blob: cac30e6a491853ab9907a34cd3df68ba2fa52736 [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkMatrixConvolutionImageFilter.h"
#include "SkBitmap.h"
#include "SkColorPriv.h"
#include "SkFlattenableBuffers.h"
#include "SkRect.h"
#include "SkUnPreMultiply.h"
#if SK_SUPPORT_GPU
#include "gl/GrGLEffect.h"
#include "effects/GrSingleTextureEffect.h"
#include "GrTBackendEffectFactory.h"
#include "GrTexture.h"
#include "SkMatrix.h"
#endif
static bool tile_mode_is_valid(SkMatrixConvolutionImageFilter::TileMode tileMode) {
switch (tileMode) {
case SkMatrixConvolutionImageFilter::kClamp_TileMode:
case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
return true;
default:
break;
}
return false;
}
SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& target,
TileMode tileMode,
bool convolveAlpha,
SkImageFilter* input,
const CropRect* cropRect)
: INHERITED(input, cropRect),
fKernelSize(kernelSize),
fGain(gain),
fBias(bias),
fTarget(target),
fTileMode(tileMode),
fConvolveAlpha(convolveAlpha) {
uint32_t size = fKernelSize.fWidth * fKernelSize.fHeight;
fKernel = SkNEW_ARRAY(SkScalar, size);
memcpy(fKernel, kernel, size * sizeof(SkScalar));
SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1);
SkASSERT(target.fX >= 0 && target.fX < kernelSize.fWidth);
SkASSERT(target.fY >= 0 && target.fY < kernelSize.fHeight);
}
SkMatrixConvolutionImageFilter::SkMatrixConvolutionImageFilter(SkFlattenableReadBuffer& buffer)
: INHERITED(buffer) {
fKernelSize.fWidth = buffer.readInt();
fKernelSize.fHeight = buffer.readInt();
if ((fKernelSize.fWidth >= 1) && (fKernelSize.fHeight >= 1) &&
// Make sure size won't be larger than a signed int,
// which would still be extremely large for a kernel,
// but we don't impose a hard limit for kernel size
(SK_MaxS32 / fKernelSize.fWidth >= fKernelSize.fHeight)) {
uint32_t size = fKernelSize.fWidth * fKernelSize.fHeight;
fKernel = SkNEW_ARRAY(SkScalar, size);
uint32_t readSize = buffer.readScalarArray(fKernel);
SkASSERT(readSize == size);
buffer.validate(readSize == size);
} else {
fKernel = 0;
}
fGain = buffer.readScalar();
fBias = buffer.readScalar();
fTarget.fX = buffer.readInt();
fTarget.fY = buffer.readInt();
fTileMode = (TileMode) buffer.readInt();
fConvolveAlpha = buffer.readBool();
buffer.validate((fKernel != 0) &&
SkScalarIsFinite(fGain) &&
SkScalarIsFinite(fBias) &&
tile_mode_is_valid(fTileMode));
}
void SkMatrixConvolutionImageFilter::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt(fKernelSize.fWidth);
buffer.writeInt(fKernelSize.fHeight);
buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight);
buffer.writeScalar(fGain);
buffer.writeScalar(fBias);
buffer.writeInt(fTarget.fX);
buffer.writeInt(fTarget.fY);
buffer.writeInt((int) fTileMode);
buffer.writeBool(fConvolveAlpha);
}
SkMatrixConvolutionImageFilter::~SkMatrixConvolutionImageFilter() {
delete[] fKernel;
}
class UncheckedPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
return *src.getAddr32(x, y);
}
};
class ClampPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = SkPin32(x, bounds.fLeft, bounds.fRight - 1);
y = SkPin32(y, bounds.fTop, bounds.fBottom - 1);
return *src.getAddr32(x, y);
}
};
class RepeatPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = (x - bounds.left()) % bounds.width() + bounds.left();
