blob: 13b819bd1e79c1452979961fd082c2af73171e56 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Platform specific code for POSIX goes here. This is not a platform on its
// own but contains the parts which are the same across POSIX platforms Linux,
// Mac OS, FreeBSD and OpenBSD.
#include "platform-posix.h"
#include <dlfcn.h>
#include <pthread.h>
#if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
#include <pthread_np.h> // for pthread_set_name_np
#endif
#include <sched.h> // for sched_yield
#include <unistd.h>
#include <errno.h>
#include <time.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/stat.h>
#if defined(__linux__)
#include <sys/prctl.h> // for prctl
#endif
#if defined(__APPLE__) || defined(__DragonFly__) || defined(__FreeBSD__) || \
defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/sysctl.h> // for sysctl
#endif
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netdb.h>
#undef MAP_TYPE
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
#define LOG_TAG "v8"
#include <android/log.h>
#endif
#include "v8.h"
#include "codegen.h"
#include "platform.h"
namespace v8 {
namespace internal {
// 0 is never a valid thread id.
static const pthread_t kNoThread = (pthread_t) 0;
uint64_t OS::CpuFeaturesImpliedByPlatform() {
#if defined(__APPLE__)
// Mac OS X requires all these to install so we can assume they are present.
// These constants are defined by the CPUid instructions.
const uint64_t one = 1;
return (one << SSE2) | (one << CMOV) | (one << RDTSC) | (one << CPUID);
#else
return 0; // Nothing special about the other systems.
#endif
}
// Maximum size of the virtual memory. 0 means there is no artificial
// limit.
intptr_t OS::MaxVirtualMemory() {
struct rlimit limit;
int result = getrlimit(RLIMIT_DATA, &limit);
if (result != 0) return 0;
return limit.rlim_cur;
}
int OS::ActivationFrameAlignment() {
#if V8_TARGET_ARCH_ARM
// On EABI ARM targets this is required for fp correctness in the
// runtime system.
return 8;
#elif V8_TARGET_ARCH_MIPS
return 8;
#else
// Otherwise we just assume 16 byte alignment, i.e.:
// - With gcc 4.4 the tree vectorization optimizer can generate code
// that requires 16 byte alignment such as movdqa on x86.
// - Mac OS X and Solaris (64-bit) activation frames must be 16 byte-aligned;
// see "Mac OS X ABI Function Call Guide"
return 16;
#endif
}
intptr_t OS::CommitPageSize() {
static intptr_t page_size = getpagesize();
return page_size;
}
void OS::Free(void* address, const size_t size) {
// TODO(1240712): munmap has a return value which is ignored here.
int result = munmap(address, size);
USE(result);
ASSERT(result == 0);
}
// Get rid of writable permission on code allocations.
void OS::ProtectCode(void* address, const size_t size) {
#if defined(__CYGWIN__)
DWORD old_protect;
VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
#elif defined(__native_client__)
// The Native Client port of V8 uses an interpreter, so
// code pages don't need PROT_EXEC.
mprotect(address, size, PROT_READ);
#else
mprotect(address, size, PROT_READ | PROT_EXEC);
#endif
}
// Create guard pages.
void OS::Guard(void* address, const size_t size) {
#if defined(__CYGWIN__)
DWORD oldprotect;
VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect);
#else
mprotect(address, size, PROT_NONE);
#endif
}
void* OS::GetRandomMmapAddr() {
#if defined(__native_client__)
// TODO(bradchen): restore randomization once Native Client gets
// smarter about using mmap address hints.
// See http://code.google.com/p/nativeclient/issues/3341
return NULL;
#endif
Isolate* isolate = Isolate::UncheckedCurrent();
// Note that the current isolate isn't set up in a call path via
// CpuFeatures::Probe. We don't care about randomization in this case because
// the code page is immediately freed.
if (isolate != NULL) {
#if V8_TARGET_ARCH_X64
uint64_t rnd1 = V8::RandomPrivate(isolate);
uint64_t rnd2 = V8::RandomPrivate(isolate);
uint64_t raw_addr = (rnd1 << 32) ^ rnd2;
// Currently available CPUs have 48 bits of virtual addressing. Truncate
// the hint address to 46 bits to give the kernel a fighting chance of
// fulfilling our placement request.
raw_addr &= V8_UINT64_C(0x3ffffffff000);
#else
uint32_t raw_addr = V8::RandomPrivate(isolate);
raw_addr &= 0x3ffff000;
# ifdef __sun
// For our Solaris/illumos mmap hint, we pick a random address in the bottom
// half of the top half of the address space (that is, the third quarter).
