kLengthOffset));
// Unsigned comparison rejects negative indices.
__ j(above_equal, out_of_range);
// Fast case: Do the load.
SmiIndex index = masm->SmiToIndex(scratch, key, kPointerSizeLog2);
__ movq(scratch, FieldOperand(elements,
index.reg,
index.scale,
FixedArray::kHeaderSize));
__ CompareRoot(scratch, Heap::kTheHoleValueRootIndex);
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ j(equal, out_of_range);
if (!result.is(scratch)) {
__ movq(result, scratch);
}
}
// Checks whether a key is an array index string or a unique name.
// Falls through if the key is a unique name.
static void GenerateKeyNameCheck(MacroAssembler* masm,
Register key,
Register map,
Register hash,
Label* index_string,
Label* not_unique) {
// Register use:
// key - holds the key and is unchanged. Assumed to be non-smi.
// Scratch registers:
// map - used to hold the map of the key.
// hash - used to hold the hash of the key.
Label unique;
__ CmpObjectType(key, LAST_UNIQUE_NAME_TYPE, map);
__ j(above, not_unique);
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
__ j(equal, &unique);
// Is the string an array index, with cached numeric value?
__ movl(hash, FieldOperand(key, Name::kHashFieldOffset));
__ testl(hash, Immediate(Name::kContainsCachedArrayIndexMask));
__ j(zero, index_string); // The value in hash is used at jump target.
// Is the string internalized? We already know it's a string so a single
// bit test is enough.
STATIC_ASSERT(kNotInternalizedTag != 0);
__ testb(FieldOperand(map, Map::kInstanceTypeOffset),
Immediate(kIsNotInternalizedMask));
__ j(not_zero, not_unique);
__ bind(&unique);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, check_name, index_smi, index_name, property_array_property;
Label probe_dictionary, check_number_dictionary;
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, rdx, rcx, Map::kHasIndexedInterceptor, &slow);
// Check the receiver's map to see if it has fast elements.
__ CheckFastElements(rcx, &check_number_dictionary);
GenerateFastArrayLoad(masm,
rdx,
rax,
rcx,
rbx,
rax,
NULL,
&slow);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_load_generic_smi(), 1);
__ ret(0);
__ bind(&check_number_dictionary);
__ SmiToInteger32(rbx, rax);
__ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset));
// Check whether the elements is a number dictionary.
// rdx: receiver
// rax: key
// rbx: key as untagged int32
// rcx: elements
__ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, &slow);
__ LoadFromNumberDictionary(&slow, rcx, rax, rbx, r9, rdi, rax);
__ ret(0);
__ bind(&slow);
// Slow case: Jump to runtime.
// rdx: receiver
// rax: key
__ IncrementCounter(counters->keyed_load_generic_slow(), 1);
GenerateRuntimeGetProperty(masm);
__ bind(&check_name);
GenerateKeyNameCheck(masm, rax, rcx, rbx, &index_name, &slow);
GenerateKeyedLoadReceiverCheck(
masm, rdx, rcx, Map::kHasNamedInterceptor, &slow);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary leaving result in rcx.
__ movq(rbx, FieldOperand(rdx, JSObject::kPropertiesOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(equal, &probe_dictionary);
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the string hash.
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
__ movl(rcx, rbx);
__ shr(rcx, Immediate(KeyedLookupCache::kMapHashShift));
__ movl(rdi, FieldOperand(rax, String::kHashFieldOffset));
__ shr(rdi, Immediate(String::kHashShift));
__ xor_(rcx, rdi);
int mask = (KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask);
__ and_(rcx, Immediate(mask));
// Load the key (consisting of map and internalized string) from the cache and
// check for match.
