blob: a1c4fd5d76fc591c9a7b07a88bcd5362c53f84ba [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgram.h"
#include "GrAllocator.h"
#include "GrEffect.h"
#include "GrDrawEffect.h"
#include "GrGLEffect.h"
#include "GrGpuGL.h"
#include "GrGLShaderVar.h"
#include "GrGLSL.h"
#include "SkTrace.h"
#include "SkXfermode.h"
#include "SkRTConf.h"
SK_DEFINE_INST_COUNT(GrGLProgram)
#define GL_CALL(X) GR_GL_CALL(fContext.interface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fContext.interface(), R, X)
SK_CONF_DECLARE(bool, c_PrintShaders, "gpu.printShaders", false,
"Print the source code for all shaders generated.");
#define COL_ATTR_NAME "aColor"
#define COV_ATTR_NAME "aCoverage"
#define EDGE_ATTR_NAME "aEdge"
namespace {
inline const char* declared_color_output_name() { return "fsColorOut"; }
inline const char* dual_source_output_name() { return "dualSourceOut"; }
}
GrGLProgram* GrGLProgram::Create(const GrGLContext& gl,
const GrGLProgramDesc& desc,
const GrEffectStage* colorStages[],
const GrEffectStage* coverageStages[]) {
GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gl, desc, colorStages, coverageStages));
if (!program->succeeded()) {
delete program;
program = NULL;
}
return program;
}
GrGLProgram::GrGLProgram(const GrGLContext& gl,
const GrGLProgramDesc& desc,
const GrEffectStage* colorStages[],
const GrEffectStage* coverageStages[])
: fContext(gl)
, fUniformManager(gl) {
fDesc = desc;
fVShaderID = 0;
fGShaderID = 0;
fFShaderID = 0;
fProgramID = 0;
fDstCopyTexUnit = -1;
fColor = GrColor_ILLEGAL;
fColorFilterColor = GrColor_ILLEGAL;
fColorEffects.reset(desc.numColorEffects());
fCoverageEffects.reset(desc.numCoverageEffects());
this->genProgram(colorStages, coverageStages);
}
GrGLProgram::~GrGLProgram() {
if (fVShaderID) {
GL_CALL(DeleteShader(fVShaderID));
}
if (fGShaderID) {
GL_CALL(DeleteShader(fGShaderID));
}
if (fFShaderID) {
GL_CALL(DeleteShader(fFShaderID));
}
if (fProgramID) {
GL_CALL(DeleteProgram(fProgramID));
}
}
void GrGLProgram::abandon() {
fVShaderID = 0;
fGShaderID = 0;
fFShaderID = 0;
fProgramID = 0;
}
void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
switch (fDesc.getHeader().fCoverageOutput) {
case GrGLProgramDesc::kModulate_CoverageOutput:
break;
// The prog will write a coverage value to the secondary
// output and the dst is blended by one minus that value.
case GrGLProgramDesc::kSecondaryCoverage_CoverageOutput:
case GrGLProgramDesc::kSecondaryCoverageISA_CoverageOutput:
case GrGLProgramDesc::kSecondaryCoverageISC_CoverageOutput:
*dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
break;
case GrGLProgramDesc::kCombineWithDst_CoverageOutput:
// We should only have set this if the blend was specified as (1, 0)
SkASSERT(kOne_GrBlendCoeff == *srcCoeff && kZero_GrBlendCoeff == *dstCoeff);
break;
default:
GrCrash("Unexpected coverage output");
break;
}
}
namespace {
// given two blend coefficients determine whether the src
// and/or dst computation can be omitted.
inline void need_blend_inputs(SkXfermode::Coeff srcCoeff,
SkXfermode::Coeff dstCoeff,
bool* needSrcValue,
bool* needDstValue) {
if (SkXfermode::kZero_Coeff == srcCoeff) {
switch (dstCoeff) {
// these all read the src
case SkXfermode::kSC_Coeff:
case SkXfermode::kISC_Coeff:
case SkXfermode::kSA_Coeff:
case SkXfermode::kISA_Coeff:
*needSrcValue = true;
break;
default:
*needSrcValue = false;
break;
}
} else {
*needSrcValue = true;
}
if (SkXfermode::kZero_Coeff == dstCoeff) {
switch (srcCoeff) {
// these all read the dst
case SkXfermode::kDC_Coeff:
case SkXfermode::kIDC_Coeff:
case SkXfermode::kDA_Coeff:
case SkXfermode::kIDA_Coeff:
*needDstValue = true;
break;
default:
*needDstValue = false;
break;
}
} else {
*needDstValue = true;
}
}
/**
* Create a blend_coeff * value string to be used in shader code. Sets empty
* string if result is trivially zero.