// Because we do not MAP_FIXED, this will be treated only as a hint -- the
// system will not fail to mmap() because something else happens to already
// be mapped at our random address. We deliberately set the hint high enough
// to get well above the system's break (that is, the heap); Solaris and
// illumos will try the hint and if that fails allocate as if there were
// no hint at all. The high hint prevents the break from getting hemmed in
// at low values, ceding half of the address space to the system heap.
raw_addr += 0x80000000;
# else
// The range 0x20000000 - 0x60000000 is relatively unpopulated across a
// variety of ASLR modes (PAE kernel, NX compat mode, etc) and on macos
// 10.6 and 10.7.
raw_addr += 0x20000000;
# endif
#endif
return reinterpret_cast<void*>(raw_addr);
}
return NULL;
}
size_t OS::AllocateAlignment() {
return getpagesize();
}
void OS::Sleep(int milliseconds) {
useconds_t ms = static_cast<useconds_t>(milliseconds);
usleep(1000 * ms);
}
int OS::NumberOfCores() {
return sysconf(_SC_NPROCESSORS_ONLN);
}
void OS::Abort() {
// Redirect to std abort to signal abnormal program termination.
if (FLAG_break_on_abort) {
DebugBreak();
}
abort();
}
void OS::DebugBreak() {
#if V8_HOST_ARCH_ARM
asm("bkpt 0");
#elif V8_HOST_ARCH_MIPS
asm("break");
#elif V8_HOST_ARCH_IA32
#if defined(__native_client__)
asm("hlt");
#else
asm("int $3");
#endif // __native_client__
#elif V8_HOST_ARCH_X64
asm("int $3");
#else
#error Unsupported host architecture.
#endif
}
// ----------------------------------------------------------------------------
// Math functions
double ceiling(double x) {
// Correct buggy 'ceil' on some systems (i.e. FreeBSD, OS X 10.5)
return (-1.0 < x && x < 0.0) ? -0.0 : ceil(x);
}
double modulo(double x, double y) {
return fmod(x, y);
}
#define UNARY_MATH_FUNCTION(name, generator) \
static UnaryMathFunction fast_##name##_function = NULL; \
void init_fast_##name##_function() { \
fast_##name##_function = generator; \
} \
double fast_##name(double x) { \
return (*fast_##name##_function)(x); \
}
UNARY_MATH_FUNCTION(sin, CreateTranscendentalFunction(TranscendentalCache::SIN))
UNARY_MATH_FUNCTION(cos, CreateTranscendentalFunction(TranscendentalCache::COS))
UNARY_MATH_FUNCTION(tan, CreateTranscendentalFunction(TranscendentalCache::TAN))
UNARY_MATH_FUNCTION(log, CreateTranscendentalFunction(TranscendentalCache::LOG))
UNARY_MATH_FUNCTION(exp, CreateExpFunction())
UNARY_MATH_FUNCTION(sqrt, CreateSqrtFunction())
#undef UNARY_MATH_FUNCTION
void lazily_initialize_fast_exp() {
if (fast_exp_function == NULL) {
init_fast_exp_function();
}
}
double OS::nan_value() {
// NAN from math.h is defined in C99 and not in POSIX.
return NAN;
}
int OS::GetCurrentProcessId() {
return static_cast<int>(getpid());
}
// ----------------------------------------------------------------------------
// POSIX date/time support.
//
int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
struct rusage usage;
if (getrusage(RUSAGE_SELF, &usage) < 0) return -1;
*secs = usage.ru_utime.tv_sec;
*usecs = usage.ru_utime.tv_usec;
return 0;
}
double OS::TimeCurrentMillis() {
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) return 0.0;
return (static_cast<double>(tv.tv_sec) * 1000) +
(static_cast<double>(tv.tv_usec) / 1000);
}
int64_t OS::Ticks() {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0)
return 0;
return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
}
double OS::DaylightSavingsOffset(double time) {
if (std::isnan(time)) return nan_value();
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
struct tm* t = localtime(&tv);
if (NULL == t) return nan_value();
return t->tm_isdst > 0 ? 3600 * msPerSecond : 0;
}
int OS::GetLastError() {
return errno;
}
// ----------------------------------------------------------------------------
// POSIX stdio support.
