blob: b0e37fdc8b2a8ef74d38e98b70d251058a6de581 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "optimizing-compiler-thread.h"
#include "v8.h"
#include "hydrogen.h"
#include "isolate.h"
#include "v8threads.h"
namespace v8 {
namespace internal {
void OptimizingCompilerThread::Run() {
#ifdef DEBUG
{ LockGuard<Mutex> lock_guard(&thread_id_mutex_);
thread_id_ = ThreadId::Current().ToInteger();
}
#endif
Isolate::SetIsolateThreadLocals(isolate_, NULL);
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
ElapsedTimer total_timer;
if (FLAG_trace_concurrent_recompilation) total_timer.Start();
while (true) {
input_queue_semaphore_.Wait();
Logger::TimerEventScope timer(
isolate_, Logger::TimerEventScope::v8_recompile_concurrent);
if (FLAG_concurrent_recompilation_delay != 0) {
OS::Sleep(FLAG_concurrent_recompilation_delay);
}
switch (static_cast<StopFlag>(Acquire_Load(&stop_thread_))) {
case CONTINUE:
break;
case STOP:
if (FLAG_trace_concurrent_recompilation) {
time_spent_total_ = total_timer.Elapsed();
}
stop_semaphore_.Signal();
return;
case FLUSH:
// The main thread is blocked, waiting for the stop semaphore.
{ AllowHandleDereference allow_handle_dereference;
FlushInputQueue(true);
}
Release_Store(&queue_length_, static_cast<AtomicWord>(0));
Release_Store(&stop_thread_, static_cast<AtomicWord>(CONTINUE));
stop_semaphore_.Signal();
// Return to start of consumer loop.
continue;
}
ElapsedTimer compiling_timer;
if (FLAG_trace_concurrent_recompilation) compiling_timer.Start();
CompileNext();
if (FLAG_trace_concurrent_recompilation) {
time_spent_compiling_ += compiling_timer.Elapsed();
}
}
}
void OptimizingCompilerThread::CompileNext() {
OptimizingCompiler* optimizing_compiler = NULL;
bool result = input_queue_.Dequeue(&optimizing_compiler);
USE(result);
ASSERT(result);
Barrier_AtomicIncrement(&queue_length_, static_cast<Atomic32>(-1));
// The function may have already been optimized by OSR. Simply continue.
OptimizingCompiler::Status status = optimizing_compiler->OptimizeGraph();
USE(status); // Prevent an unused-variable error in release mode.
ASSERT(status != OptimizingCompiler::FAILED);
// The function may have already been optimized by OSR. Simply continue.
// Use a mutex to make sure that functions marked for install
// are always also queued.
if (!optimizing_compiler->info()->osr_ast_id().IsNone()) {
ASSERT(FLAG_concurrent_osr);
LockGuard<Mutex> access_osr_lists(&osr_list_mutex_);
osr_candidates_.RemoveElement(optimizing_compiler);
ready_for_osr_.Add(optimizing_compiler);
} else {
LockGuard<Mutex> mark_and_queue(&install_mutex_);
Heap::RelocationLock relocation_lock(isolate_->heap());
AllowHandleDereference ahd;
optimizing_compiler->info()->closure()->MarkForInstallingRecompiledCode();
output_queue_.Enqueue(optimizing_compiler);
}
}
void OptimizingCompilerThread::FlushInputQueue(bool restore_function_code) {
OptimizingCompiler* optimizing_compiler;
// The optimizing compiler is allocated in the CompilationInfo's zone.
while (input_queue_.Dequeue(&optimizing_compiler)) {
// This should not block, since we have one signal on the input queue
// semaphore corresponding to each element in the input queue.
input_queue_semaphore_.Wait();
CompilationInfo* info = optimizing_compiler->info();
if (restore_function_code) {
Handle<JSFunction> function = info->closure();
function->ReplaceCode(function->shared()->code());
}
delete info;
}
}
void OptimizingCompilerThread::FlushOutputQueue(bool restore_function_code) {
OptimizingCompiler* optimizing_compiler;
// The optimizing compiler is allocated in the CompilationInfo's zone.
while (output_queue_.Dequeue(&optimizing_compiler)) {
CompilationInfo* info = optimizing_compiler->info();
if (restore_function_code) {
Handle<JSFunction> function = info->closure();
function->ReplaceCode(function->shared()->code());
}
delete info;
}
osr_candidates_.Clear();
RemoveStaleOSRCandidates(0);
}
void OptimizingCompilerThread::Flush() {
ASSERT(!IsOptimizerThread());
Release_Store(&stop_thread_, static_cast<AtomicWord>(FLUSH));
input_queue_semaphore_.Signal();
stop_semaphore_.Wait();
FlushOutputQueue(true);
}
void OptimizingCompilerThread::Stop() {
ASSERT(!IsOptimizerThread());
Release_Store(&stop_thread_, static_cast<AtomicWord>(STOP));
input_queue_semaphore_.Signal();
stop_semaphore_.Wait();
if (FLAG_concurrent_recompilation_delay != 0) {
// Barrier when loading queue length is not necessary since the write
// happens in CompileNext on the same thread.