*/
inline void blend_term_string(SkString* str, SkXfermode::Coeff coeff,
const char* src, const char* dst,
const char* value) {
switch (coeff) {
case SkXfermode::kZero_Coeff: /** 0 */
*str = "";
break;
case SkXfermode::kOne_Coeff: /** 1 */
*str = value;
break;
case SkXfermode::kSC_Coeff:
str->printf("(%s * %s)", src, value);
break;
case SkXfermode::kISC_Coeff:
str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), src, value);
break;
case SkXfermode::kDC_Coeff:
str->printf("(%s * %s)", dst, value);
break;
case SkXfermode::kIDC_Coeff:
str->printf("((%s - %s) * %s)", GrGLSLOnesVecf(4), dst, value);
break;
case SkXfermode::kSA_Coeff: /** src alpha */
str->printf("(%s.a * %s)", src, value);
break;
case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */
str->printf("((1.0 - %s.a) * %s)", src, value);
break;
case SkXfermode::kDA_Coeff: /** dst alpha */
str->printf("(%s.a * %s)", dst, value);
break;
case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */
str->printf("((1.0 - %s.a) * %s)", dst, value);
break;
default:
GrCrash("Unexpected xfer coeff.");
break;
}
}
/**
* Adds a line to the fragment shader code which modifies the color by
* the specified color filter.
*/
void add_color_filter(GrGLShaderBuilder* builder,
const char * outputVar,
SkXfermode::Coeff uniformCoeff,
SkXfermode::Coeff colorCoeff,
const char* filterColor,
const char* inColor) {
SkString colorStr, constStr;
blend_term_string(&colorStr, colorCoeff, filterColor, inColor, inColor);
blend_term_string(&constStr, uniformCoeff, filterColor, inColor, filterColor);
SkString sum;
GrGLSLAddf<4>(&sum, colorStr.c_str(), constStr.c_str());
builder->fsCodeAppendf("\t%s = %s;\n", outputVar, sum.c_str());
}
}
GrSLConstantVec GrGLProgram::genInputColor(GrGLShaderBuilder* builder, SkString* inColor) {
switch (fDesc.getHeader().fColorInput) {
case GrGLProgramDesc::kAttribute_ColorInput: {
builder->addAttribute(kVec4f_GrSLType, COL_ATTR_NAME);
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "Color", &vsName, &fsName);
builder->vsCodeAppendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
*inColor = fsName;
return kNone_GrSLConstantVec;
}
case GrGLProgramDesc::kUniform_ColorInput: {
const char* name;
fUniformHandles.fColorUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "Color", &name);
*inColor = name;
return kNone_GrSLConstantVec;
}
case GrGLProgramDesc::kTransBlack_ColorInput:
inColor->reset();
return kZeros_GrSLConstantVec;
case GrGLProgramDesc::kSolidWhite_ColorInput:
inColor->reset();
return kOnes_GrSLConstantVec;
default:
GrCrash("Unknown color type.");
return kNone_GrSLConstantVec;
}
}
GrSLConstantVec GrGLProgram::genInputCoverage(GrGLShaderBuilder* builder, SkString* inCoverage) {
switch (fDesc.getHeader().fCoverageInput) {
case GrGLProgramDesc::kAttribute_ColorInput: {
builder->addAttribute(kVec4f_GrSLType, COV_ATTR_NAME);
const char *vsName, *fsName;
builder->addVarying(kVec4f_GrSLType, "Coverage", &vsName, &fsName);
builder->vsCodeAppendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
*inCoverage = fsName;
return kNone_GrSLConstantVec;
}
case GrGLProgramDesc::kUniform_ColorInput: {
const char* name;
fUniformHandles.fCoverageUni =
builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "Coverage", &name);
*inCoverage = name;
return kNone_GrSLConstantVec;
}
case GrGLProgramDesc::kTransBlack_ColorInput:
inCoverage->reset();
return kZeros_GrSLConstantVec;
case GrGLProgramDesc::kSolidWhite_ColorInput:
inCoverage->reset();
return kOnes_GrSLConstantVec;
default:
GrCrash("Unknown color type.");
return kNone_GrSLConstantVec;
}
}
void GrGLProgram::genGeometryShader(GrGLShaderBuilder* builder) const {
#if GR_GL_EXPERIMENTAL_GS
// TODO: The builder should add all this glue code.