y = (y - bounds.top()) % bounds.height() + bounds.top();
if (x < bounds.left()) {
x += bounds.width();
}
if (y < bounds.top()) {
y += bounds.height();
}
return *src.getAddr32(x, y);
}
};
class ClampToBlackPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) {
return 0;
} else {
return *src.getAddr32(x, y);
}
}
};
template<class PixelFetcher, bool convolveAlpha>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) {
for (int y = rect.fTop; y < rect.fBottom; ++y) {
SkPMColor* dptr = result->getAddr32(rect.fLeft - bounds.fLeft, y - bounds.fTop);
for (int x = rect.fLeft; x < rect.fRight; ++x) {
SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0;
for (int cy = 0; cy < fKernelSize.fHeight; cy++) {
for (int cx = 0; cx < fKernelSize.fWidth; cx++) {
SkPMColor s = PixelFetcher::fetch(src,
x + cx - fTarget.fX,
y + cy - fTarget.fY,
bounds);
SkScalar k = fKernel[cy * fKernelSize.fWidth + cx];
if (convolveAlpha) {
sumA += SkScalarMul(SkIntToScalar(SkGetPackedA32(s)), k);
}
sumR += SkScalarMul(SkIntToScalar(SkGetPackedR32(s)), k);
sumG += SkScalarMul(SkIntToScalar(SkGetPackedG32(s)), k);
sumB += SkScalarMul(SkIntToScalar(SkGetPackedB32(s)), k);
}
}
int a = convolveAlpha
? SkClampMax(SkScalarFloorToInt(SkScalarMul(sumA, fGain) + fBias), 255)
: 255;
int r = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumR, fGain) + fBias), a);
int g = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumG, fGain) + fBias), a);
int b = SkClampMax(SkScalarFloorToInt(SkScalarMul(sumB, fGain) + fBias), a);
if (!convolveAlpha) {
a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds));
*dptr++ = SkPreMultiplyARGB(a, r, g, b);
} else {
*dptr++ = SkPackARGB32(a, r, g, b);
}
}
}
}
template<class PixelFetcher>
void SkMatrixConvolutionImageFilter::filterPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) {
if (fConvolveAlpha) {
filterPixels<PixelFetcher, true>(src, result, rect, bounds);
} else {
filterPixels<PixelFetcher, false>(src, result, rect, bounds);
}
}
void SkMatrixConvolutionImageFilter::filterInteriorPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) {
filterPixels<UncheckedPixelFetcher>(src, result, rect, bounds);
}
void SkMatrixConvolutionImageFilter::filterBorderPixels(const SkBitmap& src,
SkBitmap* result,
const SkIRect& rect,
const SkIRect& bounds) {
switch (fTileMode) {
case kClamp_TileMode:
filterPixels<ClampPixelFetcher>(src, result, rect, bounds);
break;
case kRepeat_TileMode:
filterPixels<RepeatPixelFetcher>(src, result, rect, bounds);
break;
case kClampToBlack_TileMode:
filterPixels<ClampToBlackPixelFetcher>(src, result, rect, bounds);
break;
}
}
// FIXME: This should be refactored to SkImageFilterUtils for
// use by other filters. For now, we assume the input is always
// premultiplied and unpremultiply it
static SkBitmap unpremultiplyBitmap(const SkBitmap& src)
{
SkAutoLockPixels alp(src);
if (!src.getPixels()) {
return SkBitmap();
}
SkBitmap result;
result.setConfig(src.config(), src.width(), src.height());
result.allocPixels();
if (!result.getPixels()) {
return SkBitmap();
}
for (int y = 0; y < src.height(); ++y) {
const uint32_t* srcRow = src.getAddr32(0, y);
uint32_t* dstRow = result.getAddr32(0, y);
for (int x = 0; x < src.width(); ++x) {
dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]);
}
}
