blob: b8c7fc7a4c708d0cfded0a0e93f6d5285a44997d [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkDither.h"
#include "SkFlattenable.h"
#include "SkImagePriv.h"
#include "SkMallocPixelRef.h"
#include "SkMask.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkPixelRef.h"
#include "SkThread.h"
#include "SkUnPreMultiply.h"
#include "SkUtils.h"
#include "SkValidationUtils.h"
#include "SkPackBits.h"
#include <new>
static bool reset_return_false(SkBitmap* bm) {
bm->reset();
return false;
}
struct MipLevel {
void* fPixels;
uint32_t fRowBytes;
uint32_t fWidth, fHeight;
};
struct SkBitmap::MipMap : SkNoncopyable {
int32_t fRefCnt;
int fLevelCount;
// MipLevel fLevel[fLevelCount];
// Pixels[]
static MipMap* Alloc(int levelCount, size_t pixelSize) {
if (levelCount < 0) {
return NULL;
}
int64_t size = (levelCount + 1) * sizeof(MipLevel);
size += sizeof(MipMap) + pixelSize;
if (!sk_64_isS32(size)) {
return NULL;
}
MipMap* mm = (MipMap*)sk_malloc_throw(sk_64_asS32(size));
mm->fRefCnt = 1;
mm->fLevelCount = levelCount;
return mm;
}
const MipLevel* levels() const { return (const MipLevel*)(this + 1); }
MipLevel* levels() { return (MipLevel*)(this + 1); }
const void* pixels() const { return levels() + fLevelCount; }
void* pixels() { return levels() + fLevelCount; }
void ref() {
if (SK_MaxS32 == sk_atomic_inc(&fRefCnt)) {
sk_throw();
}
}
void unref() {
SkASSERT(fRefCnt > 0);
if (sk_atomic_dec(&fRefCnt) == 1) {
sk_free(this);
}
}
};
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
SkBitmap::SkBitmap() {
sk_bzero(this, sizeof(*this));
}
SkBitmap::SkBitmap(const SkBitmap& src) {
SkDEBUGCODE(src.validate();)
sk_bzero(this, sizeof(*this));
*this = src;
SkDEBUGCODE(this->validate();)
}
SkBitmap::~SkBitmap() {
SkDEBUGCODE(this->validate();)
this->freePixels();
}
SkBitmap& SkBitmap::operator=(const SkBitmap& src) {
if (this != &src) {
this->freePixels();
memcpy(this, &src, sizeof(src));
// inc src reference counts
SkSafeRef(src.fPixelRef);
SkSafeRef(src.fMipMap);
// we reset our locks if we get blown away
fPixelLockCount = 0;
if (fPixelRef) {
// ignore the values from the memcpy
fPixels = NULL;
fColorTable = NULL;
// Note that what to for genID is somewhat arbitrary. We have no
// way to track changes to raw pixels across multiple SkBitmaps.
// Would benefit from an SkRawPixelRef type created by
// setPixels.
// Just leave the memcpy'ed one but they'll get out of sync
// as soon either is modified.
}
}
SkDEBUGCODE(this->validate();)
return *this;
}
void SkBitmap::swap(SkBitmap& other) {
SkTSwap(fColorTable, other.fColorTable);
SkTSwap(fPixelRef, other.fPixelRef);
SkTSwap(fPixelRefOrigin, other.fPixelRefOrigin);
SkTSwap(fPixelLockCount, other.fPixelLockCount);
SkTSwap(fMipMap, other.fMipMap);
SkTSwap(fPixels, other.fPixels);
SkTSwap(fInfo, other.fInfo);
SkTSwap(fRowBytes, other.fRowBytes);
SkTSwap(fFlags, other.fFlags);
SkDEBUGCODE(this->validate();)
}
void SkBitmap::reset() {
this->freePixels();
sk_bzero(this, sizeof(*this));
}
SkBitmap::Config SkBitmap::config() const {
return SkColorTypeToBitmapConfig(fInfo.colorType());
}
int SkBitmap::ComputeBytesPerPixel(SkBitmap::Config config) {
int bpp;
switch (config) {
case kNo_Config:
bpp = 0; // not applicable
break;
case kA8_Config:
case kIndex8_Config:
bpp = 1;
break;
case kRGB_565_Config:
case kARGB_4444_Config:
bpp = 2;
break;
case kARGB_8888_Config:
bpp = 4;
break;
default:
SkDEBUGFAIL("unknown config");
bpp = 0; // error
break;
}
return bpp;
}
size_t SkBitmap::ComputeRowBytes(Config c, int width) {
return SkColorTypeMinRowBytes(SkBitmapConfigToColorType(c), width);
}
int64_t SkBitmap::ComputeSize64(Config config, int width, int height) {
SkColorType ct = SkBitmapConfigToColorType(config);
int64_t rowBytes = sk_64_mul(SkColorTypeBytesPerPixel(ct), width);
return rowBytes * height;
}
size_t SkBitmap::ComputeSize(Config c, int width, int height) {
int64_t size = SkBitmap::ComputeSize64(c, width, height);
return sk_64_isS32(size) ? sk_64_asS32(size) : 0;
}
int64_t SkBitmap::ComputeSafeSize64(Config config,
uint32_t width,
uint32_t height,
size_t rowBytes) {
SkImageInfo info = SkImageInfo::Make(width, height,
SkBitmapConfigToColorType(config),
kPremul_SkAlphaType);
return info.getSafeSize64(rowBytes);
}
size_t SkBitmap::ComputeSafeSize(Config config,
uint32_t width,
uint32_t height,
size_t rowBytes) {
int64_t safeSize = ComputeSafeSize64(config, width, height, rowBytes);
int32_t safeSize32 = (int32_t)safeSize;
if (safeSize32 != safeSize) {
safeSize32 = 0;
}
return safeSize32;
}
void SkBitmap::getBounds(SkRect* bounds) const {
SkASSERT(bounds);
bounds->set(0, 0,
SkIntToScalar(fInfo.fWidth), SkIntToScalar(fInfo.fHeight));
}
void SkBitmap::getBounds(SkIRect* bounds) const {
SkASSERT(bounds);
bounds->set(0, 0, fInfo.fWidth, fInfo.fHeight);
}
///////////////////////////////////////////////////////////////////////////////
static bool validate_alphaType(SkColorType colorType, SkAlphaType alphaType,
SkAlphaType* canonical = NULL) {
switch (colorType) {
case kUnknown_SkColorType:
alphaType = kIgnore_SkAlphaType;
break;
case kAlpha_8_SkColorType:
if (kUnpremul_SkAlphaType == alphaType) {
alphaType = kPremul_SkAlphaType;
}
// fall-through
case kIndex_8_SkColorType:
case kARGB_4444_SkColorType:
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
if (kIgnore_SkAlphaType == alphaType) {
return false;
}
break;
case kRGB_565_SkColorType:
alphaType = kOpaque_SkAlphaType;
break;
default:
return false;
}
if (canonical) {
*canonical = alphaType;
}
return true;
}