if (fDesc.getHeader().fExperimentalGS) {
SkASSERT(fContext.info().glslGeneration() >= k150_GrGLSLGeneration);
builder->fGSHeader.append("layout(triangles) in;\n"
"layout(triangle_strip, max_vertices = 6) out;\n");
builder->gsCodeAppend("\tfor (int i = 0; i < 3; ++i) {\n"
"\t\tgl_Position = gl_in[i].gl_Position;\n");
if (fDesc.getHeader().fEmitsPointSize) {
builder->gsCodeAppend("\t\tgl_PointSize = 1.0;\n");
}
SkASSERT(builder->fGSInputs.count() == builder->fGSOutputs.count());
int count = builder->fGSInputs.count();
for (int i = 0; i < count; ++i) {
builder->gsCodeAppendf("\t\t%s = %s[i];\n",
builder->fGSOutputs[i].getName().c_str(),
builder->fGSInputs[i].getName().c_str());
}
builder->gsCodeAppend("\t\tEmitVertex();\n"
"\t}\n"
"\tEndPrimitive();\n");
}
#endif
}
const char* GrGLProgram::adjustInColor(const SkString& inColor) const {
if (inColor.size()) {
return inColor.c_str();
} else {
if (GrGLProgramDesc::kSolidWhite_ColorInput == fDesc.getHeader().fColorInput) {
return GrGLSLOnesVecf(4);
} else {
return GrGLSLZerosVecf(4);
}
}
}
namespace {
// prints a shader using params similar to glShaderSource
void print_shader(GrGLint stringCnt,
const GrGLchar** strings,
GrGLint* stringLengths) {
for (int i = 0; i < stringCnt; ++i) {
if (NULL == stringLengths || stringLengths[i] < 0) {
GrPrintf(strings[i]);
} else {
GrPrintf("%.*s", stringLengths[i], strings[i]);
}
}
}
// Compiles a GL shader, returns shader ID or 0 if failed params have same meaning as glShaderSource
GrGLuint compile_shader(const GrGLContext& gl,
GrGLenum type,
int stringCnt,
const char** strings,
int* stringLengths) {
SK_TRACE_EVENT1("GrGLProgram::CompileShader",
"stringCount", SkStringPrintf("%i", stringCnt).c_str());
GrGLuint shader;
GR_GL_CALL_RET(gl.interface(), shader, CreateShader(type));
if (0 == shader) {
return 0;
}
const GrGLInterface* gli = gl.interface();
GrGLint compiled = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, ShaderSource(shader, stringCnt, strings, stringLengths));
GR_GL_CALL(gli, CompileShader(shader));
GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
if (!compiled) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround bug in chrome cmd buffer
// param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GR_GL_CALL(gli, GetShaderInfoLog(shader, infoLen+1,
&length, (char*)log.get()));
print_shader(stringCnt, strings, stringLengths);
GrPrintf("\n%s", log.get());
}
SkDEBUGFAIL("Shader compilation failed!");
GR_GL_CALL(gli, DeleteShader(shader));
return 0;
}
return shader;
}
// helper version of above for when shader is already flattened into a single SkString
GrGLuint compile_shader(const GrGLContext& gl, GrGLenum type, const SkString& shader) {
const GrGLchar* str = shader.c_str();
int length = shader.size();
return compile_shader(gl, type, 1, &str, &length);
}
void expand_known_value4f(SkString* string, GrSLConstantVec vec) {
SkASSERT(string->isEmpty() == (vec != kNone_GrSLConstantVec));
switch (vec) {
case kNone_GrSLConstantVec:
break;
case kZeros_GrSLConstantVec:
*string = GrGLSLZerosVecf(4);
break;
case kOnes_GrSLConstantVec:
*string = GrGLSLOnesVecf(4);
break;
}
}
}
// compiles all the shaders from builder and stores the shader IDs
bool GrGLProgram::compileShaders(const GrGLShaderBuilder& builder) {
SkString shader;
builder.vsGetShader(&shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fVShaderID = compile_shader(fContext, GR_GL_VERTEX_SHADER, shader))) {
return false;
}
fGShaderID = 0;
#if GR_GL_EXPERIMENTAL_GS
if (fDesc.getHeader().fExperimentalGS) {
builder.gsGetShader(&shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fGShaderID = compile_shader(fContext, GR_GL_GEOMETRY_SHADER, shader))) {
return false;
}
}
#endif
builder.fsGetShader(&shader);
if (c_PrintShaders) {
GrPrintf(shader.c_str());
GrPrintf("\n");
}
if (!(fFShaderID = compile_shader(fContext, GR_GL_FRAGMENT_SHADER, shader))) {
return false;
}
return true;
}
bool GrGLProgram::genProgram(const GrEffectStage* colorStages[],
const GrEffectStage* coverageStages[]) {
SkASSERT(0 == fProgramID);
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
GrGLShaderBuilder builder(fContext.info(), fUniformManager, fDesc);
// the dual source output has no canonical var name, have to
// declare an output, which is incompatible with gl_FragColor/gl_FragData.