//
FILE* OS::FOpen(const char* path, const char* mode) {
FILE* file = fopen(path, mode);
if (file == NULL) return NULL;
struct stat file_stat;
if (fstat(fileno(file), &file_stat) != 0) return NULL;
bool is_regular_file = ((file_stat.st_mode & S_IFREG) != 0);
if (is_regular_file) return file;
fclose(file);
return NULL;
}
bool OS::Remove(const char* path) {
return (remove(path) == 0);
}
FILE* OS::OpenTemporaryFile() {
return tmpfile();
}
const char* const OS::LogFileOpenMode = "w";
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VPrint(format, args);
va_end(args);
}
void OS::VPrint(const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_INFO, LOG_TAG, format, args);
#else
vprintf(format, args);
#endif
}
void OS::FPrint(FILE* out, const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(out, format, args);
va_end(args);
}
void OS::VFPrint(FILE* out, const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_INFO, LOG_TAG, format, args);
#else
vfprintf(out, format, args);
#endif
}
void OS::PrintError(const char* format, ...) {
va_list args;
va_start(args, format);
VPrintError(format, args);
va_end(args);
}
void OS::VPrintError(const char* format, va_list args) {
#if defined(ANDROID) && !defined(V8_ANDROID_LOG_STDOUT)
__android_log_vprint(ANDROID_LOG_ERROR, LOG_TAG, format, args);
#else
vfprintf(stderr, format, args);
#endif
}
int OS::SNPrintF(Vector<char> str, const char* format, ...) {
va_list args;
va_start(args, format);
int result = VSNPrintF(str, format, args);
va_end(args);
return result;
}
int OS::VSNPrintF(Vector<char> str,
const char* format,
va_list args) {
int n = vsnprintf(str.start(), str.length(), format, args);
if (n < 0 || n >= str.length()) {
// If the length is zero, the assignment fails.
if (str.length() > 0)
str[str.length() - 1] = '\0';
return -1;
} else {
return n;
}
}
#if V8_TARGET_ARCH_IA32
static void MemMoveWrapper(void* dest, const void* src, size_t size) {
memmove(dest, src, size);
}
// Initialize to library version so we can call this at any time during startup.
static OS::MemMoveFunction memmove_function = &MemMoveWrapper;
// Defined in codegen-ia32.cc.
OS::MemMoveFunction CreateMemMoveFunction();
// Copy memory area. No restrictions.
void OS::MemMove(void* dest, const void* src, size_t size) {
if (size == 0) return;
// Note: here we rely on dependent reads being ordered. This is true
// on all architectures we currently support.
(*memmove_function)(dest, src, size);
}
#elif defined(V8_HOST_ARCH_ARM)
void OS::MemCopyUint16Uint8Wrapper(uint16_t* dest,
const uint8_t* src,
size_t chars) {
uint16_t *limit = dest + chars;
while (dest < limit) {
*dest++ = static_cast<uint16_t>(*src++);
}
}
OS::MemCopyUint8Function OS::memcopy_uint8_function = &OS::MemCopyUint8Wrapper;
OS::MemCopyUint16Uint8Function OS::memcopy_uint16_uint8_function =
&OS::MemCopyUint16Uint8Wrapper;
// Defined in codegen-arm.cc.
OS::MemCopyUint8Function CreateMemCopyUint8Function(
OS::MemCopyUint8Function stub);
OS::MemCopyUint16Uint8Function CreateMemCopyUint16Uint8Function(
OS::MemCopyUint16Uint8Function stub);
#endif
void OS::PostSetUp() {
#if V8_TARGET_ARCH_IA32
OS::MemMoveFunction generated_memmove = CreateMemMoveFunction();
if (generated_memmove != NULL) {
memmove_function = generated_memmove;
}
#elif defined(V8_HOST_ARCH_ARM)
OS::memcopy_uint8_function =
CreateMemCopyUint8Function(&OS::MemCopyUint8Wrapper);
OS::memcopy_uint16_uint8_function =
CreateMemCopyUint16Uint8Function(&OS::MemCopyUint16Uint8Wrapper);
#endif
init_fast_sin_function();
init_fast_cos_function();
init_fast_tan_function();
init_fast_log_function();
// fast_exp is initialized lazily.
init_fast_sqrt_function();
}
// ----------------------------------------------------------------------------
// POSIX string support.