Label load_in_object_property;
static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
Label hit_on_nth_entry[kEntriesPerBucket];
ExternalReference cache_keys
= ExternalReference::keyed_lookup_cache_keys(masm->isolate());
for (int i = 0; i < kEntriesPerBucket - 1; i++) {
Label try_next_entry;
__ movq(rdi, rcx);
__ shl(rdi, Immediate(kPointerSizeLog2 + 1));
__ LoadAddress(kScratchRegister, cache_keys);
int off = kPointerSize * i * 2;
__ cmpq(rbx, Operand(kScratchRegister, rdi, times_1, off));
__ j(not_equal, &try_next_entry);
__ cmpq(rax, Operand(kScratchRegister, rdi, times_1, off + kPointerSize));
__ j(equal, &hit_on_nth_entry[i]);
__ bind(&try_next_entry);
}
int off = kPointerSize * (kEntriesPerBucket - 1) * 2;
__ cmpq(rbx, Operand(kScratchRegister, rdi, times_1, off));
__ j(not_equal, &slow);
__ cmpq(rax, Operand(kScratchRegister, rdi, times_1, off + kPointerSize));
__ j(not_equal, &slow);
// Get field offset, which is a 32-bit integer.
ExternalReference cache_field_offsets
= ExternalReference::keyed_lookup_cache_field_offsets(masm->isolate());
// Hit on nth entry.
for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
__ bind(&hit_on_nth_entry[i]);
if (i != 0) {
__ addl(rcx, Immediate(i));
}
__ LoadAddress(kScratchRegister, cache_field_offsets);
__ movl(rdi, Operand(kScratchRegister, rcx, times_4, 0));
__ movzxbq(rcx, FieldOperand(rbx, Map::kInObjectPropertiesOffset));
__ subq(rdi, rcx);
__ j(above_equal, &property_array_property);
if (i != 0) {
__ jmp(&load_in_object_property);
}
}
// Load in-object property.
__ bind(&load_in_object_property);
__ movzxbq(rcx, FieldOperand(rbx, Map::kInstanceSizeOffset));
__ addq(rcx, rdi);
__ movq(rax, FieldOperand(rdx, rcx, times_pointer_size, 0));
__ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1);
__ ret(0);
// Load property array property.
__ bind(&property_array_property);
__ movq(rax, FieldOperand(rdx, JSObject::kPropertiesOffset));
__ movq(rax, FieldOperand(rax, rdi, times_pointer_size,
FixedArray::kHeaderSize));
__ IncrementCounter(counters->keyed_load_generic_lookup_cache(), 1);
__ ret(0);
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
// rdx: receiver
// rax: key
// rbx: elements
__ movq(rcx, FieldOperand(rdx, JSObject::kMapOffset));
__ movb(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, rcx, &slow);
GenerateDictionaryLoad(masm, &slow, rbx, rax, rcx, rdi, rax);
__ IncrementCounter(counters->keyed_load_generic_symbol(), 1);
__ ret(0);
__ bind(&index_name);
__ IndexFromHash(rbx, rax);
__ jmp(&index_smi);
}
void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Register receiver = rdx;
Register index = rax;
Register scratch = rcx;
Register result = rax;
StringCharAtGenerator char_at_generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
STRING_INDEX_IS_ARRAY_INDEX);
char_at_generator.GenerateFast(masm);
__ ret(0);
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, call_helper);
__ bind(&miss);
GenerateMiss(masm, MISS);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow;
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &slow);
// Check that the key is an array index, that is Uint32.
STATIC_ASSERT(kSmiValueSize <= 32);
__ JumpUnlessNonNegativeSmi(rax, &slow);
// Get the map of the receiver.
__ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
// Check that it has indexed interceptor and access checks
// are not enabled for this object.
__ movb(rcx, FieldOperand(rcx, Map::kBitFieldOffset));
__ andb(rcx, Immediate(kSlowCaseBitFieldMask));
__ cmpb(rcx, Immediate(1 << Map::kHasIndexedInterceptor));
__ j(not_zero, &slow);
// Everything is fine, call runtime.
__ PopReturnAddressTo(rcx);
__ push(rdx); // receiver
__ push(rax); // key
__ PushReturnAddressFrom(rcx);
// Perform tail call to the entry.