return result;
}
bool SkMatrixConvolutionImageFilter::onFilterImage(Proxy* proxy,
const SkBitmap& source,
const SkMatrix& matrix,
SkBitmap* result,
SkIPoint* loc) {
SkBitmap src = source;
if (getInput(0) && !getInput(0)->filterImage(proxy, source, matrix, &src, loc)) {
return false;
}
if (src.config() != SkBitmap::kARGB_8888_Config) {
return false;
}
SkIRect bounds;
src.getBounds(&bounds);
if (!this->applyCropRect(&bounds, matrix)) {
return false;
}
if (!fConvolveAlpha && !src.isOpaque()) {
src = unpremultiplyBitmap(src);
}
SkAutoLockPixels alp(src);
if (!src.getPixels()) {
return false;
}
result->setConfig(src.config(), bounds.width(), bounds.height());
result->allocPixels();
SkIRect interior = SkIRect::MakeXYWH(bounds.left() + fTarget.fX,
bounds.top() + fTarget.fY,
bounds.width() - fKernelSize.fWidth + 1,
bounds.height() - fKernelSize.fHeight + 1);
SkIRect top = SkIRect::MakeLTRB(bounds.left(), bounds.top(), bounds.right(), interior.top());
SkIRect bottom = SkIRect::MakeLTRB(bounds.left(), interior.bottom(),
bounds.right(), bounds.bottom());
SkIRect left = SkIRect::MakeLTRB(bounds.left(), interior.top(),
interior.left(), interior.bottom());
SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(),
bounds.right(), interior.bottom());
filterBorderPixels(src, result, top, bounds);
filterBorderPixels(src, result, left, bounds);
filterInteriorPixels(src, result, interior, bounds);
filterBorderPixels(src, result, right, bounds);
filterBorderPixels(src, result, bottom, bounds);
loc->fX += bounds.fLeft;
loc->fY += bounds.fTop;
return true;
}
#if SK_SUPPORT_GPU
///////////////////////////////////////////////////////////////////////////////
class GrGLMatrixConvolutionEffect;
class GrMatrixConvolutionEffect : public GrSingleTextureEffect {
public:
typedef SkMatrixConvolutionImageFilter::TileMode TileMode;
static GrEffectRef* Create(GrTexture* texture,
const SkIRect& bounds,
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& target,
TileMode tileMode,
bool convolveAlpha) {
AutoEffectUnref effect(SkNEW_ARGS(GrMatrixConvolutionEffect, (texture,
bounds,
kernelSize,
kernel,
gain,
bias,
target,
tileMode,
convolveAlpha)));
return CreateEffectRef(effect);
}
virtual ~GrMatrixConvolutionEffect();
virtual void getConstantColorComponents(GrColor* color,
uint32_t* validFlags) const SK_OVERRIDE {
// TODO: Try to do better?
*validFlags = 0;
}
static const char* Name() { return "MatrixConvolution"; }
const SkIRect& bounds() const { return fBounds; }
const SkISize& kernelSize() const { return fKernelSize; }
const float* target() const { return fTarget; }
const float* kernel() const { return fKernel; }
float gain() const { return fGain; }
float bias() const { return fBias; }
TileMode tileMode() const { return fTileMode; }
bool convolveAlpha() const { return fConvolveAlpha; }
typedef GrGLMatrixConvolutionEffect GLEffect;
virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE;
private:
GrMatrixConvolutionEffect(GrTexture*,
const SkIRect& bounds,
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& target,
TileMode tileMode,
bool convolveAlpha);
virtual bool onIsEqual(const GrEffect&) const SK_OVERRIDE;
SkIRect fBounds;
SkISize fKernelSize;
float *fKernel;
float fGain;
float fBias;
float fTarget[2];
TileMode fTileMode;
bool fConvolveAlpha;