//
char* OS::StrChr(char* str, int c) {
return strchr(str, c);
}
void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
strncpy(dest.start(), src, n);
}
// ----------------------------------------------------------------------------
// POSIX thread support.
//
class Thread::PlatformData : public Malloced {
public:
PlatformData() : thread_(kNoThread) {}
pthread_t thread_; // Thread handle for pthread.
};
Thread::Thread(const Options& options)
: data_(new PlatformData),
stack_size_(options.stack_size()),
start_semaphore_(NULL) {
set_name(options.name());
}
Thread::~Thread() {
delete data_;
}
static void SetThreadName(const char* name) {
#if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
pthread_set_name_np(pthread_self(), name);
#elif defined(__NetBSD__)
STATIC_ASSERT(Thread::kMaxThreadNameLength <= PTHREAD_MAX_NAMELEN_NP);
pthread_setname_np(pthread_self(), "%s", name);
#elif defined(__APPLE__)
// pthread_setname_np is only available in 10.6 or later, so test
// for it at runtime.
int (*dynamic_pthread_setname_np)(const char*);
*reinterpret_cast<void**>(&dynamic_pthread_setname_np) =
dlsym(RTLD_DEFAULT, "pthread_setname_np");
if (dynamic_pthread_setname_np == NULL)
return;
// Mac OS X does not expose the length limit of the name, so hardcode it.
static const int kMaxNameLength = 63;
STATIC_ASSERT(Thread::kMaxThreadNameLength <= kMaxNameLength);
dynamic_pthread_setname_np(name);
#elif defined(PR_SET_NAME)
prctl(PR_SET_NAME,
reinterpret_cast<unsigned long>(name), // NOLINT
0, 0, 0);
#endif
}
static void* ThreadEntry(void* arg) {
Thread* thread = reinterpret_cast<Thread*>(arg);
// This is also initialized by the first argument to pthread_create() but we
// don't know which thread will run first (the original thread or the new
// one) so we initialize it here too.
thread->data()->thread_ = pthread_self();
SetThreadName(thread->name());
ASSERT(thread->data()->thread_ != kNoThread);
thread->NotifyStartedAndRun();
return NULL;
}
void Thread::set_name(const char* name) {
strncpy(name_, name, sizeof(name_));
name_[sizeof(name_) - 1] = '\0';
}
void Thread::Start() {
int result;
pthread_attr_t attr;
memset(&attr, 0, sizeof(attr));
result = pthread_attr_init(&attr);
ASSERT_EQ(0, result);
// Native client uses default stack size.
#if !defined(__native_client__)
if (stack_size_ > 0) {
result = pthread_attr_setstacksize(&attr, static_cast<size_t>(stack_size_));
ASSERT_EQ(0, result);
}
#endif
result = pthread_create(&data_->thread_, &attr, ThreadEntry, this);
ASSERT_EQ(0, result);
result = pthread_attr_destroy(&attr);
ASSERT_EQ(0, result);
ASSERT(data_->thread_ != kNoThread);
USE(result);
}
void Thread::Join() {
pthread_join(data_->thread_, NULL);
}
void Thread::YieldCPU() {
int result = sched_yield();
ASSERT_EQ(0, result);
USE(result);
}
static Thread::LocalStorageKey PthreadKeyToLocalKey(pthread_key_t pthread_key) {
#if defined(__CYGWIN__)
// We need to cast pthread_key_t to Thread::LocalStorageKey in two steps
// because pthread_key_t is a pointer type on Cygwin. This will probably not
// work on 64-bit platforms, but Cygwin doesn't support 64-bit anyway.
STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t));
intptr_t ptr_key = reinterpret_cast<intptr_t>(pthread_key);
return static_cast<Thread::LocalStorageKey>(ptr_key);
#else
return static_cast<Thread::LocalStorageKey>(pthread_key);
#endif
}
static pthread_key_t LocalKeyToPthreadKey(Thread::LocalStorageKey local_key) {
#if defined(__CYGWIN__)
STATIC_ASSERT(sizeof(Thread::LocalStorageKey) == sizeof(pthread_key_t));
intptr_t ptr_key = static_cast<intptr_t>(local_key);
return reinterpret_cast<pthread_key_t>(ptr_key);
#else
return static_cast<pthread_key_t>(local_key);
#endif
}
#ifdef V8_FAST_TLS_SUPPORTED
static Atomic32 tls_base_offset_initialized = 0;
intptr_t kMacTlsBaseOffset = 0;
// It's safe to do the initialization more that once, but it has to be
// done at least once.
static void InitializeTlsBaseOffset() {
const size_t kBufferSize = 128;
char buffer[kBufferSize];
size_t buffer_size = kBufferSize;
int ctl_name[] = { CTL_KERN , KERN_OSRELEASE };
if (sysctl(ctl_name, 2, buffer, &buffer_size, NULL, 0) != 0) {
V8_Fatal(__FILE__, __LINE__, "V8 failed to get kernel version");
}
// The buffer now contains a string of the form XX.YY.ZZ, where
// XX is the major kernel version component.
// Make sure the buffer is 0-terminated.
buffer[kBufferSize - 1] = '\0';
char* period_pos = strchr(buffer, '.');
*period_pos = '\0';
int kernel_version_major =
static_cast<int>(strtol(buffer, NULL, 10)); // NOLINT
// The constants below are taken from pthreads.s from the XNU kernel
// sources archive at www.opensource.apple.com.
if (kernel_version_major < 11) {
// 8.x.x (Tiger), 9.x.x (Leopard), 10.x.x (Snow Leopard) have the
// same offsets.
#if V8_HOST_ARCH_IA32
kMacTlsBaseOffset = 0x48;
#else
kMacTlsBaseOffset = 0x60;
#endif
} else {
// 11.x.x (Lion) changed the offset.
kMacTlsBaseOffset = 0;
}
Release_Store(&tls_base_offset_initialized, 1);
}
static void CheckFastTls(Thread::LocalStorageKey key) {
void* expected = reinterpret_cast<void*>(0x1234CAFE);
Thread::SetThreadLocal(key, expected);
void* actual = Thread::GetExistingThreadLocal(key);
if (expected != actual) {
V8_Fatal(__FILE__, __LINE__,
"V8 failed to initialize fast TLS on current kernel");
}
Thread::SetThreadLocal(key, NULL);
}
#endif // V8_FAST_TLS_SUPPORTED
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
#ifdef V8_FAST_TLS_SUPPORTED
bool check_fast_tls = false;
if (tls_base_offset_initialized == 0) {
check_fast_tls = true;
InitializeTlsBaseOffset();
}
#endif
pthread_key_t key;
int result = pthread_key_create(&key, NULL);
ASSERT_EQ(0, result);
USE(result);
LocalStorageKey local_key = PthreadKeyToLocalKey(key);
#ifdef V8_FAST_TLS_SUPPORTED
// If we just initialized fast TLS support, make sure it works.
if (check_fast_tls) CheckFastTls(local_key);
#endif
return local_key;
}
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
int result = pthread_key_delete(pthread_key);
ASSERT_EQ(0, result);
USE(result);
}
void* Thread::GetThreadLocal(LocalStorageKey key) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
return pthread_getspecific(pthread_key);
}
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
pthread_key_t pthread_key = LocalKeyToPthreadKey(key);
int result = pthread_setspecific(pthread_key, value);
ASSERT_EQ(0, result);
USE(result);
}
class POSIXMutex : public Mutex {
public:
POSIXMutex() {
pthread_mutexattr_t attr;
memset(&attr, 0, sizeof(attr));
int result = pthread_mutexattr_init(&attr);
ASSERT(result == 0);
result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
ASSERT(result == 0);
result = pthread_mutex_init(&mutex_, &attr);
ASSERT(result == 0);
result = pthread_mutexattr_destroy(&attr);
ASSERT(result == 0);
USE(result);
}
virtual ~POSIXMutex() { pthread_mutex_destroy(&mutex_); }
virtual int Lock() { return pthread_mutex_lock(&mutex_); }
virtual int Unlock() { return pthread_mutex_unlock(&mutex_); }
virtual bool TryLock() {
int result = pthread_mutex_trylock(&mutex_);
// Return false if the lock is busy and locking failed.
if (result == EBUSY) {
return false;
}
ASSERT(result == 0); // Verify no other errors.
return true;
}
private:
pthread_mutex_t mutex_; // Pthread mutex for POSIX platforms.