__ TailCallExternalReference(
ExternalReference(IC_Utility(kKeyedLoadPropertyWithInterceptor),
masm->isolate()),
2,
1);
__ bind(&slow);
GenerateMiss(masm, MISS);
}
static void KeyedStoreGenerateGenericHelper(
MacroAssembler* masm,
Label* fast_object,
Label* fast_double,
Label* slow,
KeyedStoreCheckMap check_map,
KeyedStoreIncrementLength increment_length) {
Label transition_smi_elements;
Label finish_object_store, non_double_value, transition_double_elements;
Label fast_double_without_map_check;
// Fast case: Do the store, could be either Object or double.
__ bind(fast_object);
// rax: value
// rbx: receiver's elements array (a FixedArray)
// rcx: index
// rdx: receiver (a JSArray)
// r9: map of receiver
if (check_map == kCheckMap) {
__ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset));
__ CompareRoot(rdi, Heap::kFixedArrayMapRootIndex);
__ j(not_equal, fast_double);
}
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(rax, &non_smi_value);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ leal(rdi, Operand(rcx, 1));
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rdi);
}
// It's irrelevant whether array is smi-only or not when writing a smi.
__ movq(FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize),
rax);
__ ret(0);
__ bind(&non_smi_value);
// Writing a non-smi, check whether array allows non-smi elements.
// r9: receiver's map
__ CheckFastObjectElements(r9, &transition_smi_elements);
__ bind(&finish_object_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ leal(rdi, Operand(rcx, 1));
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rdi);
}
__ movq(FieldOperand(rbx, rcx, times_pointer_size, FixedArray::kHeaderSize),
rax);
__ movq(rdx, rax); // Preserve the value which is returned.
__ RecordWriteArray(
rbx, rdx, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ ret(0);
__ bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
// rdi: elements array's map
__ CompareRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex);
__ j(not_equal, slow);
}
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(rax, rbx, rcx, xmm0,
&transition_double_elements);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ leal(rdi, Operand(rcx, 1));
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rdi);
}
__ ret(0);
__ bind(&transition_smi_elements);
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
// Transition the array appropriately depending on the value type.
__ movq(r9, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(r9, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &non_double_value);
// Value is a double. Transition FAST_SMI_ELEMENTS ->
// FAST_DOUBLE_ELEMENTS and complete the store.
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS,
rbx,
rdi,
slow);
AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, mode, slow);
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ jmp(&fast_double_without_map_check);
__ bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS,
rbx,
rdi,
slow);
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(masm, mode,
slow);
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
__ bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS,
FAST_ELEMENTS,
rbx,
rdi,
slow);
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(masm, mode, slow);
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, slow_with_tagged_index, fast_object, fast_object_grow;
Label fast_double, fast_double_grow;
Label array, extra, check_if_double_array;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &slow_with_tagged_index);
// Get the map from the receiver.
__ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ testb(FieldOperand(r9, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow_with_tagged_index);
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &slow_with_tagged_index);
__ SmiToInteger32(rcx, rcx);
__ CmpInstanceType(r9, JS_ARRAY_TYPE);
__ j(equal, &array);
// Check that the object is some kind of JSObject.
__ CmpInstanceType(r9, FIRST_JS_OBJECT_TYPE);
__ j(below, &slow);
// Object case: Check key against length in the elements array.
// rax: value
// rdx: JSObject
// rcx: index
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
// Check array bounds.
__ SmiCompareInteger32(FieldOperand(rbx, FixedArray::kLengthOffset), rcx);
// rax: value
// rbx: FixedArray
// rcx: index
__ j(above, &fast_object);
// Slow case: call runtime.
__ bind(&slow);
__ Integer32ToSmi(rcx, rcx);
__ bind(&slow_with_tagged_index);
GenerateRuntimeSetProperty(masm, strict_mode);
// Never returns to here.
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// rax: value
// rdx: receiver (a JSArray)
// rbx: receiver's elements array (a FixedArray)
// rcx: index
// flags: smicompare (rdx.length(), rbx)
__ j(not_equal, &slow); // do not leave holes in the array
__ SmiCompareInteger32(FieldOperand(rbx, FixedArray::kLengthOffset), rcx);
__ j(below_equal, &slow);
// Increment index to get new length.