GR_DECLARE_EFFECT_TEST;
typedef GrSingleTextureEffect INHERITED;
};
class GrGLMatrixConvolutionEffect : public GrGLEffect {
public:
GrGLMatrixConvolutionEffect(const GrBackendEffectFactory& factory,
const GrDrawEffect& effect);
virtual void emitCode(GrGLShaderBuilder*,
const GrDrawEffect&,
EffectKey,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
static inline EffectKey GenKey(const GrDrawEffect&, const GrGLCaps&);
virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
private:
typedef GrGLUniformManager::UniformHandle UniformHandle;
typedef SkMatrixConvolutionImageFilter::TileMode TileMode;
SkISize fKernelSize;
TileMode fTileMode;
bool fConvolveAlpha;
UniformHandle fBoundsUni;
UniformHandle fKernelUni;
UniformHandle fImageIncrementUni;
UniformHandle fTargetUni;
UniformHandle fGainUni;
UniformHandle fBiasUni;
typedef GrGLEffect INHERITED;
};
GrGLMatrixConvolutionEffect::GrGLMatrixConvolutionEffect(const GrBackendEffectFactory& factory,
const GrDrawEffect& drawEffect)
: INHERITED(factory) {
const GrMatrixConvolutionEffect& m = drawEffect.castEffect<GrMatrixConvolutionEffect>();
fKernelSize = m.kernelSize();
fTileMode = m.tileMode();
fConvolveAlpha = m.convolveAlpha();
}
static void appendTextureLookup(GrGLShaderBuilder* builder,
const GrGLShaderBuilder::TextureSampler& sampler,
const char* coord,
const char* bounds,
SkMatrixConvolutionImageFilter::TileMode tileMode) {
SkString clampedCoord;
switch (tileMode) {
case SkMatrixConvolutionImageFilter::kClamp_TileMode:
clampedCoord.printf("clamp(%s, %s.xy, %s.zw)", coord, bounds, bounds);
coord = clampedCoord.c_str();
break;
case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
clampedCoord.printf("mod(%s - %s.xy, %s.zw - %s.xy) + %s.xy", coord, bounds, bounds, bounds, bounds);
coord = clampedCoord.c_str();
break;
case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
builder->fsCodeAppendf("clamp(%s, %s.xy, %s.zw) != %s ? vec4(0, 0, 0, 0) : ", coord, bounds, bounds, coord);
break;
}
builder->fsAppendTextureLookup(sampler, coord);
}
void GrGLMatrixConvolutionEffect::emitCode(GrGLShaderBuilder* builder,
const GrDrawEffect&,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
sk_ignore_unused_variable(inputColor);
SkString coords2D = builder->ensureFSCoords2D(coords, 0);
fBoundsUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "Bounds");
fImageIncrementUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec2f_GrSLType, "ImageIncrement");
fKernelUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility,
kFloat_GrSLType,
"Kernel",
fKernelSize.width() * fKernelSize.height());
fTargetUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec2f_GrSLType, "Target");
fGainUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kFloat_GrSLType, "Gain");
fBiasUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kFloat_GrSLType, "Bias");
const char* bounds = builder->getUniformCStr(fBoundsUni);
const char* target = builder->getUniformCStr(fTargetUni);
const char* imgInc = builder->getUniformCStr(fImageIncrementUni);
const char* kernel = builder->getUniformCStr(fKernelUni);
const char* gain = builder->getUniformCStr(fGainUni);
const char* bias = builder->getUniformCStr(fBiasUni);
int kWidth = fKernelSize.width();
int kHeight = fKernelSize.height();