bool dualSourceOutputWritten = false;
GrGLShaderVar colorOutput;
bool isColorDeclared = GrGLSLSetupFSColorOuput(fContext.info().glslGeneration(),
declared_color_output_name(),
&colorOutput);
if (isColorDeclared) {
builder.fFSOutputs.push_back(colorOutput);
}
const char* viewMName;
fUniformHandles.fViewMatrixUni = builder.addUniform(GrGLShaderBuilder::kVertex_Visibility,
kMat33f_GrSLType, "ViewM", &viewMName);
builder.vsCodeAppendf("\tvec3 pos3 = %s * vec3(%s, 1);\n"
"\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n",
viewMName, builder.positionAttribute().getName().c_str());
// incoming color to current stage being processed.
SkString inColor;
GrSLConstantVec knownColorValue = this->genInputColor(&builder, &inColor);
// we output point size in the GS if present
if (header.fEmitsPointSize
#if GR_GL_EXPERIMENTAL_GS
&& !header.fExperimentalGS
#endif
) {
builder.vsCodeAppend("\tgl_PointSize = 1.0;\n");
}
// Get the coeffs for the Mode-based color filter, determine if color is needed.
SkXfermode::Coeff colorCoeff;
SkXfermode::Coeff filterColorCoeff;
SkAssertResult(
SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>(header.fColorFilterXfermode),
&filterColorCoeff,
&colorCoeff));
bool needColor, needFilterColor;
need_blend_inputs(filterColorCoeff, colorCoeff, &needFilterColor, &needColor);
// used in order for builder to return the per-stage uniform handles.
typedef SkTArray<GrGLUniformManager::UniformHandle, true>* UniHandleArrayPtr;
int maxColorOrCovEffectCnt = GrMax(fDesc.numColorEffects(), fDesc.numCoverageEffects());
SkAutoTArray<UniHandleArrayPtr> effectUniformArrays(maxColorOrCovEffectCnt);
SkAutoTArray<GrGLEffect*> glEffects(maxColorOrCovEffectCnt);
if (needColor) {
for (int e = 0; e < fDesc.numColorEffects(); ++e) {
effectUniformArrays[e] = &fColorEffects[e].fSamplerUnis;
}
builder.emitEffects(colorStages,
fDesc.effectKeys(),
fDesc.numColorEffects(),
&inColor,
&knownColorValue,
effectUniformArrays.get(),
glEffects.get());
for (int e = 0; e < fDesc.numColorEffects(); ++e) {
fColorEffects[e].fGLEffect = glEffects[e];
}
}
// Insert the color filter. This will soon be replaced by a color effect.
if (SkXfermode::kDst_Mode != header.fColorFilterXfermode) {
const char* colorFilterColorUniName = NULL;
fUniformHandles.fColorFilterUni = builder.addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "FilterColor",
&colorFilterColorUniName);
builder.fsCodeAppend("\tvec4 filteredColor;\n");
const char* color;
// add_color_filter requires a real input string.
if (knownColorValue == kOnes_GrSLConstantVec) {
color = GrGLSLOnesVecf(4);
} else if (knownColorValue == kZeros_GrSLConstantVec) {
color = GrGLSLZerosVecf(4);
} else {
color = inColor.c_str();
}
add_color_filter(&builder, "filteredColor", filterColorCoeff,
colorCoeff, colorFilterColorUniName, color);
inColor = "filteredColor";
}
///////////////////////////////////////////////////////////////////////////
// compute the partial coverage
SkString inCoverage;
GrSLConstantVec knownCoverageValue = this->genInputCoverage(&builder, &inCoverage);
for (int e = 0; e < fDesc.numCoverageEffects(); ++e) {
effectUniformArrays[e] = &fCoverageEffects[e].fSamplerUnis;
}
builder.emitEffects(coverageStages,
fDesc.getEffectKeys() + fDesc.numColorEffects(),
fDesc.numCoverageEffects(),
&inCoverage,
&knownCoverageValue,
effectUniformArrays.get(),
glEffects.get());
for (int e = 0; e < fDesc.numCoverageEffects(); ++e) {
fCoverageEffects[e].fGLEffect = glEffects[e];
}
// discard if coverage is zero
if (header.fDiscardIfZeroCoverage && kOnes_GrSLConstantVec != knownCoverageValue) {
if (kZeros_GrSLConstantVec == knownCoverageValue) {
// This is unfortunate.