bool SkBitmap::setConfig(const SkImageInfo& origInfo, size_t rowBytes) {
SkImageInfo info = origInfo;
if (!validate_alphaType(info.fColorType, info.fAlphaType,
&info.fAlphaType)) {
return reset_return_false(this);
}
// require that rowBytes fit in 31bits
int64_t mrb = info.minRowBytes64();
if ((int32_t)mrb != mrb) {
return reset_return_false(this);
}
if ((int64_t)rowBytes != (int32_t)rowBytes) {
return reset_return_false(this);
}
if (info.width() < 0 || info.height() < 0) {
return reset_return_false(this);
}
if (kUnknown_SkColorType == info.colorType()) {
rowBytes = 0;
} else if (0 == rowBytes) {
rowBytes = (size_t)mrb;
} else if (rowBytes < info.minRowBytes()) {
return reset_return_false(this);
}
this->freePixels();
fInfo = info;
fRowBytes = SkToU32(rowBytes);
return true;
}
bool SkBitmap::setConfig(Config config, int width, int height, size_t rowBytes,
SkAlphaType alphaType) {
SkColorType ct = SkBitmapConfigToColorType(config);
return this->setConfig(SkImageInfo::Make(width, height, ct, alphaType),
rowBytes);
}
bool SkBitmap::setAlphaType(SkAlphaType alphaType) {
if (!validate_alphaType(fInfo.fColorType, alphaType, &alphaType)) {
return false;
}
if (fInfo.fAlphaType != alphaType) {
fInfo.fAlphaType = alphaType;
if (fPixelRef) {
fPixelRef->changeAlphaType(alphaType);
}
}
return true;
}
void SkBitmap::updatePixelsFromRef() const {
if (NULL != fPixelRef) {
if (fPixelLockCount > 0) {
SkASSERT(fPixelRef->isLocked());
void* p = fPixelRef->pixels();
if (NULL != p) {
p = (char*)p
+ fPixelRefOrigin.fY * fRowBytes
+ fPixelRefOrigin.fX * fInfo.bytesPerPixel();
}
fPixels = p;
fColorTable = fPixelRef->colorTable();
} else {
SkASSERT(0 == fPixelLockCount);
fPixels = NULL;
fColorTable = NULL;
}
}
}
static bool config_to_colorType(SkBitmap::Config config, SkColorType* ctOut) {
SkColorType ct;
switch (config) {
case SkBitmap::kA8_Config:
ct = kAlpha_8_SkColorType;
break;
case SkBitmap::kIndex8_Config:
ct = kIndex_8_SkColorType;
break;
case SkBitmap::kRGB_565_Config:
ct = kRGB_565_SkColorType;
break;
case SkBitmap::kARGB_4444_Config:
ct = kARGB_4444_SkColorType;
break;
case SkBitmap::kARGB_8888_Config:
ct = kN32_SkColorType;
break;
case SkBitmap::kNo_Config:
default:
return false;
}
if (ctOut) {
*ctOut = ct;
}
return true;
}
SkPixelRef* SkBitmap::setPixelRef(SkPixelRef* pr, int dx, int dy) {
#ifdef SK_DEBUG
if (pr) {
SkImageInfo info;
if (this->asImageInfo(&info)) {
const SkImageInfo& prInfo = pr->info();
SkASSERT(info.fWidth <= prInfo.fWidth);
SkASSERT(info.fHeight <= prInfo.fHeight);
SkASSERT(info.fColorType == prInfo.fColorType);
switch (prInfo.fAlphaType) {
case kIgnore_SkAlphaType:
SkASSERT(fInfo.fAlphaType == kIgnore_SkAlphaType);
break;
case kOpaque_SkAlphaType:
case kPremul_SkAlphaType:
SkASSERT(info.fAlphaType == kOpaque_SkAlphaType ||
info.fAlphaType == kPremul_SkAlphaType);
break;
case kUnpremul_SkAlphaType:
SkASSERT(info.fAlphaType == kOpaque_SkAlphaType ||
info.fAlphaType == kUnpremul_SkAlphaType);
break;
}
}
}
#endif
if (pr) {
const SkImageInfo& info = pr->info();
fPixelRefOrigin.set(SkPin32(dx, 0, info.fWidth),
SkPin32(dy, 0, info.fHeight));
} else {
// ignore dx,dy if there is no pixelref
fPixelRefOrigin.setZero();
}
if (fPixelRef != pr) {
if (fPixelRef != pr) {
this->freePixels();
SkASSERT(NULL == fPixelRef);
SkSafeRef(pr);
fPixelRef = pr;
}
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
return pr;
}
void SkBitmap::lockPixels() const {
if (NULL != fPixelRef && 0 == sk_atomic_inc(&fPixelLockCount)) {
fPixelRef->lockPixels();
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
}
void SkBitmap::unlockPixels() const {
SkASSERT(NULL == fPixelRef || fPixelLockCount > 0);
if (NULL != fPixelRef && 1 == sk_atomic_dec(&fPixelLockCount)) {
fPixelRef->unlockPixels();
this->updatePixelsFromRef();
}
SkDEBUGCODE(this->validate();)
}
bool SkBitmap::lockPixelsAreWritable() const {
return (fPixelRef) ? fPixelRef->lockPixelsAreWritable() : false;
}
void SkBitmap::setPixels(void* p, SkColorTable* ctable) {
if (NULL == p) {
this->setPixelRef(NULL);
return;
}
SkImageInfo info;
if (!this->asImageInfo(&info)) {
this->setPixelRef(NULL);
return;
}
SkPixelRef* pr = SkMallocPixelRef::NewDirect(info, p, fRowBytes, ctable);
if (NULL == pr) {
this->setPixelRef(NULL);
return;
}
this->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
this->lockPixels();
SkDEBUGCODE(this->validate();)
}
bool SkBitmap::allocPixels(Allocator* allocator, SkColorTable* ctable) {
HeapAllocator stdalloc;
if (NULL == allocator) {
allocator = &stdalloc;
}
return allocator->allocPixelRef(this, ctable);
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::allocPixels(const SkImageInfo& info, SkPixelRefFactory* factory,
SkColorTable* ctable) {
if (kIndex_8_SkColorType == info.fColorType && NULL == ctable) {
return reset_return_false(this);
}
if (!this->setConfig(info)) {
return reset_return_false(this);
}
SkMallocPixelRef::PRFactory defaultFactory;
if (NULL == factory) {
factory = &defaultFactory;
}
SkPixelRef* pr = factory->create(info, ctable);
if (NULL == pr) {
return reset_return_false(this);
}
this->setPixelRef(pr)->unref();
// TODO: lockPixels could/should return bool or void*/NULL
this->lockPixels();
if (NULL == this->getPixels()) {
return reset_return_false(this);
}
return true;
}
bool SkBitmap::installPixels(const SkImageInfo& info, void* pixels, size_t rb,
void (*releaseProc)(void* addr, void* context),
void* context) {
if (!this->setConfig(info, rb)) {
this->reset();
return false;
}
SkPixelRef* pr = SkMallocPixelRef::NewWithProc(info, rb, NULL, pixels,