builder->fsCodeAppend("\t\tvec4 sum = vec4(0, 0, 0, 0);\n");
builder->fsCodeAppendf("\t\tvec2 coord = %s - %s * %s;\n", coords2D.c_str(), target, imgInc);
builder->fsCodeAppendf("\t\tfor (int y = 0; y < %d; y++) {\n", kHeight);
builder->fsCodeAppendf("\t\t\tfor (int x = 0; x < %d; x++) {\n", kWidth);
builder->fsCodeAppendf("\t\t\t\tfloat k = %s[y * %d + x];\n", kernel, kWidth);
builder->fsCodeAppendf("\t\t\t\tvec2 coord2 = coord + vec2(x, y) * %s;\n", imgInc);
builder->fsCodeAppend("\t\t\t\tvec4 c = ");
appendTextureLookup(builder, samplers[0], "coord2", bounds, fTileMode);
builder->fsCodeAppend(";\n");
if (!fConvolveAlpha) {
builder->fsCodeAppend("\t\t\t\tc.rgb /= c.a;\n");
}
builder->fsCodeAppend("\t\t\t\tsum += c * k;\n");
builder->fsCodeAppend("\t\t\t}\n");
builder->fsCodeAppend("\t\t}\n");
if (fConvolveAlpha) {
builder->fsCodeAppendf("\t\t%s = sum * %s + %s;\n", outputColor, gain, bias);
builder->fsCodeAppendf("\t\t%s.rgb = clamp(%s.rgb, 0.0, %s.a);\n",
outputColor, outputColor, outputColor);
} else {
builder->fsCodeAppend("\t\tvec4 c = ");
appendTextureLookup(builder, samplers[0], coords2D.c_str(), bounds, fTileMode);
builder->fsCodeAppend(";\n");
builder->fsCodeAppendf("\t\t%s.a = c.a;\n", outputColor);
builder->fsCodeAppendf("\t\t%s.rgb = sum.rgb * %s + %s;\n", outputColor, gain, bias);
builder->fsCodeAppendf("\t\t%s.rgb *= %s.a;\n", outputColor, outputColor);
}
}
namespace {
int encodeXY(int x, int y) {
SkASSERT(x >= 1 && y >= 1 && x * y <= 32);
if (y < x)
return 0x40 | encodeXY(y, x);
else
return (0x40 >> x) | (y - x);
}
};
GrGLEffect::EffectKey GrGLMatrixConvolutionEffect::GenKey(const GrDrawEffect& drawEffect,
const GrGLCaps&) {
const GrMatrixConvolutionEffect& m = drawEffect.castEffect<GrMatrixConvolutionEffect>();
EffectKey key = encodeXY(m.kernelSize().width(), m.kernelSize().height());
key |= m.tileMode() << 7;
key |= m.convolveAlpha() ? 1 << 9 : 0;
return key;
}
void GrGLMatrixConvolutionEffect::setData(const GrGLUniformManager& uman,
const GrDrawEffect& drawEffect) {
const GrMatrixConvolutionEffect& conv = drawEffect.castEffect<GrMatrixConvolutionEffect>();
GrTexture& texture = *conv.texture(0);
// the code we generated was for a specific kernel size
SkASSERT(conv.kernelSize() == fKernelSize);
SkASSERT(conv.tileMode() == fTileMode);
float imageIncrement[2];
float ySign = texture.origin() == kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f;
imageIncrement[0] = 1.0f / texture.width();
imageIncrement[1] = ySign / texture.height();
uman.set2fv(fImageIncrementUni, 0, 1, imageIncrement);
uman.set2fv(fTargetUni, 0, 1, conv.target());
uman.set1fv(fKernelUni, 0, fKernelSize.width() * fKernelSize.height(), conv.kernel());
uman.set1f(fGainUni, conv.gain());
uman.set1f(fBiasUni, conv.bias());
const SkIRect& bounds = conv.bounds();
float left = (float) bounds.left() / texture.width();
float top = (float) bounds.top() / texture.height();
float right = (float) bounds.right() / texture.width();
float bottom = (float) bounds.bottom() / texture.height();
if (texture.origin() == kBottomLeft_GrSurfaceOrigin) {
uman.set4f(fBoundsUni, left, 1.0f - bottom, right, 1.0f - top);
} else {
uman.set4f(fBoundsUni, left, top, right, bottom);
}
}
GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(GrTexture* texture,