__ movq(rdi, FieldOperand(rbx, HeapObject::kMapOffset));
__ CompareRoot(rdi, Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &check_if_double_array);
__ jmp(&fast_object_grow);
__ bind(&check_if_double_array);
// rdi: elements array's map
__ CompareRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex);
__ j(not_equal, &slow);
__ jmp(&fast_double_grow);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
// rax: value
// rdx: receiver (a JSArray)
// rcx: index
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
// Check the key against the length in the array, compute the
// address to store into and fall through to fast case.
__ SmiCompareInteger32(FieldOperand(rdx, JSArray::kLengthOffset), rcx);
__ j(below_equal, &extra);
KeyedStoreGenerateGenericHelper(masm, &fast_object, &fast_double,
&slow, kCheckMap, kDontIncrementLength);
KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow,
&slow, kDontCheckMap, kIncrementLength);
}
// The generated code does not accept smi keys.
// The generated code falls through if both probes miss.
void CallICBase::GenerateMonomorphicCacheProbe(MacroAssembler* masm,
int argc,
Code::Kind kind,
Code::ExtraICState extra_state) {
// ----------- S t a t e -------------
// rcx : function name
// rdx : receiver
// -----------------------------------
Label number, non_number, non_string, boolean, probe, miss;
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(kind,
MONOMORPHIC,
extra_state,
Code::NORMAL,
argc);
Isolate::Current()->stub_cache()->GenerateProbe(masm, flags, rdx, rcx, rbx,
rax);
// If the stub cache probing failed, the receiver might be a value.
// For value objects, we use the map of the prototype objects for
// the corresponding JSValue for the cache and that is what we need
// to probe.
//
// Check for number.
__ JumpIfSmi(rdx, &number);
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rbx);
__ j(not_equal, &non_number);
__ bind(&number);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::NUMBER_FUNCTION_INDEX, rdx);
__ jmp(&probe);
// Check for string.
__ bind(&non_number);
__ CmpInstanceType(rbx, FIRST_NONSTRING_TYPE);
__ j(above_equal, &non_string);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::STRING_FUNCTION_INDEX, rdx);
__ jmp(&probe);
// Check for boolean.
__ bind(&non_string);
__ CompareRoot(rdx, Heap::kTrueValueRootIndex);
__ j(equal, &boolean);
__ CompareRoot(rdx, Heap::kFalseValueRootIndex);
__ j(not_equal, &miss);
__ bind(&boolean);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::BOOLEAN_FUNCTION_INDEX, rdx);
// Probe the stub cache for the value object.
__ bind(&probe);
Isolate::Current()->stub_cache()->GenerateProbe(masm, flags, rdx, rcx, rbx,
no_reg);
__ bind(&miss);
}
static void GenerateFunctionTailCall(MacroAssembler* masm,
int argc,
Label* miss) {
// ----------- S t a t e -------------
// rcx : function name
// rdi : function
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
__ JumpIfSmi(rdi, miss);
// Check that the value is a JavaScript function.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rdx);
__ j(not_equal, miss);
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(rdi, actual, JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
// The generated code falls through if the call should be handled by runtime.
void CallICBase::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Label miss;
StackArgumentsAccessor args(rsp, argc);
__ movq(rdx, args.GetReceiverOperand());
GenerateNameDictionaryReceiverCheck(masm, rdx, rax, rbx, &miss);
// rax: elements
// Search the dictionary placing the result in rdi.
GenerateDictionaryLoad(masm, &miss, rax, rcx, rbx, rdi, rdi);
GenerateFunctionTailCall(masm, argc, &miss);
__ bind(&miss);
}
void CallICBase::GenerateMiss(MacroAssembler* masm,
int argc,
IC::UtilityId id,
Code::ExtraICState extra_state) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
if (id == IC::kCallIC_Miss) {
__ IncrementCounter(counters->call_miss(), 1);
} else {
__ IncrementCounter(counters->keyed_call_miss(), 1);
}
StackArgumentsAccessor args(rsp, argc);
__ movq(rdx, args.GetReceiverOperand());
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the receiver and the name of the function.