builder.fsCodeAppend("\tdiscard;\n");
} else {
builder.fsCodeAppendf("\tif (all(lessThanEqual(%s, vec4(0.0)))) {\n\t\tdiscard;\n\t}\n",
inCoverage.c_str());
}
}
GrGLProgramDesc::CoverageOutput coverageOutput =
static_cast<GrGLProgramDesc::CoverageOutput>(header.fCoverageOutput);
if (GrGLProgramDesc::CoverageOutputUsesSecondaryOutput(coverageOutput)) {
builder.fFSOutputs.push_back().set(kVec4f_GrSLType,
GrGLShaderVar::kOut_TypeModifier,
dual_source_output_name());
// default coeff to ones for kCoverage_DualSrcOutput
SkString coeff;
GrSLConstantVec knownCoeffValue = kOnes_GrSLConstantVec;
if (GrGLProgramDesc::kSecondaryCoverageISA_CoverageOutput == header.fCoverageOutput) {
// Get (1-A) into coeff
SkString inColorAlpha;
GrGLSLGetComponent4f(&inColorAlpha,
inColor.c_str(),
kA_GrColorComponentFlag,
knownColorValue,
true);
knownCoeffValue = GrGLSLSubtractf<1>(&coeff,
NULL,
inColorAlpha.c_str(),
kOnes_GrSLConstantVec,
knownColorValue,
true);
} else if (GrGLProgramDesc::kSecondaryCoverageISC_CoverageOutput == coverageOutput) {
// Get (1-RGBA) into coeff
knownCoeffValue = GrGLSLSubtractf<4>(&coeff,
NULL,
inColor.c_str(),
kOnes_GrSLConstantVec,
knownColorValue,
true);
}
// Get coeff * coverage into modulate and then write that to the dual source output.
SkString modulate;
GrGLSLModulatef<4>(&modulate,
coeff.c_str(),
inCoverage.c_str(),
knownCoeffValue,
knownCoverageValue,
false);
builder.fsCodeAppendf("\t%s = %s;\n", dual_source_output_name(), modulate.c_str());
dualSourceOutputWritten = true;
}
///////////////////////////////////////////////////////////////////////////
// combine color and coverage as frag color
// Get "color * coverage" into fragColor
SkString fragColor;
GrSLConstantVec knownFragColorValue = GrGLSLModulatef<4>(&fragColor,
inColor.c_str(),
inCoverage.c_str(),
knownColorValue,
knownCoverageValue,
true);
// Now tack on "+(1-coverage)dst onto the frag color if we were asked to do so.
if (GrGLProgramDesc::kCombineWithDst_CoverageOutput == coverageOutput) {
SkString dstCoeff;
GrSLConstantVec knownDstCoeffValue = GrGLSLSubtractf<4>(&dstCoeff,
NULL,
inCoverage.c_str(),
kOnes_GrSLConstantVec,
knownCoverageValue,
true);
SkString dstContribution;
GrSLConstantVec knownDstContributionValue = GrGLSLModulatef<4>(&dstContribution,
dstCoeff.c_str(),
builder.dstColor(),
knownDstCoeffValue,
kNone_GrSLConstantVec,
true);
SkString oldFragColor = fragColor;
fragColor.reset();
GrGLSLAddf<4>(&fragColor,
oldFragColor.c_str(),
dstContribution.c_str(),
knownFragColorValue,
knownDstContributionValue,
false);
} else {
expand_known_value4f(&fragColor, knownFragColorValue);
}
builder.fsCodeAppendf("\t%s = %s;\n", colorOutput.getName().c_str(), fragColor.c_str());
///////////////////////////////////////////////////////////////////////////
// insert GS
#ifdef SK_DEBUG
this->genGeometryShader(&builder);
#endif
///////////////////////////////////////////////////////////////////////////
// compile and setup attribs and unis
if (!this->compileShaders(builder)) {
return false;
}
if (!this->bindOutputsAttribsAndLinkProgram(builder,
isColorDeclared,
dualSourceOutputWritten)) {
return false;
}
builder.finished(fProgramID);
fUniformHandles.fRTHeightUni = builder.getRTHeightUniform();
fUniformHandles.fDstCopyTopLeftUni = builder.getDstCopyTopLeftUniform();
fUniformHandles.fDstCopyScaleUni = builder.getDstCopyScaleUniform();
fUniformHandles.fDstCopySamplerUni = builder.getDstCopySamplerUniform();
// This must be called after we set fDstCopySamplerUni above.