// This is used only for testing.
while (NoBarrier_Load(&queue_length_) > 0) CompileNext();
InstallOptimizedFunctions();
} else {
FlushInputQueue(false);
FlushOutputQueue(false);
}
if (FLAG_trace_concurrent_recompilation) {
double percentage = time_spent_compiling_.PercentOf(time_spent_total_);
PrintF(" ** Compiler thread did %.2f%% useful work\n", percentage);
}
if (FLAG_trace_osr && FLAG_concurrent_osr) {
PrintF("[COSR hit rate %d / %d]\n", osr_hits_, osr_attempts_);
}
Join();
}
void OptimizingCompilerThread::InstallOptimizedFunctions() {
ASSERT(!IsOptimizerThread());
HandleScope handle_scope(isolate_);
OptimizingCompiler* compiler;
while (true) {
{ // Memory barrier to ensure marked functions are queued.
LockGuard<Mutex> marked_and_queued(&install_mutex_);
if (!output_queue_.Dequeue(&compiler)) return;
}
Compiler::InstallOptimizedCode(compiler);
}
// Remove the oldest OSR candidates that are ready so that we
// only have limited number of them waiting.
if (FLAG_concurrent_osr) RemoveStaleOSRCandidates();
}
void OptimizingCompilerThread::QueueForOptimization(
OptimizingCompiler* optimizing_compiler) {
ASSERT(IsQueueAvailable());
ASSERT(!IsOptimizerThread());
Barrier_AtomicIncrement(&queue_length_, static_cast<Atomic32>(1));
if (optimizing_compiler->info()->osr_ast_id().IsNone()) {
optimizing_compiler->info()->closure()->MarkInRecompileQueue();
} else {
LockGuard<Mutex> access_osr_lists(&osr_list_mutex_);
osr_candidates_.Add(optimizing_compiler);
osr_attempts_++;
}
input_queue_.Enqueue(optimizing_compiler);
input_queue_semaphore_.Signal();
}
OptimizingCompiler* OptimizingCompilerThread::FindReadyOSRCandidate(
Handle<JSFunction> function, uint32_t osr_pc_offset) {
ASSERT(!IsOptimizerThread());
LockGuard<Mutex> access_osr_lists(&osr_list_mutex_);
for (int i = 0; i < ready_for_osr_.length(); i++) {
if (ready_for_osr_[i]->info()->HasSameOsrEntry(function, osr_pc_offset)) {
osr_hits_++;
return ready_for_osr_.Remove(i);
}
}
return NULL;
}
bool OptimizingCompilerThread::IsQueuedForOSR(Handle<JSFunction> function,
uint32_t osr_pc_offset) {
ASSERT(!IsOptimizerThread());
LockGuard<Mutex> access_osr_lists(&osr_list_mutex_);
for (int i = 0; i < osr_candidates_.length(); i++) {
if (osr_candidates_[i]->info()->HasSameOsrEntry(function, osr_pc_offset)) {
return true;
}
}
return false;
}
void OptimizingCompilerThread::RemoveStaleOSRCandidates(int limit) {
ASSERT(!IsOptimizerThread());
LockGuard<Mutex> access_osr_lists(&osr_list_mutex_);
while (ready_for_osr_.length() > limit) {
OptimizingCompiler* compiler = ready_for_osr_.Remove(0);
CompilationInfo* throw_away = compiler->info();
if (FLAG_trace_osr) {
PrintF("[COSR - Discarded ");
throw_away->closure()->PrintName();
PrintF(", AST id %d]\n",
throw_away->osr_ast_id().ToInt());
}
delete throw_away;
}
}
#ifdef DEBUG
bool OptimizingCompilerThread::IsOptimizerThread() {
if (!FLAG_concurrent_recompilation) return false;
LockGuard<Mutex> lock_guard(&thread_id_mutex_);
return ThreadId::Current().ToInteger() == thread_id_;
}
#endif
} } // namespace v8::internal