__ push(rdx);
__ push(rcx);
// Call the entry.
CEntryStub stub(1);
__ Set(rax, 2);
__ LoadAddress(rbx, ExternalReference(IC_Utility(id), masm->isolate()));
__ CallStub(&stub);
// Move result to rdi and exit the internal frame.
__ movq(rdi, rax);
}
// Check if the receiver is a global object of some sort.
// This can happen only for regular CallIC but not KeyedCallIC.
if (id == IC::kCallIC_Miss) {
Label invoke, global;
__ movq(rdx, args.GetReceiverOperand());
__ JumpIfSmi(rdx, &invoke);
__ CmpObjectType(rdx, JS_GLOBAL_OBJECT_TYPE, rcx);
__ j(equal, &global);
__ CmpInstanceType(rcx, JS_BUILTINS_OBJECT_TYPE);
__ j(not_equal, &invoke);
// Patch the receiver on the stack.
__ bind(&global);
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(args.GetReceiverOperand(), rdx);
__ bind(&invoke);
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_state)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
ParameterCount actual(argc);
__ InvokeFunction(rdi,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
call_kind);
}
void CallIC::GenerateMegamorphic(MacroAssembler* masm,
int argc,
Code::ExtraICState extra_ic_state) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
StackArgumentsAccessor args(rsp, argc);
__ movq(rdx, args.GetReceiverOperand());
GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC, extra_ic_state);
GenerateMiss(masm, argc, extra_ic_state);
}
void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
StackArgumentsAccessor args(rsp, argc);
__ movq(rdx, args.GetReceiverOperand());
Label do_call, slow_call, slow_load;
Label check_number_dictionary, check_name, lookup_monomorphic_cache;
Label index_smi, index_name;
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, rdx, rax, Map::kHasIndexedInterceptor, &slow_call);
GenerateFastArrayLoad(
masm, rdx, rcx, rax, rbx, rdi, &check_number_dictionary, &slow_load);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_call_generic_smi_fast(), 1);
__ bind(&do_call);
// receiver in rdx is not used after this point.
// rcx: key
// rdi: function
GenerateFunctionTailCall(masm, argc, &slow_call);
__ bind(&check_number_dictionary);
// rax: elements
// rcx: smi key
// Check whether the elements is a number dictionary.
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, &slow_load);
__ SmiToInteger32(rbx, rcx);
// ebx: untagged index
__ LoadFromNumberDictionary(&slow_load, rax, rcx, rbx, r9, rdi, rdi);
__ IncrementCounter(counters->keyed_call_generic_smi_dict(), 1);
__ jmp(&do_call);
__ bind(&slow_load);
// This branch is taken when calling KeyedCallIC_Miss is neither required
// nor beneficial.
__ IncrementCounter(counters->keyed_call_generic_slow_load(), 1);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(rcx); // save the key
__ push(rdx); // pass the receiver
__ push(rcx); // pass the key
__ CallRuntime(Runtime::kKeyedGetProperty, 2);
__ pop(rcx); // restore the key
}
__ movq(rdi, rax);
__ jmp(&do_call);
__ bind(&check_name);
GenerateKeyNameCheck(masm, rcx, rax, rbx, &index_name, &slow_call);
// The key is known to be a unique name.
// If the receiver is a regular JS object with slow properties then do
// a quick inline probe of the receiver's dictionary.
// Otherwise do the monomorphic cache probe.
GenerateKeyedLoadReceiverCheck(
masm, rdx, rax, Map::kHasNamedInterceptor, &lookup_monomorphic_cache);
__ movq(rbx, FieldOperand(rdx, JSObject::kPropertiesOffset));
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, &lookup_monomorphic_cache);
GenerateDictionaryLoad(masm, &slow_load, rbx, rcx, rax, rdi, rdi);
__ IncrementCounter(counters->keyed_call_generic_lookup_dict(), 1);
__ jmp(&do_call);
__ bind(&lookup_monomorphic_cache);
__ IncrementCounter(counters->keyed_call_generic_lookup_cache(), 1);
GenerateMonomorphicCacheProbe(masm,
argc,
Code::KEYED_CALL_IC,
Code::kNoExtraICState);
// Fall through on miss.