this->initSamplerUniforms();
return true;
}
bool GrGLProgram::bindOutputsAttribsAndLinkProgram(const GrGLShaderBuilder& builder,
bool bindColorOut,
bool bindDualSrcOut) {
GL_CALL_RET(fProgramID, CreateProgram());
if (!fProgramID) {
return false;
}
GL_CALL(AttachShader(fProgramID, fVShaderID));
if (fGShaderID) {
GL_CALL(AttachShader(fProgramID, fGShaderID));
}
GL_CALL(AttachShader(fProgramID, fFShaderID));
if (bindColorOut) {
GL_CALL(BindFragDataLocation(fProgramID, 0, declared_color_output_name()));
}
if (bindDualSrcOut) {
GL_CALL(BindFragDataLocationIndexed(fProgramID, 0, 1, dual_source_output_name()));
}
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
// Bind the attrib locations to same values for all shaders
GL_CALL(BindAttribLocation(fProgramID,
header.fPositionAttributeIndex,
builder.positionAttribute().c_str()));
if (-1 != header.fLocalCoordAttributeIndex) {
GL_CALL(BindAttribLocation(fProgramID,
header.fLocalCoordAttributeIndex,
builder.localCoordsAttribute().c_str()));
}
if (-1 != header.fColorAttributeIndex) {
GL_CALL(BindAttribLocation(fProgramID, header.fColorAttributeIndex, COL_ATTR_NAME));
}
if (-1 != header.fCoverageAttributeIndex) {
GL_CALL(BindAttribLocation(fProgramID, header.fCoverageAttributeIndex, COV_ATTR_NAME));
}
const GrGLShaderBuilder::AttributePair* attribEnd = builder.getEffectAttributes().end();
for (const GrGLShaderBuilder::AttributePair* attrib = builder.getEffectAttributes().begin();
attrib != attribEnd;
++attrib) {
GL_CALL(BindAttribLocation(fProgramID, attrib->fIndex, attrib->fName.c_str()));
}
GL_CALL(LinkProgram(fProgramID));
GrGLint linked = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(fProgramID, GR_GL_LINK_STATUS, &linked));
if (!linked) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(fProgramID, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround
// bug in chrome cmd buffer param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GL_CALL(GetProgramInfoLog(fProgramID,
infoLen+1,
&length,
(char*)log.get()));
GrPrintf((char*)log.get());
}
SkDEBUGFAIL("Error linking program");
GL_CALL(DeleteProgram(fProgramID));
fProgramID = 0;
return false;
}
return true;
}
void GrGLProgram::initSamplerUniforms() {
GL_CALL(UseProgram(fProgramID));
GrGLint texUnitIdx = 0;
if (fUniformHandles.fDstCopySamplerUni.isValid()) {
fUniformManager.setSampler(fUniformHandles.fDstCopySamplerUni, texUnitIdx);
fDstCopyTexUnit = texUnitIdx++;
}
for (int e = 0; e < fColorEffects.count(); ++e) {
this->initEffectSamplerUniforms(&fColorEffects[e], &texUnitIdx);
}
for (int e = 0; e < fCoverageEffects.count(); ++e) {
this->initEffectSamplerUniforms(&fCoverageEffects[e], &texUnitIdx);
}
}
void GrGLProgram::initEffectSamplerUniforms(EffectAndSamplers* effect, int* texUnitIdx) {
int numSamplers = effect->fSamplerUnis.count();
effect->fTextureUnits.reset(numSamplers);
for (int s = 0; s < numSamplers; ++s) {
UniformHandle handle = effect->fSamplerUnis[s];
if (handle.isValid()) {
fUniformManager.setSampler(handle, *texUnitIdx);
effect->fTextureUnits[s] = (*texUnitIdx)++;
}
}
}
///////////////////////////////////////////////////////////////////////////////
void GrGLProgram::setEffectData(GrGpuGL* gpu,
const GrEffectStage& stage,
const EffectAndSamplers& effect) {
// Let the GrGLEffect set its data.