const SkIRect& bounds,
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& target,
TileMode tileMode,
bool convolveAlpha)
: INHERITED(texture, MakeDivByTextureWHMatrix(texture)),
fBounds(bounds),
fKernelSize(kernelSize),
fGain(SkScalarToFloat(gain)),
fBias(SkScalarToFloat(bias) / 255.0f),
fTileMode(tileMode),
fConvolveAlpha(convolveAlpha) {
fKernel = new float[kernelSize.width() * kernelSize.height()];
for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) {
fKernel[i] = SkScalarToFloat(kernel[i]);
}
fTarget[0] = static_cast<float>(target.x());
fTarget[1] = static_cast<float>(target.y());
this->setWillNotUseInputColor();
}
GrMatrixConvolutionEffect::~GrMatrixConvolutionEffect() {
delete[] fKernel;
}
const GrBackendEffectFactory& GrMatrixConvolutionEffect::getFactory() const {
return GrTBackendEffectFactory<GrMatrixConvolutionEffect>::getInstance();
}
bool GrMatrixConvolutionEffect::onIsEqual(const GrEffect& sBase) const {
const GrMatrixConvolutionEffect& s = CastEffect<GrMatrixConvolutionEffect>(sBase);
return this->texture(0) == s.texture(0) &&
fKernelSize == s.kernelSize() &&
!memcmp(fKernel, s.kernel(),
fKernelSize.width() * fKernelSize.height() * sizeof(float)) &&
fGain == s.gain() &&
fBias == s.bias() &&
fTarget == s.target() &&
fTileMode == s.tileMode() &&
fConvolveAlpha == s.convolveAlpha();
}
GR_DEFINE_EFFECT_TEST(GrMatrixConvolutionEffect);
// A little bit less than the minimum # uniforms required by DX9SM2 (32).
// Allows for a 5x5 kernel (or 25x1, for that matter).
#define MAX_KERNEL_SIZE 25
GrEffectRef* GrMatrixConvolutionEffect::TestCreate(SkRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
int texIdx = random->nextBool() ? GrEffectUnitTest::kSkiaPMTextureIdx :
GrEffectUnitTest::kAlphaTextureIdx;
int width = random->nextRangeU(1, MAX_KERNEL_SIZE);
int height = random->nextRangeU(1, MAX_KERNEL_SIZE / width);
SkISize kernelSize = SkISize::Make(width, height);
SkAutoTDeleteArray<SkScalar> kernel(new SkScalar[width * height]);
for (int i = 0; i < width * height; i++) {
kernel.get()[i] = random->nextSScalar1();
}
SkScalar gain = random->nextSScalar1();
SkScalar bias = random->nextSScalar1();
SkIPoint target = SkIPoint::Make(random->nextRangeU(0, kernelSize.width()),
random->nextRangeU(0, kernelSize.height()));
SkIRect bounds = SkIRect::MakeXYWH(random->nextRangeU(0, textures[texIdx]->width()),
random->nextRangeU(0, textures[texIdx]->height()),
random->nextRangeU(0, textures[texIdx]->width()),
random->nextRangeU(0, textures[texIdx]->height()));
TileMode tileMode = static_cast<TileMode>(random->nextRangeU(0, 2));
bool convolveAlpha = random->nextBool();
return GrMatrixConvolutionEffect::Create(textures[texIdx],
bounds,
kernelSize,
kernel.get(),
gain,
bias,
target,
tileMode,
convolveAlpha);
}
bool SkMatrixConvolutionImageFilter::asNewEffect(GrEffectRef** effect,
GrTexture* texture,
const SkMatrix&,
const SkIRect& bounds
) const {
if (!effect) {
return fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE;
}
SkASSERT(fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE);
*effect = GrMatrixConvolutionEffect::Create(texture,
bounds,
fKernelSize,
fKernel,
fGain,
fBias,
fTarget,
fTileMode,
fConvolveAlpha);
return true;
}
///////////////////////////////////////////////////////////////////////////////
#endif