blob: 3b2dd4fe7de4605a0a441fba8cb5ff75d678400d [file] [log] [blame]
/*
* Copyright 2013 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBicubicImageFilter.h"
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkFlattenableBuffers.h"
#include "SkMatrix.h"
#include "SkRect.h"
#include "SkUnPreMultiply.h"
#if SK_SUPPORT_GPU
#include "gl/GrGLEffectMatrix.h"
#include "effects/GrSingleTextureEffect.h"
#include "GrTBackendEffectFactory.h"
#include "GrContext.h"
#include "GrTexture.h"
#include "SkImageFilterUtils.h"
#endif
SkBicubicImageFilter::SkBicubicImageFilter(const SkSize& scale, const SkScalar coefficients[16], SkImageFilter* input)
: INHERITED(input),
fScale(scale) {
memcpy(fCoefficients, coefficients, sizeof(fCoefficients));
}
#define DS(x) SkDoubleToScalar(x)
SkBicubicImageFilter* SkBicubicImageFilter::CreateMitchell(const SkSize& scale,
SkImageFilter* input) {
static const SkScalar coefficients[16] = {
DS( 1.0 / 18.0), DS(-9.0 / 18.0), DS( 15.0 / 18.0), DS( -7.0 / 18.0),
DS(16.0 / 18.0), DS( 0.0 / 18.0), DS(-36.0 / 18.0), DS( 21.0 / 18.0),
DS( 1.0 / 18.0), DS( 9.0 / 18.0), DS( 27.0 / 18.0), DS(-21.0 / 18.0),
DS( 0.0 / 18.0), DS( 0.0 / 18.0), DS( -6.0 / 18.0), DS( 7.0 / 18.0),
};
return SkNEW_ARGS(SkBicubicImageFilter, (scale, coefficients, input));
}
SkBicubicImageFilter::SkBicubicImageFilter(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) {
SkDEBUGCODE(uint32_t readSize =) buffer.readScalarArray(fCoefficients);
SkASSERT(readSize == 16);
fScale.fWidth = buffer.readScalar();
fScale.fHeight = buffer.readScalar();
}
void SkBicubicImageFilter::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeScalarArray(fCoefficients, 16);
buffer.writeScalar(fScale.fWidth);
buffer.writeScalar(fScale.fHeight);
}
SkBicubicImageFilter::~SkBicubicImageFilter() {
}
inline SkPMColor cubicBlend(const SkScalar c[16], SkScalar t, SkPMColor c0, SkPMColor c1, SkPMColor c2, SkPMColor c3) {
SkScalar t2 = t * t, t3 = t2 * t;
SkScalar cc[4];
// FIXME: For the fractx case, this should be refactored out of this function.
cc[0] = c[0] + SkScalarMul(c[1], t) + SkScalarMul(c[2], t2) + SkScalarMul(c[3], t3);
cc[1] = c[4] + SkScalarMul(c[5], t) + SkScalarMul(c[6], t2) + SkScalarMul(c[7], t3);
cc[2] = c[8] + SkScalarMul(c[9], t) + SkScalarMul(c[10], t2) + SkScalarMul(c[11], t3);
cc[3] = c[12] + SkScalarMul(c[13], t) + SkScalarMul(c[14], t2) + SkScalarMul(c[15], t3);
SkScalar a = SkScalarClampMax(SkScalarMul(cc[0], SkGetPackedA32(c0)) + SkScalarMul(cc[1], SkGetPackedA32(c1)) + SkScalarMul(cc[2], SkGetPackedA32(c2)) + SkScalarMul(cc[3], SkGetPackedA32(c3)), 255);
SkScalar r = SkScalarMul(cc[0], SkGetPackedR32(c0)) + SkScalarMul(cc[1], SkGetPackedR32(c1)) + SkScalarMul(cc[2], SkGetPackedR32(c2)) + SkScalarMul(cc[3], SkGetPackedR32(c3));
SkScalar g = SkScalarMul(cc[0], SkGetPackedG32(c0)) + SkScalarMul(cc[1], SkGetPackedG32(c1)) + SkScalarMul(cc[2], SkGetPackedG32(c2)) + SkScalarMul(cc[3], SkGetPackedG32(c3));
SkScalar b = SkScalarMul(cc[0], SkGetPackedB32(c0)) + SkScalarMul(cc[1], SkGetPackedB32(c1)) + SkScalarMul(cc[2], SkGetPackedB32(c2)) + SkScalarMul(cc[3], SkGetPackedB32(c3));
return SkPackARGB32(SkScalarRoundToInt(a),
SkScalarRoundToInt(SkScalarClampMax(r, a)),