__ bind(&slow_call);
// This branch is taken if:
// - the receiver requires boxing or access check,
// - the key is neither smi nor a unique name,
// - the value loaded is not a function,
// - there is hope that the runtime will create a monomorphic call stub
// that will get fetched next time.
__ IncrementCounter(counters->keyed_call_generic_slow(), 1);
GenerateMiss(masm, argc);
__ bind(&index_name);
__ IndexFromHash(rbx, rcx);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
// Check if the name is really a name.
Label miss;
__ JumpIfSmi(rcx, &miss);
Condition cond = masm->IsObjectNameType(rcx, rax, rax);
__ j(NegateCondition(cond), &miss);
CallICBase::GenerateNormal(masm, argc);
__ bind(&miss);
GenerateMiss(masm, argc);
}
static Operand GenerateMappedArgumentsLookup(MacroAssembler* masm,
Register object,
Register key,
Register scratch1,
Register scratch2,
Register scratch3,
Label* unmapped_case,
Label* slow_case) {
Heap* heap = masm->isolate()->heap();
// Check that the receiver is a JSObject. Because of the elements
// map check later, we do not need to check for interceptors or
// whether it requires access checks.
__ JumpIfSmi(object, slow_case);
// Check that the object is some kind of JSObject.
__ CmpObjectType(object, FIRST_JS_RECEIVER_TYPE, scratch1);
__ j(below, slow_case);
// Check that the key is a positive smi.
Condition check = masm->CheckNonNegativeSmi(key);
__ j(NegateCondition(check), slow_case);
// Load the elements into scratch1 and check its map. If not, jump
// to the unmapped lookup with the parameter map in scratch1.
Handle<Map> arguments_map(heap->non_strict_arguments_elements_map());
__ movq(scratch1, FieldOperand(object, JSObject::kElementsOffset));
__ CheckMap(scratch1, arguments_map, slow_case, DONT_DO_SMI_CHECK);
// Check if element is in the range of mapped arguments.
__ movq(scratch2, FieldOperand(scratch1, FixedArray::kLengthOffset));
__ SmiSubConstant(scratch2, scratch2, Smi::FromInt(2));
__ cmpq(key, scratch2);
__ j(greater_equal, unmapped_case);
// Load element index and check whether it is the hole.
const int kHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize;
__ SmiToInteger64(scratch3, key);
__ movq(scratch2, FieldOperand(scratch1,
scratch3,
times_pointer_size,
kHeaderSize));
__ CompareRoot(scratch2, Heap::kTheHoleValueRootIndex);
__ j(equal, unmapped_case);
// Load value from context and return it. We can reuse scratch1 because
// we do not jump to the unmapped lookup (which requires the parameter
// map in scratch1).
__ movq(scratch1, FieldOperand(scratch1, FixedArray::kHeaderSize));
__ SmiToInteger64(scratch3, scratch2);
return FieldOperand(scratch1,
scratch3,
times_pointer_size,
Context::kHeaderSize);
}
static Operand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
Register key,
Register parameter_map,
Register scratch,
Label* slow_case) {
// Element is in arguments backing store, which is referenced by the
// second element of the parameter_map. The parameter_map register
// must be loaded with the parameter map of the arguments object and is
// overwritten.
const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
Register backing_store = parameter_map;
__ movq(backing_store, FieldOperand(parameter_map, kBackingStoreOffset));
Handle<Map> fixed_array_map(masm->isolate()->heap()->fixed_array_map());
__ CheckMap(backing_store, fixed_array_map, slow_case, DONT_DO_SMI_CHECK);
__ movq(scratch, FieldOperand(backing_store, FixedArray::kLengthOffset));
__ cmpq(key, scratch);
__ j(greater_equal, slow_case);
__ SmiToInteger64(scratch, key);
return FieldOperand(backing_store,
scratch,
times_pointer_size,
FixedArray::kHeaderSize);
}
void KeyedLoadIC::GenerateNonStrictArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, notin;
Operand mapped_location =
GenerateMappedArgumentsLookup(
masm, rdx, rax, rbx, rcx, rdi, &notin, &slow);
__ movq(rax, mapped_location);
__ Ret();
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in rbx.