releaseProc, context);
if (!pr) {
this->reset();
return false;
}
this->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
this->lockPixels();
SkDEBUGCODE(this->validate();)
return true;
}
bool SkBitmap::installMaskPixels(const SkMask& mask) {
if (SkMask::kA8_Format != mask.fFormat) {
this->reset();
return false;
}
return this->installPixels(SkImageInfo::MakeA8(mask.fBounds.width(),
mask.fBounds.height()),
mask.fImage, mask.fRowBytes);
}
bool SkBitmap::allocConfigPixels(Config config, int width, int height,
bool isOpaque) {
SkColorType ct;
if (!config_to_colorType(config, &ct)) {
return false;
}
SkAlphaType at = isOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType;
return this->allocPixels(SkImageInfo::Make(width, height, ct, at));
}
///////////////////////////////////////////////////////////////////////////////
void SkBitmap::freePixels() {
// if we're gonna free the pixels, we certainly need to free the mipmap
this->freeMipMap();
if (NULL != fPixelRef) {
if (fPixelLockCount > 0) {
fPixelRef->unlockPixels();
}
fPixelRef->unref();
fPixelRef = NULL;
fPixelRefOrigin.setZero();
}
fPixelLockCount = 0;
fPixels = NULL;
fColorTable = NULL;
}
void SkBitmap::freeMipMap() {
if (fMipMap) {
fMipMap->unref();
fMipMap = NULL;
}
}
uint32_t SkBitmap::getGenerationID() const {
return (fPixelRef) ? fPixelRef->getGenerationID() : 0;
}
void SkBitmap::notifyPixelsChanged() const {
SkASSERT(!this->isImmutable());
if (fPixelRef) {
fPixelRef->notifyPixelsChanged();
}
}
GrTexture* SkBitmap::getTexture() const {
return fPixelRef ? fPixelRef->getTexture() : NULL;
}
///////////////////////////////////////////////////////////////////////////////
/** We explicitly use the same allocator for our pixels that SkMask does,
so that we can freely assign memory allocated by one class to the other.
*/
bool SkBitmap::HeapAllocator::allocPixelRef(SkBitmap* dst,
SkColorTable* ctable) {
SkImageInfo info;
if (!dst->asImageInfo(&info)) {
// SkDebugf("unsupported config for info %d\n", dst->config());
return false;
}
SkPixelRef* pr = SkMallocPixelRef::NewAllocate(info, dst->rowBytes(),
ctable);
if (NULL == pr) {
return false;
}
dst->setPixelRef(pr)->unref();
// since we're already allocated, we lockPixels right away
dst->lockPixels();
return true;
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::copyPixelsTo(void* const dst, size_t dstSize,
size_t dstRowBytes, bool preserveDstPad) const {
if (0 == dstRowBytes) {
dstRowBytes = fRowBytes;
}
if (dstRowBytes < fInfo.minRowBytes() ||
dst == NULL || (getPixels() == NULL && pixelRef() == NULL)) {
return false;
}
if (!preserveDstPad && static_cast<uint32_t>(dstRowBytes) == fRowBytes) {
size_t safeSize = this->getSafeSize();
if (safeSize > dstSize || safeSize == 0)
return false;
else {
SkAutoLockPixels lock(*this);
// This implementation will write bytes beyond the end of each row,
// excluding the last row, if the bitmap's stride is greater than
// strictly required by the current config.
memcpy(dst, getPixels(), safeSize);
return true;
}
} else {
// If destination has different stride than us, then copy line by line.
if (fInfo.getSafeSize(dstRowBytes) > dstSize) {
return false;
} else {
// Just copy what we need on each line.
size_t rowBytes = fInfo.minRowBytes();
SkAutoLockPixels lock(*this);
const uint8_t* srcP = reinterpret_cast<const uint8_t*>(getPixels());
uint8_t* dstP = reinterpret_cast<uint8_t*>(dst);
for (int row = 0; row < fInfo.fHeight;
row++, srcP += fRowBytes, dstP += dstRowBytes) {
memcpy(dstP, srcP, rowBytes);
}
return true;
}
}
}
///////////////////////////////////////////////////////////////////////////////
bool SkBitmap::isImmutable() const {
return fPixelRef ? fPixelRef->isImmutable() :
fFlags & kImageIsImmutable_Flag;
}
void SkBitmap::setImmutable() {
if (fPixelRef) {
fPixelRef->setImmutable();
} else {
fFlags |= kImageIsImmutable_Flag;
}
}
bool SkBitmap::isVolatile() const {
return (fFlags & kImageIsVolatile_Flag) != 0;
}
void SkBitmap::setIsVolatile(bool isVolatile) {
if (isVolatile) {
fFlags |= kImageIsVolatile_Flag;
} else {
fFlags &= ~kImageIsVolatile_Flag;
}
}
void* SkBitmap::getAddr(int x, int y) const {
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
char* base = (char*)this->getPixels();
if (base) {
base += y * this->rowBytes();
switch (this->colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
base += x << 2;
break;
case kARGB_4444_SkColorType:
case kRGB_565_SkColorType:
base += x << 1;
break;
case kAlpha_8_SkColorType:
case kIndex_8_SkColorType:
base += x;
break;
default:
SkDEBUGFAIL("Can't return addr for config");
base = NULL;
break;
}
}
return base;
}
SkColor SkBitmap::getColor(int x, int y) const {
SkASSERT((unsigned)x < (unsigned)this->width());
SkASSERT((unsigned)y < (unsigned)this->height());
switch (this->config()) {
case SkBitmap::kA8_Config: {
uint8_t* addr = this->getAddr8(x, y);
return SkColorSetA(0, addr[0]);
}
case SkBitmap::kIndex8_Config: {
SkPMColor c = this->getIndex8Color(x, y);
return SkUnPreMultiply::PMColorToColor(c);
}
case SkBitmap::kRGB_565_Config: {
uint16_t* addr = this->getAddr16(x, y);
return SkPixel16ToColor(addr[0]);
}
case SkBitmap::kARGB_4444_Config: {
uint16_t* addr = this->getAddr16(x, y);
SkPMColor c = SkPixel4444ToPixel32(addr[0]);
return SkUnPreMultiply::PMColorToColor(c);
}
case SkBitmap::kARGB_8888_Config: {
uint32_t* addr = this->getAddr32(x, y);
return SkUnPreMultiply::PMColorToColor(addr[0]);
}
case kNo_Config:
default:
SkASSERT(false);
return 0;
}
SkASSERT(false); // Not reached.