SkScalarRoundToInt(SkScalarClampMax(g, a)),
SkScalarRoundToInt(SkScalarClampMax(b, a)));
}
bool SkBicubicImageFilter::onFilterImage(Proxy* proxy,
const SkBitmap& source,
const SkMatrix& matrix,
SkBitmap* result,
SkIPoint* loc) {
SkBitmap src = source;
if (getInput(0) && !getInput(0)->filterImage(proxy, source, matrix, &src, loc)) {
return false;
}
if (src.config() != SkBitmap::kARGB_8888_Config) {
return false;
}
SkAutoLockPixels alp(src);
if (!src.getPixels()) {
return false;
}
SkRect dstRect = SkRect::MakeWH(SkScalarMul(SkIntToScalar(src.width()), fScale.fWidth),
SkScalarMul(SkIntToScalar(src.height()), fScale.fHeight));
SkIRect dstIRect;
dstRect.roundOut(&dstIRect);
result->setConfig(src.config(), dstIRect.width(), dstIRect.height());
result->allocPixels();
if (!result->getPixels()) {
return false;
}
SkRect srcRect;
src.getBounds(&srcRect);
SkMatrix inverse;
inverse.setRectToRect(dstRect, srcRect, SkMatrix::kFill_ScaleToFit);
inverse.postTranslate(SkFloatToScalar(-0.5f), SkFloatToScalar(-0.5f));
for (int y = dstIRect.fTop; y < dstIRect.fBottom; ++y) {
SkPMColor* dptr = result->getAddr32(dstIRect.fLeft, y);
for (int x = dstIRect.fLeft; x < dstIRect.fRight; ++x) {
SkPoint srcPt, dstPt = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
inverse.mapPoints(&srcPt, &dstPt, 1);
SkScalar fractx = srcPt.fX - SkScalarFloorToScalar(srcPt.fX);
SkScalar fracty = srcPt.fY - SkScalarFloorToScalar(srcPt.fY);
int sx = SkScalarFloorToInt(srcPt.fX);
int sy = SkScalarFloorToInt(srcPt.fY);
int x0 = SkClampMax(sx - 1, src.width() - 1);
int x1 = SkClampMax(sx , src.width() - 1);
int x2 = SkClampMax(sx + 1, src.width() - 1);
int x3 = SkClampMax(sx + 2, src.width() - 1);
int y0 = SkClampMax(sy - 1, src.height() - 1);
int y1 = SkClampMax(sy , src.height() - 1);
int y2 = SkClampMax(sy + 1, src.height() - 1);
int y3 = SkClampMax(sy + 2, src.height() - 1);
SkPMColor s00 = *src.getAddr32(x0, y0);
SkPMColor s10 = *src.getAddr32(x1, y0);
SkPMColor s20 = *src.getAddr32(x2, y0);
SkPMColor s30 = *src.getAddr32(x3, y0);
SkPMColor s0 = cubicBlend(fCoefficients, fractx, s00, s10, s20, s30);
SkPMColor s01 = *src.getAddr32(x0, y1);
SkPMColor s11 = *src.getAddr32(x1, y1);
SkPMColor s21 = *src.getAddr32(x2, y1);
SkPMColor s31 = *src.getAddr32(x3, y1);
SkPMColor s1 = cubicBlend(fCoefficients, fractx, s01, s11, s21, s31);
SkPMColor s02 = *src.getAddr32(x0, y2);
SkPMColor s12 = *src.getAddr32(x1, y2);
SkPMColor s22 = *src.getAddr32(x2, y2);
SkPMColor s32 = *src.getAddr32(x3, y2);
SkPMColor s2 = cubicBlend(fCoefficients, fractx, s02, s12, s22, s32);
SkPMColor s03 = *src.getAddr32(x0, y3);
SkPMColor s13 = *src.getAddr32(x1, y3);
SkPMColor s23 = *src.getAddr32(x2, y3);
SkPMColor s33 = *src.getAddr32(x3, y3);
SkPMColor s3 = cubicBlend(fCoefficients, fractx, s03, s13, s23, s33);
*dptr++ = cubicBlend(fCoefficients, fracty, s0, s1, s2, s3);
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
class GrGLBicubicEffect;
class GrBicubicEffect : public GrSingleTextureEffect {
public:
virtual ~GrBicubicEffect();
static const char* Name() { return "Bicubic"; }
const float* coefficients() const { return fCoefficients; }
typedef GrGLBicubicEffect GLEffect;
virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE;
virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE;
static GrEffectRef* Create(GrTexture* tex, const SkScalar coefficients[16]) {
AutoEffectUnref effect(SkNEW_ARGS(GrBicubicEffect, (tex, coefficients)));
return CreateEffectRef(effect);
}
private:
GrBicubicEffect(GrTexture*, const SkScalar coefficients[16]);
virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE;
float fCoefficients[16];
GR_DECLARE_EFFECT_TEST;
typedef GrSingleTextureEffect INHERITED;
};
class GrGLBicubicEffect : public GrGLEffect {
public:
GrGLBicubicEffect(const GrBackendEffectFactory& factory,
const GrDrawEffect&);
virtual void emitCode(GrGLShaderBuilder*,
const GrDrawEffect&,
EffectKey,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray&) SK_OVERRIDE;
static inline EffectKey GenKey(const GrDrawEffect&, const GrGLCaps&);
virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
private:
typedef GrGLUniformManager::UniformHandle UniformHandle;
UniformHandle fCoefficientsUni;
UniformHandle fImageIncrementUni;
GrGLEffectMatrix fEffectMatrix;
typedef GrGLEffect INHERITED;
};
GrGLBicubicEffect::GrGLBicubicEffect(const GrBackendEffectFactory& factory,
const GrDrawEffect& drawEffect)
: INHERITED(factory)
, fEffectMatrix(drawEffect.castEffect<GrBicubicEffect>().coordsType()) {
}
void GrGLBicubicEffect::emitCode(GrGLShaderBuilder* builder,
const GrDrawEffect&,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray& samplers) {
SkString coords;
fEffectMatrix.emitCodeMakeFSCoords2D(builder, key, &coords);
fCoefficientsUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kMat44f_GrSLType, "Coefficients");
fImageIncrementUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec2f_GrSLType, "ImageIncrement");
const char* imgInc = builder->getUniformCStr(fImageIncrementUni);
const char* coeff = builder->getUniformCStr(fCoefficientsUni);
SkString cubicBlendName;
static const GrGLShaderVar gCubicBlendArgs[] = {
GrGLShaderVar("coefficients", kMat44f_GrSLType),
GrGLShaderVar("t", kFloat_GrSLType),
GrGLShaderVar("c0", kVec4f_GrSLType),
GrGLShaderVar("c1", kVec4f_GrSLType),
GrGLShaderVar("c2", kVec4f_GrSLType),
GrGLShaderVar("c3", kVec4f_GrSLType),
};
builder->fsEmitFunction(kVec4f_GrSLType,
"cubicBlend",
SK_ARRAY_COUNT(gCubicBlendArgs),
gCubicBlendArgs,
"\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
"\tvec4 c = coefficients * ts;\n"
"\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
&cubicBlendName);
builder->fsCodeAppendf("\tvec2 coord = %s - %s * vec2(0.5, 0.5);\n", coords.c_str(), imgInc);
builder->fsCodeAppendf("\tvec2 f = fract(coord / %s);\n", imgInc);
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
SkString coord;
coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
builder->fsCodeAppendf("\tvec4 s%d%d = ", x, y);
builder->fsAppendTextureLookup(samplers[0], coord.c_str());
builder->fsCodeAppend(";\n");
}
builder->fsCodeAppendf("\tvec4 s%d = %s(%s, f.x, s0%d, s1%d, s2%d, s3%d);\n", y, cubicBlendName.c_str(), coeff, y, y, y, y);
}
builder->fsCodeAppendf("\t%s = %s(%s, f.y, s0, s1, s2, s3);\n", outputColor, cubicBlendName.c_str(), coeff);
}
GrGLEffect::EffectKey GrGLBicubicEffect::GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