Operand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, rax, rbx, rcx, &slow);
__ CompareRoot(unmapped_location, Heap::kTheHoleValueRootIndex);
__ j(equal, &slow);
__ movq(rax, unmapped_location);
__ Ret();
__ bind(&slow);
GenerateMiss(masm, MISS);
}
void KeyedStoreIC::GenerateNonStrictArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, notin;
Operand mapped_location = GenerateMappedArgumentsLookup(
masm, rdx, rcx, rbx, rdi, r8, &notin, &slow);
__ movq(mapped_location, rax);
__ lea(r9, mapped_location);
__ movq(r8, rax);
__ RecordWrite(rbx,
r9,
r8,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
INLINE_SMI_CHECK);
__ Ret();
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in rbx.
Operand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, rcx, rbx, rdi, &slow);
__ movq(unmapped_location, rax);
__ lea(r9, unmapped_location);
__ movq(r8, rax);
__ RecordWrite(rbx,
r9,
r8,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
INLINE_SMI_CHECK);
__ Ret();
__ bind(&slow);
GenerateMiss(masm, MISS);
}
void KeyedCallIC::GenerateNonStrictArguments(MacroAssembler* masm,
int argc) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Label slow, notin;
StackArgumentsAccessor args(rsp, argc);
__ movq(rdx, args.GetReceiverOperand());
Operand mapped_location = GenerateMappedArgumentsLookup(
masm, rdx, rcx, rbx, rax, r8, &notin, &slow);
__ movq(rdi, mapped_location);
GenerateFunctionTailCall(masm, argc, &slow);
__ bind(&notin);
// The unmapped lookup expects that the parameter map is in rbx.
Operand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, rcx, rbx, rax, &slow);
__ CompareRoot(unmapped_location, Heap::kTheHoleValueRootIndex);
__ j(equal, &slow);
__ movq(rdi, unmapped_location);
GenerateFunctionTailCall(masm, argc, &slow);
__ bind(&slow);
GenerateMiss(masm, argc);
}
void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(
Code::STUB, MONOMORPHIC, Code::kNoExtraICState,
Code::NORMAL, Code::LOAD_IC);
Isolate::Current()->stub_cache()->GenerateProbe(
masm, flags, rax, rcx, rbx, rdx);
GenerateMiss(masm);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
GenerateNameDictionaryReceiverCheck(masm, rax, rdx, rbx, &miss);
// rdx: elements
// Search the dictionary placing the result in rax.
GenerateDictionaryLoad(masm, &miss, rdx, rcx, rbx, rdi, rax);
__ ret(0);
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->load_miss(), 1);
__ PopReturnAddressTo(rbx);
__ push(rax); // receiver
__ push(rcx); // name
__ PushReturnAddressFrom(rbx);
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kLoadIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 2, 1);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rbx);
__ push(rax); // receiver
__ push(rcx); // name
__ PushReturnAddressFrom(rbx);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kGetProperty, 2, 1);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm, ICMissMode miss_mode) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_load_miss(), 1);
__ PopReturnAddressTo(rbx);
__ push(rdx); // receiver
__ push(rax); // name
__ PushReturnAddressFrom(rbx);
// Perform tail call to the entry.
ExternalReference ref = miss_mode == MISS_FORCE_GENERIC
? ExternalReference(IC_Utility(kKeyedLoadIC_MissForceGeneric),
masm->isolate())
: ExternalReference(IC_Utility(kKeyedLoadIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 2, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rbx);
__ push(rdx); // receiver
__ push(rax); // name
__ PushReturnAddressFrom(rbx);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
// Get the receiver from the stack and probe the stub cache.