return 0;
}
bool SkBitmap::ComputeIsOpaque(const SkBitmap& bm) {
SkAutoLockPixels alp(bm);
if (!bm.getPixels()) {
return false;
}
const int height = bm.height();
const int width = bm.width();
switch (bm.config()) {
case SkBitmap::kA8_Config: {
unsigned a = 0xFF;
for (int y = 0; y < height; ++y) {
const uint8_t* row = bm.getAddr8(0, y);
for (int x = 0; x < width; ++x) {
a &= row[x];
}
if (0xFF != a) {
return false;
}
}
return true;
} break;
case SkBitmap::kIndex8_Config: {
SkAutoLockColors alc(bm);
const SkPMColor* table = alc.colors();
if (!table) {
return false;
}
SkPMColor c = (SkPMColor)~0;
for (int i = bm.getColorTable()->count() - 1; i >= 0; --i) {
c &= table[i];
}
return 0xFF == SkGetPackedA32(c);
} break;
case SkBitmap::kRGB_565_Config:
return true;
break;
case SkBitmap::kARGB_4444_Config: {
unsigned c = 0xFFFF;
for (int y = 0; y < height; ++y) {
const SkPMColor16* row = bm.getAddr16(0, y);
for (int x = 0; x < width; ++x) {
c &= row[x];
}
if (0xF != SkGetPackedA4444(c)) {
return false;
}
}
return true;
} break;
case SkBitmap::kARGB_8888_Config: {
SkPMColor c = (SkPMColor)~0;
for (int y = 0; y < height; ++y) {
const SkPMColor* row = bm.getAddr32(0, y);
for (int x = 0; x < width; ++x) {
c &= row[x];
}
if (0xFF != SkGetPackedA32(c)) {
return false;
}
}
return true;
}
default:
break;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
static uint16_t pack_8888_to_4444(unsigned a, unsigned r, unsigned g, unsigned b) {
unsigned pixel = (SkA32To4444(a) << SK_A4444_SHIFT) |
(SkR32To4444(r) << SK_R4444_SHIFT) |
(SkG32To4444(g) << SK_G4444_SHIFT) |
(SkB32To4444(b) << SK_B4444_SHIFT);
return SkToU16(pixel);
}
void SkBitmap::internalErase(const SkIRect& area,
U8CPU a, U8CPU r, U8CPU g, U8CPU b) const {
#ifdef SK_DEBUG
SkDEBUGCODE(this->validate();)
SkASSERT(!area.isEmpty());
{
SkIRect total = { 0, 0, this->width(), this->height() };
SkASSERT(total.contains(area));
}
#endif
switch (fInfo.colorType()) {
case kUnknown_SkColorType:
case kIndex_8_SkColorType:
return; // can't erase. Should we bzero so the memory is not uninitialized?
default:
break;
}
SkAutoLockPixels alp(*this);
// perform this check after the lock call
if (!this->readyToDraw()) {
return;
}
int height = area.height();
const int width = area.width();
const int rowBytes = fRowBytes;
switch (this->colorType()) {
case kAlpha_8_SkColorType: {
uint8_t* p = this->getAddr8(area.fLeft, area.fTop);
while (--height >= 0) {
memset(p, a, width);
p += rowBytes;
}
break;
}
case kARGB_4444_SkColorType:
case kRGB_565_SkColorType: {
uint16_t* p = this->getAddr16(area.fLeft, area.fTop);;
uint16_t v;
// make rgb premultiplied
if (255 != a) {
r = SkAlphaMul(r, a);
g = SkAlphaMul(g, a);
b = SkAlphaMul(b, a);
}
if (kARGB_4444_SkColorType == this->colorType()) {
v = pack_8888_to_4444(a, r, g, b);
} else {
v = SkPackRGB16(r >> (8 - SK_R16_BITS),
g >> (8 - SK_G16_BITS),
b >> (8 - SK_B16_BITS));
}
while (--height >= 0) {
sk_memset16(p, v, width);
p = (uint16_t*)((char*)p + rowBytes);
}
break;
}
case kBGRA_8888_SkColorType:
case kRGBA_8888_SkColorType: {
uint32_t* p = this->getAddr32(area.fLeft, area.fTop);
if (255 != a && kPremul_SkAlphaType == this->alphaType()) {
r = SkAlphaMul(r, a);
g = SkAlphaMul(g, a);
b = SkAlphaMul(b, a);
}
uint32_t v = kRGBA_8888_SkColorType == this->colorType() ?