bool explicitLocalCoords = -1 != fDesc.getHeader().fLocalCoordAttributeIndex;
GrDrawEffect drawEffect(stage, explicitLocalCoords);
effect.fGLEffect->setData(fUniformManager, drawEffect);
// Bind the texures for the effect.
int numSamplers = effect.fSamplerUnis.count();
SkASSERT((*stage.getEffect())->numTextures() == numSamplers);
for (int s = 0; s < numSamplers; ++s) {
UniformHandle handle = effect.fSamplerUnis[s];
if (handle.isValid()) {
const GrTextureAccess& access = (*stage.getEffect())->textureAccess(s);
GrGLTexture* texture = static_cast<GrGLTexture*>(access.getTexture());
int unit = effect.fTextureUnits[s];
gpu->bindTexture(unit, access.getParams(), texture);
}
}
}
void GrGLProgram::setData(GrGpuGL* gpu,
GrDrawState::BlendOptFlags blendOpts,
const GrEffectStage* colorStages[],
const GrEffectStage* coverageStages[],
const GrDeviceCoordTexture* dstCopy,
SharedGLState* sharedState) {
const GrDrawState& drawState = gpu->getDrawState();
GrColor color;
GrColor coverage;
if (blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag) {
color = 0;
coverage = 0;
} else if (blendOpts & GrDrawState::kEmitCoverage_BlendOptFlag) {
color = 0xffffffff;
coverage = drawState.getCoverage();
} else {
color = drawState.getColor();
coverage = drawState.getCoverage();
}
this->setColor(drawState, color, sharedState);
this->setCoverage(drawState, coverage, sharedState);
this->setMatrixAndRenderTargetHeight(drawState);
// Setup the SkXfermode::Mode-based colorfilter uniform if necessary
if (fUniformHandles.fColorFilterUni.isValid() &&
fColorFilterColor != drawState.getColorFilterColor()) {
GrGLfloat c[4];
GrColorToRGBAFloat(drawState.getColorFilterColor(), c);
fUniformManager.set4fv(fUniformHandles.fColorFilterUni, 0, 1, c);
fColorFilterColor = drawState.getColorFilterColor();
}
if (NULL != dstCopy) {
if (fUniformHandles.fDstCopyTopLeftUni.isValid()) {
fUniformManager.set2f(fUniformHandles.fDstCopyTopLeftUni,
static_cast<GrGLfloat>(dstCopy->offset().fX),
static_cast<GrGLfloat>(dstCopy->offset().fY));
fUniformManager.set2f(fUniformHandles.fDstCopyScaleUni,
1.f / dstCopy->texture()->width(),
1.f / dstCopy->texture()->height());
GrGLTexture* texture = static_cast<GrGLTexture*>(dstCopy->texture());
static GrTextureParams kParams; // the default is clamp, nearest filtering.
gpu->bindTexture(fDstCopyTexUnit, kParams, texture);
} else {
SkASSERT(!fUniformHandles.fDstCopyScaleUni.isValid());
SkASSERT(!fUniformHandles.fDstCopySamplerUni.isValid());
}
} else {
SkASSERT(!fUniformHandles.fDstCopyTopLeftUni.isValid());
SkASSERT(!fUniformHandles.fDstCopyScaleUni.isValid());
SkASSERT(!fUniformHandles.fDstCopySamplerUni.isValid());
}
for (int e = 0; e < fColorEffects.count(); ++e) {
// We may have omitted the GrGLEffect because of the color filter logic in genProgram.
// This can be removed when the color filter is an effect.