Code::Flags flags = Code::ComputeFlags(
Code::STUB, MONOMORPHIC, strict_mode,
Code::NORMAL, Code::STORE_IC);
Isolate::Current()->stub_cache()->GenerateProbe(masm, flags, rdx, rcx, rbx,
no_reg);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rbx);
__ push(rdx); // receiver
__ push(rcx); // name
__ push(rax); // value
__ PushReturnAddressFrom(rbx);
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
GenerateNameDictionaryReceiverCheck(masm, rdx, rbx, rdi, &miss);
GenerateDictionaryStore(masm, &miss, rbx, rcx, rax, r8, r9);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->store_normal_hit(), 1);
__ ret(0);
__ bind(&miss);
__ IncrementCounter(counters->store_normal_miss(), 1);
GenerateMiss(masm);
}
void StoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rbx);
__ push(rdx);
__ push(rcx);
__ push(rax);
__ Push(Smi::FromInt(NONE)); // PropertyAttributes
__ Push(Smi::FromInt(strict_mode));
__ PushReturnAddressFrom(rbx);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}
void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rbx);
__ push(rdx); // receiver
__ push(rcx); // key
__ push(rax); // value
__ Push(Smi::FromInt(NONE)); // PropertyAttributes
__ Push(Smi::FromInt(strict_mode)); // Strict mode.
__ PushReturnAddressFrom(rbx);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}
void StoreIC::GenerateSlow(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rbx);
__ push(rdx); // receiver
__ push(rcx); // key
__ push(rax); // value
__ PushReturnAddressFrom(rbx);
// Do tail-call to runtime routine.
ExternalReference ref(IC_Utility(kStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rbx);
__ push(rdx); // receiver
__ push(rcx); // key
__ push(rax); // value
__ PushReturnAddressFrom(rbx);
// Do tail-call to runtime routine.
ExternalReference ref(IC_Utility(kKeyedStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm, ICMissMode miss_mode) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(rbx);
__ push(rdx); // receiver
__ push(rcx); // key
__ push(rax); // value
__ PushReturnAddressFrom(rbx);
// Do tail-call to runtime routine.
ExternalReference ref = miss_mode == MISS_FORCE_GENERIC
? ExternalReference(IC_Utility(kKeyedStoreIC_MissForceGeneric),
masm->isolate())
: ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return equal;
case Token::LT:
return less;
case Token::GT:
return greater;
case Token::LTE:
return less_equal;
case Token::GTE:
return greater_equal;
default:
UNREACHABLE();
return no_condition;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test al, nothing
// was inlined.
return *test_instruction_address == Assembler::kTestAlByte;
}
void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test al, nothing
// was inlined.
if (*test_instruction_address != Assembler::kTestAlByte) {
ASSERT(*test_instruction_address == Assembler::kNopByte);
return;
}
Address delta_address = test_instruction_address + 1;
// The delta to the start of the map check instruction and the
// condition code uses at the patched jump.
int8_t delta = *reinterpret_cast<int8_t*>(delta_address);
if (FLAG_trace_ic) {
PrintF("[ patching ic at %p, test=%p, delta=%d\n",
address, test_instruction_address, delta);
}
// Patch with a short conditional jump. Enabling means switching from a short
// jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the
// reverse operation of that.
Address jmp_address = test_instruction_address - delta;
ASSERT((check == ENABLE_INLINED_SMI_CHECK)
? (*jmp_address == Assembler::kJncShortOpcode ||
*jmp_address == Assembler::kJcShortOpcode)
: (*jmp_address == Assembler::kJnzShortOpcode ||
*jmp_address == Assembler::kJzShortOpcode));
Condition cc = (check == ENABLE_INLINED_SMI_CHECK)
? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero)
: (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry);
*jmp_address = static_cast<byte>(Assembler::kJccShortPrefix | cc);
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64