SkPackARGB_as_RGBA(a, r, g, b) : SkPackARGB_as_BGRA(a, r, g, b);
while (--height >= 0) {
sk_memset32(p, v, width);
p = (uint32_t*)((char*)p + rowBytes);
}
break;
}
default:
return; // no change, so don't call notifyPixelsChanged()
}
this->notifyPixelsChanged();
}
void SkBitmap::eraseARGB(U8CPU a, U8CPU r, U8CPU g, U8CPU b) const {
SkIRect area = { 0, 0, this->width(), this->height() };
if (!area.isEmpty()) {
this->internalErase(area, a, r, g, b);
}
}
void SkBitmap::eraseArea(const SkIRect& rect, SkColor c) const {
SkIRect area = { 0, 0, this->width(), this->height() };
if (area.intersect(rect)) {
this->internalErase(area, SkColorGetA(c), SkColorGetR(c),
SkColorGetG(c), SkColorGetB(c));
}
}
//////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////
bool SkBitmap::extractSubset(SkBitmap* result, const SkIRect& subset) const {
SkDEBUGCODE(this->validate();)
if (NULL == result || NULL == fPixelRef) {
return false; // no src pixels
}
SkIRect srcRect, r;
srcRect.set(0, 0, this->width(), this->height());
if (!r.intersect(srcRect, subset)) {
return false; // r is empty (i.e. no intersection)
}
if (fPixelRef->getTexture() != NULL) {
// Do a deep copy
SkPixelRef* pixelRef = fPixelRef->deepCopy(this->config(), &subset);
if (pixelRef != NULL) {
SkBitmap dst;
dst.setConfig(this->config(), subset.width(), subset.height(), 0,
this->alphaType());
dst.setIsVolatile(this->isVolatile());
dst.setPixelRef(pixelRef)->unref();
SkDEBUGCODE(dst.validate());
result->swap(dst);
return true;
}
}
// If the upper left of the rectangle was outside the bounds of this SkBitmap, we should have
// exited above.
SkASSERT(static_cast<unsigned>(r.fLeft) < static_cast<unsigned>(this->width()));
SkASSERT(static_cast<unsigned>(r.fTop) < static_cast<unsigned>(this->height()));
SkBitmap dst;
dst.setConfig(this->config(), r.width(), r.height(), this->rowBytes(),
this->alphaType());
dst.setIsVolatile(this->isVolatile());
if (fPixelRef) {
SkIPoint origin = fPixelRefOrigin;
origin.fX += r.fLeft;
origin.fY += r.fTop;
// share the pixelref with a custom offset
dst.setPixelRef(fPixelRef, origin);
}
SkDEBUGCODE(dst.validate();)
// we know we're good, so commit to result
result->swap(dst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
#include "SkCanvas.h"
#include "SkPaint.h"
bool SkBitmap::canCopyTo(SkColorType dstColorType) const {
if (this->colorType() == kUnknown_SkColorType) {
return false;
}
bool sameConfigs = (this->colorType() == dstColorType);
switch (dstColorType) {
case kAlpha_8_SkColorType:
case kRGB_565_SkColorType:
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
break;
case kIndex_8_SkColorType:
if (!sameConfigs) {
return false;
}
break;
case kARGB_4444_SkColorType:
return sameConfigs || kN32_SkColorType == this->colorType();
default:
return false;
}
return true;
}
bool SkBitmap::copyTo(SkBitmap* dst, SkColorType dstColorType,
Allocator* alloc) const {
if (!this->canCopyTo(dstColorType)) {
return false;
}
// if we have a texture, first get those pixels
SkBitmap tmpSrc;
const SkBitmap* src = this;
if (fPixelRef) {
SkIRect subset;
subset.setXYWH(fPixelRefOrigin.fX, fPixelRefOrigin.fY,
fInfo.width(), fInfo.height());
if (fPixelRef->readPixels(&tmpSrc, &subset)) {
SkASSERT(tmpSrc.width() == this->width());
SkASSERT(tmpSrc.height() == this->height());
// did we get lucky and we can just return tmpSrc?
if (tmpSrc.colorType() == dstColorType && NULL == alloc) {
dst->swap(tmpSrc);
// If the result is an exact copy, clone the gen ID.
if (dst->pixelRef() && dst->pixelRef()->info() == fPixelRef->info()) {
dst->pixelRef()->cloneGenID(*fPixelRef);
}
return true;
}
// fall through to the raster case
src = &tmpSrc;
}
}
// we lock this now, since we may need its colortable
SkAutoLockPixels srclock(*src);
if (!src->readyToDraw()) {
return false;
}
// The only way to be readyToDraw is if fPixelRef is non NULL.
SkASSERT(fPixelRef != NULL);
SkImageInfo dstInfo = src->info();
dstInfo.fColorType = dstColorType;
SkBitmap tmpDst;
if (!tmpDst.setConfig(dstInfo)) {
return false;
}
// allocate colortable if srcConfig == kIndex8_Config
SkAutoTUnref<SkColorTable> ctable;
if (dstColorType == kIndex_8_SkColorType) {
// TODO: can we just ref() the src colortable? Is it reentrant-safe?
ctable.reset(SkNEW_ARGS(SkColorTable, (*src->getColorTable())));
}
if (!tmpDst.allocPixels(alloc, ctable)) {
return false;
}
if (!tmpDst.readyToDraw()) {
// allocator/lock failed
return false;
}
// pixelRef must be non NULL or tmpDst.readyToDraw() would have
// returned false.
SkASSERT(tmpDst.pixelRef() != NULL);
/* do memcpy for the same configs cases, else use drawing
*/
if (src->colorType() == dstColorType) {
if (tmpDst.getSize() == src->getSize()) {
memcpy(tmpDst.getPixels(), src->getPixels(), src->getSafeSize());
SkPixelRef* pixelRef = tmpDst.pixelRef();
// In order to reach this point, we know that the width, config and
// rowbytes of the SkPixelRefs are the same, but it is possible for
// the heights to differ, if this SkBitmap's height is a subset of
// fPixelRef. Only if the SkPixelRefs' heights match are we
// guaranteed that this is an exact copy, meaning we should clone
// the genID.
if (pixelRef->info().fHeight == fPixelRef->info().fHeight) {
// TODO: what to do if the two infos match, BUT
// fPixelRef is premul and pixelRef is opaque?