if (NULL != fColorEffects[e].fGLEffect) {
this->setEffectData(gpu, *colorStages[e], fColorEffects[e]);
}
}
for (int e = 0; e < fCoverageEffects.count(); ++e) {
if (NULL != fCoverageEffects[e].fGLEffect) {
this->setEffectData(gpu, *coverageStages[e], fCoverageEffects[e]);
}
}
}
void GrGLProgram::setColor(const GrDrawState& drawState,
GrColor color,
SharedGLState* sharedState) {
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
if (!drawState.hasColorVertexAttribute()) {
switch (header.fColorInput) {
case GrGLProgramDesc::kAttribute_ColorInput:
SkASSERT(-1 != header.fColorAttributeIndex);
if (sharedState->fConstAttribColor != color ||
sharedState->fConstAttribColorIndex != header.fColorAttributeIndex) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GL_CALL(VertexAttrib4fv(header.fColorAttributeIndex, c));
sharedState->fConstAttribColor = color;
sharedState->fConstAttribColorIndex = header.fColorAttributeIndex;
}
break;
case GrGLProgramDesc::kUniform_ColorInput:
if (fColor != color) {
// OpenGL ES doesn't support unsigned byte varieties of glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
fUniformManager.set4fv(fUniformHandles.fColorUni, 0, 1, c);
fColor = color;
}
sharedState->fConstAttribColorIndex = -1;
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
sharedState->fConstAttribColorIndex = -1;
break;
default:
GrCrash("Unknown color type.");
}
} else {
sharedState->fConstAttribColorIndex = -1;
}
}
void GrGLProgram::setCoverage(const GrDrawState& drawState,
GrColor coverage,
SharedGLState* sharedState) {
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
if (!drawState.hasCoverageVertexAttribute()) {
switch (header.fCoverageInput) {
case GrGLProgramDesc::kAttribute_ColorInput:
if (sharedState->fConstAttribCoverage != coverage ||
sharedState->fConstAttribCoverageIndex != header.fCoverageAttributeIndex) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GL_CALL(VertexAttrib4fv(header.fCoverageAttributeIndex, c));
sharedState->fConstAttribCoverage = coverage;
sharedState->fConstAttribCoverageIndex = header.fCoverageAttributeIndex;
}
break;
case GrGLProgramDesc::kUniform_ColorInput:
if (fCoverage != coverage) {
// OpenGL ES doesn't support unsigned byte varieties of glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
fUniformManager.set4fv(fUniformHandles.fCoverageUni, 0, 1, c);
fCoverage = coverage;
}
sharedState->fConstAttribCoverageIndex = -1;
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
sharedState->fConstAttribCoverageIndex = -1;
break;
default:
GrCrash("Unknown coverage type.");
}
} else {
sharedState->fConstAttribCoverageIndex = -1;
}
}
void GrGLProgram::setMatrixAndRenderTargetHeight(const GrDrawState& drawState) {
const GrRenderTarget* rt = drawState.getRenderTarget();
SkISize size;
size.set(rt->width(), rt->height());
// Load the RT height uniform if it is needed to y-flip gl_FragCoord.
if (fUniformHandles.fRTHeightUni.isValid() &&
fMatrixState.fRenderTargetSize.fHeight != size.fHeight) {
fUniformManager.set1f(fUniformHandles.fRTHeightUni, SkIntToScalar(size.fHeight));
}
if (fMatrixState.fRenderTargetOrigin != rt->origin() ||
!fMatrixState.fViewMatrix.cheapEqualTo(drawState.getViewMatrix()) ||
fMatrixState.fRenderTargetSize != size) {
SkMatrix m;
if (kBottomLeft_GrSurfaceOrigin == rt->origin()) {
m.setAll(
SkIntToScalar(2) / size.fWidth, 0, -SK_Scalar1,
0,-SkIntToScalar(2) / size.fHeight, SK_Scalar1,
0, 0, SkMatrix::I()[8]);
} else {
m.setAll(
SkIntToScalar(2) / size.fWidth, 0, -SK_Scalar1,
0, SkIntToScalar(2) / size.fHeight,-SK_Scalar1,
0, 0, SkMatrix::I()[8]);
}
m.setConcat(m, drawState.getViewMatrix());
// ES doesn't allow you to pass true to the transpose param so we do our own transpose.
GrGLfloat mt[] = {
SkScalarToFloat(m[SkMatrix::kMScaleX]),
SkScalarToFloat(m[SkMatrix::kMSkewY]),
SkScalarToFloat(m[SkMatrix::kMPersp0]),
SkScalarToFloat(m[SkMatrix::kMSkewX]),
SkScalarToFloat(m[SkMatrix::kMScaleY]),
SkScalarToFloat(m[SkMatrix::kMPersp1]),
SkScalarToFloat(m[SkMatrix::kMTransX]),
SkScalarToFloat(m[SkMatrix::kMTransY]),
SkScalarToFloat(m[SkMatrix::kMPersp2])
};
fUniformManager.setMatrix3f(fUniformHandles.fViewMatrixUni, mt);
fMatrixState.fViewMatrix = drawState.getViewMatrix();
fMatrixState.fRenderTargetSize = size;
fMatrixState.fRenderTargetOrigin = rt->origin();
}
}