const GrBicubicEffect& bicubic = drawEffect.castEffect<GrBicubicEffect>();
EffectKey matrixKey = GrGLEffectMatrix::GenKey(bicubic.getMatrix(),
drawEffect,
bicubic.coordsType(),
bicubic.texture(0));
return matrixKey;
}
void GrGLBicubicEffect::setData(const GrGLUniformManager& uman,
const GrDrawEffect& drawEffect) {
const GrBicubicEffect& effect = drawEffect.castEffect<GrBicubicEffect>();
GrTexture& texture = *effect.texture(0);
float imageIncrement[2];
imageIncrement[0] = 1.0f / texture.width();
imageIncrement[1] = 1.0f / texture.height();
uman.set2fv(fImageIncrementUni, 0, 1, imageIncrement);
uman.setMatrix4f(fCoefficientsUni, effect.coefficients());
fEffectMatrix.setData(uman,
effect.getMatrix(),
drawEffect,
effect.texture(0));
}
GrBicubicEffect::GrBicubicEffect(GrTexture* texture,
const SkScalar coefficients[16])
: INHERITED(texture, MakeDivByTextureWHMatrix(texture)) {
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
// Convert from row-major scalars to column-major floats.
fCoefficients[x * 4 + y] = SkScalarToFloat(coefficients[y * 4 + x]);
}
}
}
GrBicubicEffect::~GrBicubicEffect() {
}
const GrBackendEffectFactory& GrBicubicEffect::getFactory() const {
return GrTBackendEffectFactory<GrBicubicEffect>::getInstance();
}
bool GrBicubicEffect::onIsEqual(const GrEffect& sBase) const {
const GrBicubicEffect& s = CastEffect<GrBicubicEffect>(sBase);
return this->texture(0) == s.texture(0) &&
!memcmp(fCoefficients, s.coefficients(), 16);
}
void GrBicubicEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const {
// FIXME: Perhaps we can do better.
*validFlags = 0;
return;
}
GR_DEFINE_EFFECT_TEST(GrBicubicEffect);
GrEffectRef* GrBicubicEffect::TestCreate(SkMWCRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
int texIdx = random->nextBool() ? GrEffectUnitTest::kSkiaPMTextureIdx :
GrEffectUnitTest::kAlphaTextureIdx;
SkScalar coefficients[16];
for (int i = 0; i < 16; i++) {
coefficients[i] = random->nextSScalar1();
}
return GrBicubicEffect::Create(textures[texIdx], coefficients);
}
bool SkBicubicImageFilter::filterImageGPU(Proxy* proxy, const SkBitmap& src, const SkMatrix& ctm,
SkBitmap* result, SkIPoint* offset) {
SkBitmap srcBM;
if (!SkImageFilterUtils::GetInputResultGPU(getInput(0), proxy, src, ctm, &srcBM, offset)) {
return false;
}
GrTexture* srcTexture = srcBM.getTexture();
GrContext* context = srcTexture->getContext();
SkRect dstRect = SkRect::MakeWH(srcBM.width() * fScale.fWidth,
srcBM.height() * fScale.fHeight);
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
desc.fWidth = SkScalarCeilToInt(dstRect.width());
desc.fHeight = SkScalarCeilToInt(dstRect.height());
desc.fConfig = kSkia8888_GrPixelConfig;
GrAutoScratchTexture ast(context, desc);
SkAutoTUnref<GrTexture> dst(ast.detach());
if (!dst) {
return false;
}
GrContext::AutoRenderTarget art(context, dst->asRenderTarget());
GrPaint paint;
paint.addColorEffect(GrBicubicEffect::Create(srcTexture, fCoefficients))->unref();
SkRect srcRect;
srcBM.getBounds(&srcRect);
context->drawRectToRect(paint, dstRect, srcRect);
return SkImageFilterUtils::WrapTexture(dst, desc.fWidth, desc.fHeight, result);
}
#endif
///////////////////////////////////////////////////////////////////////////////