// skipping assert for now
// https://code.google.com/p/skia/issues/detail?id=2012
// SkASSERT(pixelRef->info() == fPixelRef->info());
SkASSERT(pixelRef->info().fWidth == fPixelRef->info().fWidth);
SkASSERT(pixelRef->info().fColorType == fPixelRef->info().fColorType);
pixelRef->cloneGenID(*fPixelRef);
}
} else {
const char* srcP = reinterpret_cast<const char*>(src->getPixels());
char* dstP = reinterpret_cast<char*>(tmpDst.getPixels());
// to be sure we don't read too much, only copy our logical pixels
size_t bytesToCopy = tmpDst.width() * tmpDst.bytesPerPixel();
for (int y = 0; y < tmpDst.height(); y++) {
memcpy(dstP, srcP, bytesToCopy);
srcP += src->rowBytes();
dstP += tmpDst.rowBytes();
}
}
} else if (kARGB_4444_SkColorType == dstColorType
&& kN32_SkColorType == src->colorType()) {
SkASSERT(src->height() == tmpDst.height());
SkASSERT(src->width() == tmpDst.width());
for (int y = 0; y < src->height(); ++y) {
SkPMColor16* SK_RESTRICT dstRow = (SkPMColor16*) tmpDst.getAddr16(0, y);
SkPMColor* SK_RESTRICT srcRow = (SkPMColor*) src->getAddr32(0, y);
DITHER_4444_SCAN(y);
for (int x = 0; x < src->width(); ++x) {
dstRow[x] = SkDitherARGB32To4444(srcRow[x],
DITHER_VALUE(x));
}
}
} else {
// Always clear the dest in case one of the blitters accesses it
// TODO: switch the allocation of tmpDst to call sk_calloc_throw
tmpDst.eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(tmpDst);
SkPaint paint;
paint.setDither(true);
canvas.drawBitmap(*src, 0, 0, &paint);
}
dst->swap(tmpDst);
return true;
}
bool SkBitmap::deepCopyTo(SkBitmap* dst) const {
const SkBitmap::Config dstConfig = this->config();
const SkColorType dstCT = SkBitmapConfigToColorType(dstConfig);
if (!this->canCopyTo(dstCT)) {
return false;
}
// If we have a PixelRef, and it supports deep copy, use it.
// Currently supported only by texture-backed bitmaps.
if (fPixelRef) {
SkPixelRef* pixelRef = fPixelRef->deepCopy(dstConfig);
if (pixelRef) {
uint32_t rowBytes;
if (this->colorType() == dstCT) {
// Since there is no subset to pass to deepCopy, and deepCopy
// succeeded, the new pixel ref must be identical.
SkASSERT(fPixelRef->info() == pixelRef->info());
pixelRef->cloneGenID(*fPixelRef);
// Use the same rowBytes as the original.
rowBytes = fRowBytes;
} else {
// With the new config, an appropriate fRowBytes will be computed by setConfig.
rowBytes = 0;
}
SkImageInfo info = fInfo;
info.fColorType = dstCT;
if (!dst->setConfig(info, rowBytes)) {
return false;
}
dst->setPixelRef(pixelRef, fPixelRefOrigin)->unref();
return true;
}
}
if (this->getTexture()) {
return false;
} else {
return this->copyTo(dst, dstCT, NULL);
}
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
static void downsampleby2_proc32(SkBitmap* dst, int x, int y,
const SkBitmap& src) {
x <<= 1;
y <<= 1;
const SkPMColor* p = src.getAddr32(x, y);
const SkPMColor* baseP = p;
SkPMColor c, ag, rb;
c = *p; ag = (c >> 8) & 0xFF00FF; rb = c & 0xFF00FF;
if (x < src.width() - 1) {
p += 1;
}
c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF;
p = baseP;
if (y < src.height() - 1) {
p += src.rowBytes() >> 2;
}
c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF;
if (x < src.width() - 1) {
p += 1;
}
c = *p; ag += (c >> 8) & 0xFF00FF; rb += c & 0xFF00FF;
*dst->getAddr32(x >> 1, y >> 1) =
((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
}
static inline uint32_t expand16(U16CPU c) {
return (c & ~SK_G16_MASK_IN_PLACE) | ((c & SK_G16_MASK_IN_PLACE) << 16);
}
// returns dirt in the top 16bits, but we don't care, since we only
// store the low 16bits.
static inline U16CPU pack16(uint32_t c) {
return (c & ~SK_G16_MASK_IN_PLACE) | ((c >> 16) & SK_G16_MASK_IN_PLACE);
}
static void downsampleby2_proc16(SkBitmap* dst, int x, int y,
const SkBitmap& src) {
x <<= 1;
y <<= 1;
const uint16_t* p = src.getAddr16(x, y);
const uint16_t* baseP = p;
SkPMColor c;
c = expand16(*p);
if (x < src.width() - 1) {
p += 1;
}
c += expand16(*p);
p = baseP;
if (y < src.height() - 1) {
p += src.rowBytes() >> 1;
}
c += expand16(*p);
if (x < src.width() - 1) {
p += 1;
}
c += expand16(*p);
*dst->getAddr16(x >> 1, y >> 1) = (uint16_t)pack16(c >> 2);
}
static uint32_t expand4444(U16CPU c) {
return (c & 0xF0F) | ((c & ~0xF0F) << 12);
}
static U16CPU collaps4444(uint32_t c) {
return (c & 0xF0F) | ((c >> 12) & ~0xF0F);
}
static void downsampleby2_proc4444(SkBitmap* dst, int x, int y,
const SkBitmap& src) {
x <<= 1;
y <<= 1;
const uint16_t* p = src.getAddr16(x, y);
const uint16_t* baseP = p;
uint32_t c;
c = expand4444(*p);
if (x < src.width() - 1) {
p += 1;
}
c += expand4444(*p);
p = baseP;
if (y < src.height() - 1) {
p += src.rowBytes() >> 1;
}
c += expand4444(*p);
if (x < src.width() - 1) {
p += 1;
}
c += expand4444(*p);
*dst->getAddr16(x >> 1, y >> 1) = (uint16_t)collaps4444(c >> 2);
}
void SkBitmap::buildMipMap(bool forceRebuild) {
if (forceRebuild)
this->freeMipMap();
else if (fMipMap)
return; // we're already built
SkASSERT(NULL == fMipMap);
void (*proc)(SkBitmap* dst, int x, int y, const SkBitmap& src);
const SkBitmap::Config config = this->config();
switch (config) {
case kARGB_8888_Config:
proc = downsampleby2_proc32;
break;
case kRGB_565_Config:
proc = downsampleby2_proc16;
break;
case kARGB_4444_Config:
proc = downsampleby2_proc4444;
break;
case kIndex8_Config:
case kA8_Config:
default:
return; // don't build mipmaps for these configs
}
SkAutoLockPixels alp(*this);
if (!this->readyToDraw()) {
return;
}