};
Mutex* OS::CreateMutex() {
return new POSIXMutex();
}
// ----------------------------------------------------------------------------
// POSIX socket support.
//
class POSIXSocket : public Socket {
public:
explicit POSIXSocket() {
// Create the socket.
socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (IsValid()) {
// Allow rapid reuse.
static const int kOn = 1;
int ret = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
&kOn, sizeof(kOn));
ASSERT(ret == 0);
USE(ret);
}
}
explicit POSIXSocket(int socket): socket_(socket) { }
virtual ~POSIXSocket() { Shutdown(); }
// Server initialization.
bool Bind(const int port);
bool Listen(int backlog) const;
Socket* Accept() const;
// Client initialization.
bool Connect(const char* host, const char* port);
// Shutdown socket for both read and write.
bool Shutdown();
// Data Transimission
int Send(const char* data, int len) const;
int Receive(char* data, int len) const;
bool SetReuseAddress(bool reuse_address);
bool IsValid() const { return socket_ != -1; }
private:
int socket_;
};
bool POSIXSocket::Bind(const int port) {
if (!IsValid()) {
return false;
}
sockaddr_in addr;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(port);
int status = bind(socket_,
BitCast<struct sockaddr *>(&addr),
sizeof(addr));
return status == 0;
}
bool POSIXSocket::Listen(int backlog) const {
if (!IsValid()) {
return false;
}
int status = listen(socket_, backlog);
return status == 0;
}
Socket* POSIXSocket::Accept() const {
if (!IsValid()) {
return NULL;
}
int socket;
do {
socket = accept(socket_, NULL, NULL);
} while (socket == -1 && errno == EINTR);
if (socket == -1) {
return NULL;
} else {
return new POSIXSocket(socket);
}
}
bool POSIXSocket::Connect(const char* host, const char* port) {
if (!IsValid()) {
return false;
}
// Lookup host and port.
struct addrinfo *result = NULL;
struct addrinfo hints;
memset(&hints, 0, sizeof(addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
int status = getaddrinfo(host, port, &hints, &result);
if (status != 0) {
return false;
}
// Connect.
do {
status = connect(socket_, result->ai_addr, result->ai_addrlen);
} while (status == -1 && errno == EINTR);
freeaddrinfo(result);
return status == 0;
}
bool POSIXSocket::Shutdown() {
if (IsValid()) {
// Shutdown socket for both read and write.
int status = shutdown(socket_, SHUT_RDWR);
close(socket_);
socket_ = -1;
return status == 0;
}
return true;
}
int POSIXSocket::Send(const char* data, int len) const {
if (len <= 0) return 0;
int written = 0;
while (written < len) {
int status = send(socket_, data + written, len - written, 0);
if (status == 0) {
break;
} else if (status > 0) {
written += status;
} else if (errno != EINTR) {
return 0;
}
}
return written;
}
int POSIXSocket::Receive(char* data, int len) const {
if (len <= 0) return 0;
int status;
do {
status = recv(socket_, data, len, 0);
} while (status == -1 && errno == EINTR);
return (status < 0) ? 0 : status;
}
bool POSIXSocket::SetReuseAddress(bool reuse_address) {
int on = reuse_address ? 1 : 0;
int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
return status == 0;
}
bool Socket::SetUp() {
// Nothing to do on POSIX.
return true;
}
int Socket::LastError() {
return errno;
}
uint16_t Socket::HToN(uint16_t value) {
return htons(value);
}
uint16_t Socket::NToH(uint16_t value) {
return ntohs(value);
}
uint32_t Socket::HToN(uint32_t value) {
return htonl(value);
}
uint32_t Socket::NToH(uint32_t value) {
return ntohl(value);
}
Socket* OS::CreateSocket() {
return new POSIXSocket();
}
} } // namespace v8::internal