// whip through our loop to compute the exact size needed
size_t size = 0;
int maxLevels = 0;
{
int width = this->width();
int height = this->height();
for (;;) {
width >>= 1;
height >>= 1;
if (0 == width || 0 == height) {
break;
}
size += ComputeRowBytes(config, width) * height;
maxLevels += 1;
}
}
// nothing to build
if (0 == maxLevels) {
return;
}
SkBitmap srcBM(*this);
srcBM.lockPixels();
if (!srcBM.readyToDraw()) {
return;
}
MipMap* mm = MipMap::Alloc(maxLevels, size);
if (NULL == mm) {
return;
}
MipLevel* level = mm->levels();
uint8_t* addr = (uint8_t*)mm->pixels();
int width = this->width();
int height = this->height();
uint32_t rowBytes;
SkBitmap dstBM;
for (int i = 0; i < maxLevels; i++) {
width >>= 1;
height >>= 1;
rowBytes = SkToU32(ComputeRowBytes(config, width));
level[i].fPixels = addr;
level[i].fWidth = width;
level[i].fHeight = height;
level[i].fRowBytes = rowBytes;
dstBM.setConfig(config, width, height, rowBytes);
dstBM.setPixels(addr);
srcBM.lockPixels();
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
proc(&dstBM, x, y, srcBM);
}
}
srcBM.unlockPixels();
srcBM = dstBM;
addr += height * rowBytes;
}
SkASSERT(addr == (uint8_t*)mm->pixels() + size);
fMipMap = mm;
}
bool SkBitmap::hasMipMap() const {
return fMipMap != NULL;
}
int SkBitmap::extractMipLevel(SkBitmap* dst, SkFixed sx, SkFixed sy) {
if (NULL == fMipMap) {
return 0;
}
int level = ComputeMipLevel(sx, sy) >> 16;
SkASSERT(level >= 0);
if (level <= 0) {
return 0;
}
if (level >= fMipMap->fLevelCount) {
level = fMipMap->fLevelCount - 1;
}
if (dst) {
const MipLevel& mip = fMipMap->levels()[level - 1];
dst->setConfig((SkBitmap::Config)this->config(),
mip.fWidth, mip.fHeight, mip.fRowBytes);
dst->setPixels(mip.fPixels);
}
return level;
}
SkFixed SkBitmap::ComputeMipLevel(SkFixed sx, SkFixed sy) {
sx = SkAbs32(sx);
sy = SkAbs32(sy);
if (sx < sy) {
sx = sy;
}
if (sx < SK_Fixed1) {
return 0;
}
int clz = SkCLZ(sx);
SkASSERT(clz >= 1 && clz <= 15);
return SkIntToFixed(15 - clz) + ((unsigned)(sx << (clz + 1)) >> 16);
}
///////////////////////////////////////////////////////////////////////////////
static bool GetBitmapAlpha(const SkBitmap& src, uint8_t* SK_RESTRICT alpha,
int alphaRowBytes) {
SkASSERT(alpha != NULL);
SkASSERT(alphaRowBytes >= src.width());
SkBitmap::Config config = src.config();
int w = src.width();
int h = src.height();
size_t rb = src.rowBytes();
SkAutoLockPixels alp(src);
if (!src.readyToDraw()) {
// zero out the alpha buffer and return
while (--h >= 0) {
memset(alpha, 0, w);
alpha += alphaRowBytes;
}
return false;
}
if (SkBitmap::kA8_Config == config && !src.isOpaque()) {
const uint8_t* s = src.getAddr8(0, 0);
while (--h >= 0) {
memcpy(alpha, s, w);
s += rb;
alpha += alphaRowBytes;
}
} else if (SkBitmap::kARGB_8888_Config == config && !src.isOpaque()) {
const SkPMColor* SK_RESTRICT s = src.getAddr32(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkGetPackedA32(s[x]);
}
s = (const SkPMColor*)((const char*)s + rb);
alpha += alphaRowBytes;
}
} else if (SkBitmap::kARGB_4444_Config == config && !src.isOpaque()) {
const SkPMColor16* SK_RESTRICT s = src.getAddr16(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkPacked4444ToA32(s[x]);
}
s = (const SkPMColor16*)((const char*)s + rb);
alpha += alphaRowBytes;
}
} else if (SkBitmap::kIndex8_Config == config && !src.isOpaque()) {
SkColorTable* ct = src.getColorTable();
if (ct) {
const SkPMColor* SK_RESTRICT table = ct->lockColors();
const uint8_t* SK_RESTRICT s = src.getAddr8(0, 0);
while (--h >= 0) {
for (int x = 0; x < w; x++) {
alpha[x] = SkGetPackedA32(table[s[x]]);
}
s += rb;
alpha += alphaRowBytes;
}
ct->unlockColors();
}
} else { // src is opaque, so just fill alpha[] with 0xFF
memset(alpha, 0xFF, h * alphaRowBytes);
}
return true;
}
#include "SkPaint.h"
#include "SkMaskFilter.h"
#include "SkMatrix.h"
bool SkBitmap::extractAlpha(SkBitmap* dst, const SkPaint* paint,
Allocator *allocator, SkIPoint* offset) const {
SkDEBUGCODE(this->validate();)
SkBitmap tmpBitmap;
SkMatrix identity;
SkMask srcM, dstM;
srcM.fBounds.set(0, 0, this->width(), this->height());
srcM.fRowBytes = SkAlign4(this->width());
srcM.fFormat = SkMask::kA8_Format;
SkMaskFilter* filter = paint ? paint->getMaskFilter() : NULL;
// compute our (larger?) dst bounds if we have a filter
if (NULL != filter) {
identity.reset();
srcM.fImage = NULL;
if (!filter->filterMask(&dstM, srcM, identity, NULL)) {
goto NO_FILTER_CASE;
}
dstM.fRowBytes = SkAlign4(dstM.fBounds.width());
} else {
NO_FILTER_CASE:
tmpBitmap.setConfig(SkBitmap::kA8_Config, this->width(), this->height(),
srcM.fRowBytes);
if (!tmpBitmap.allocPixels(allocator, NULL)) {
// Allocation of pixels for alpha bitmap failed.
SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n",
tmpBitmap.width(), tmpBitmap.height());
return false;
}
GetBitmapAlpha(*this, tmpBitmap.getAddr8(0, 0), srcM.fRowBytes);
if (offset) {
offset->set(0, 0);
}
tmpBitmap.swap(*dst);
return true;
}
srcM.fImage = SkMask::AllocImage(srcM.computeImageSize());
SkAutoMaskFreeImage srcCleanup(srcM.fImage);
GetBitmapAlpha(*this, srcM.fImage, srcM.fRowBytes);
if (!filter->filterMask(&dstM, srcM, identity, NULL)) {
goto NO_FILTER_CASE;
}
SkAutoMaskFreeImage dstCleanup(dstM.fImage);
tmpBitmap.setConfig(SkBitmap::kA8_Config, dstM.fBounds.width(),
dstM.fBounds.height(), dstM.fRowBytes);
if (!tmpBitmap.allocPixels(allocator, NULL)) {
// Allocation of pixels for alpha bitmap failed.
SkDebugf("extractAlpha failed to allocate (%d,%d) alpha bitmap\n",
tmpBitmap.width(), tmpBitmap.height());
return false;
}
memcpy(tmpBitmap.getPixels(), dstM.fImage, dstM.computeImageSize());
if (offset) {
offset->set(dstM.fBounds.fLeft, dstM.fBounds.fTop);
}
SkDEBUGCODE(tmpBitmap.validate();)
tmpBitmap.swap(*dst);
return true;
}
///////////////////////////////////////////////////////////////////////////////
enum {
SERIALIZE_PIXELTYPE_NONE,
SERIALIZE_PIXELTYPE_REF_DATA
};
void SkBitmap::flatten(SkWriteBuffer& buffer) const {
fInfo.flatten(buffer);
buffer.writeInt(fRowBytes);
if (fPixelRef) {
if (fPixelRef->getFactory()) {
buffer.writeInt(SERIALIZE_PIXELTYPE_REF_DATA);
buffer.writeInt(fPixelRefOrigin.fX);
buffer.writeInt(fPixelRefOrigin.fY);
buffer.writeFlattenable(fPixelRef);
return;
}
// if we get here, we can't record the pixels
buffer.writeInt(SERIALIZE_PIXELTYPE_NONE);
} else {
buffer.writeInt(SERIALIZE_PIXELTYPE_NONE);
}
}
void SkBitmap::unflatten(SkReadBuffer& buffer) {
this->reset();
SkImageInfo info;
info.unflatten(buffer);
size_t rowBytes = buffer.readInt();
if (!buffer.validate((info.width() >= 0) && (info.height() >= 0) &&
SkColorTypeIsValid(info.fColorType) &&
SkAlphaTypeIsValid(info.fAlphaType) &&
validate_alphaType(info.fColorType, info.fAlphaType) &&
info.validRowBytes(rowBytes))) {
return;
}
bool configIsValid = this->setConfig(info, rowBytes);
buffer.validate(configIsValid);
int reftype = buffer.readInt();
if (buffer.validate((SERIALIZE_PIXELTYPE_REF_DATA == reftype) ||
(SERIALIZE_PIXELTYPE_NONE == reftype))) {
switch (reftype) {
case SERIALIZE_PIXELTYPE_REF_DATA: {
SkIPoint origin;
origin.fX = buffer.readInt();
origin.fY = buffer.readInt();
size_t offset = origin.fY * rowBytes + origin.fX * info.bytesPerPixel();
SkPixelRef* pr = buffer.readPixelRef();
if (!buffer.validate((NULL == pr) ||
(pr->getAllocatedSizeInBytes() >= (offset + this->getSafeSize())))) {
origin.setZero();
}
SkSafeUnref(this->setPixelRef(pr, origin));
break;
}
case SERIALIZE_PIXELTYPE_NONE:
break;
default:
SkDEBUGFAIL("unrecognized pixeltype in serialized data");
sk_throw();
}
}
}
///////////////////////////////////////////////////////////////////////////////
SkBitmap::RLEPixels::RLEPixels(int width, int height) {
fHeight = height;
fYPtrs = (uint8_t**)sk_calloc_throw(height * sizeof(uint8_t*));
}
SkBitmap::RLEPixels::~RLEPixels() {
sk_free(fYPtrs);
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkBitmap::validate() const {
fInfo.validate();
// ImageInfo may not require this, but Bitmap ensures that opaque-only
// colorTypes report opaque for their alphatype
if (kRGB_565_SkColorType == fInfo.colorType()) {
SkASSERT(kOpaque_SkAlphaType == fInfo.alphaType());
}
SkASSERT(fInfo.validRowBytes(fRowBytes));
uint8_t allFlags = kImageIsOpaque_Flag | kImageIsVolatile_Flag | kImageIsImmutable_Flag;
#ifdef SK_BUILD_FOR_ANDROID
allFlags |= kHasHardwareMipMap_Flag;
#endif
SkASSERT(fFlags <= allFlags);
SkASSERT(fPixelLockCount >= 0);
if (fPixels) {
SkASSERT(fPixelRef);
SkASSERT(fPixelLockCount > 0);
SkASSERT(fPixelRef->isLocked());
SkASSERT(fPixelRef->rowBytes() == fRowBytes);
SkASSERT(fPixelRefOrigin.fX >= 0);
SkASSERT(fPixelRefOrigin.fY >= 0);
SkASSERT(fPixelRef->info().width() >= (int)this->width() + fPixelRefOrigin.fX);
SkASSERT(fPixelRef->info().fHeight >= (int)this->height() + fPixelRefOrigin.fY);
SkASSERT(fPixelRef->rowBytes() >= fInfo.minRowBytes());
} else {
SkASSERT(NULL == fColorTable);
}
}
#endif
#ifndef SK_IGNORE_TO_STRING
void SkBitmap::toString(SkString* str) const {
static const char* gConfigNames[kConfigCount] = {
"NONE", "A8", "INDEX8", "565", "4444", "8888"
};
str->appendf("bitmap: ((%d, %d) %s", this->width(), this->height(),
gConfigNames[this->config()]);
str->append(" (");
if (this->isOpaque()) {
str->append("opaque");
} else {
str->append("transparent");
}
if (this->isImmutable()) {
str->append(", immutable");
} else {
str->append(", not-immutable");
}
str->append(")");
SkPixelRef* pr = this->pixelRef();
if (NULL == pr) {
// show null or the explicit pixel address (rare)
str->appendf(" pixels:%p", this->getPixels());
} else {
const char* uri = pr->getURI();
if (NULL != uri) {
str->appendf(" uri:\"%s\"", uri);
} else {
str->appendf(" pixelref:%p", pr);
}
}
str->append(")");
}
#endif
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
void SkImageInfo::validate() const {
SkASSERT(fWidth >= 0);
SkASSERT(fHeight >= 0);
SkASSERT(SkColorTypeIsValid(fColorType));
SkASSERT(SkAlphaTypeIsValid(fAlphaType));
}
#endif