blob: 9360ba920e9626a69be5c65f7c8f66e355097e18 [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGradientShaderPriv.h"
#include "SkLinearGradient.h"
#include "SkRadialGradient.h"
#include "SkTwoPointRadialGradient.h"
#include "SkTwoPointConicalGradient.h"
#include "SkSweepGradient.h"
SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc) {
SkASSERT(desc.fCount > 1);
fCacheAlpha = 256; // init to a value that paint.getAlpha() can't return
fMapper = desc.fMapper;
SkSafeRef(fMapper);
fGradFlags = SkToU8(desc.fFlags);
SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount);
SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs));
fTileMode = desc.fTileMode;
fTileProc = gTileProcs[desc.fTileMode];
fCache16 = fCache16Storage = NULL;
fCache32 = NULL;
fCache32PixelRef = NULL;
/* Note: we let the caller skip the first and/or last position.
i.e. pos[0] = 0.3, pos[1] = 0.7
In these cases, we insert dummy entries to ensure that the final data
will be bracketed by [0, 1].
i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
Thus colorCount (the caller's value, and fColorCount (our value) may
differ by up to 2. In the above example:
colorCount = 2
fColorCount = 4
*/
fColorCount = desc.fCount;
// check if we need to add in dummy start and/or end position/colors
bool dummyFirst = false;
bool dummyLast = false;
if (desc.fPos) {
dummyFirst = desc.fPos[0] != 0;
dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
fColorCount += dummyFirst + dummyLast;
}
if (fColorCount > kColorStorageCount) {
size_t size = sizeof(SkColor) + sizeof(Rec);
fOrigColors = reinterpret_cast<SkColor*>(
sk_malloc_throw(size * fColorCount));
}
else {
fOrigColors = fStorage;
}
// Now copy over the colors, adding the dummies as needed
{
SkColor* origColors = fOrigColors;
if (dummyFirst) {
*origColors++ = desc.fColors[0];
}
memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor));
if (dummyLast) {
origColors += desc.fCount;
*origColors = desc.fColors[desc.fCount - 1];
}
}
fRecs = (Rec*)(fOrigColors + fColorCount);
if (fColorCount > 2) {
Rec* recs = fRecs;
recs->fPos = 0;
// recs->fScale = 0; // unused;
recs += 1;
if (desc.fPos) {
/* We need to convert the user's array of relative positions into
fixed-point positions and scale factors. We need these results
to be strictly monotonic (no two values equal or out of order).
Hence this complex loop that just jams a zero for the scale
value if it sees a segment out of order, and it assures that
we start at 0 and end at 1.0
*/
SkFixed prev = 0;
int startIndex = dummyFirst ? 0 : 1;
int count = desc.fCount + dummyLast;
for (int i = startIndex; i < count; i++) {
// force the last value to be 1.0
SkFixed curr;
if (i == desc.fCount) { // we're really at the dummyLast
curr = SK_Fixed1;
} else {
curr = SkScalarToFixed(desc.fPos[i]);
}
// pin curr withing range
if (curr < 0) {
curr = 0;
} else if (curr > SK_Fixed1) {
curr = SK_Fixed1;
}
recs->fPos = curr;
if (curr > prev) {
recs->fScale = (1 << 24) / (curr - prev);
} else {
recs->fScale = 0; // ignore this segment
}
// get ready for the next value
prev = curr;
recs += 1;
}
} else { // assume even distribution
SkFixed dp = SK_Fixed1 / (desc.fCount - 1);
SkFixed p = dp;
SkFixed scale = (desc.fCount - 1) << 8; // (1 << 24) / dp
for (int i = 1; i < desc.fCount; i++) {
recs->fPos = p;
recs->fScale = scale;
recs += 1;
p += dp;
}
}
}
this->initCommon();
}
static uint32_t pack_mode_flags(SkShader::TileMode mode, uint32_t flags) {
SkASSERT(0 == (flags >> 28));
SkASSERT(0 == ((uint32_t)mode >> 4));
return (flags << 4) | mode;
}
static SkShader::TileMode unpack_mode(uint32_t packed) {
return (SkShader::TileMode)(packed & 0xF);
}
static uint32_t unpack_flags(uint32_t packed) {
return packed >> 4;
}
SkGradientShaderBase::SkGradientShaderBase(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) {
fCacheAlpha = 256;
fMapper = buffer.readFlattenableT<SkUnitMapper>();
fCache16 = fCache16Storage = NULL;
fCache32 = NULL;
fCache32PixelRef = NULL;
int colorCount = fColorCount = buffer.getArrayCount();
if (colorCount > kColorStorageCount) {
size_t size = sizeof(SkColor) + sizeof(SkPMColor) + sizeof(Rec);
fOrigColors = (SkColor*)sk_malloc_throw(size * colorCount);
} else {
fOrigColors = fStorage;
}
buffer.readColorArray(fOrigColors);
{
uint32_t packed = buffer.readUInt();
fGradFlags = SkToU8(unpack_flags(packed));
fTileMode = unpack_mode(packed);
}
fTileProc = gTileProcs[fTileMode];
fRecs = (Rec*)(fOrigColors + colorCount);
if (colorCount > 2) {
Rec* recs = fRecs;
recs[0].fPos = 0;
for (int i = 1; i < colorCount; i++) {
recs[i].fPos = buffer.readInt();
recs[i].fScale = buffer.readUInt();
}
}
buffer.readMatrix(&fPtsToUnit);
this->initCommon();
}
SkGradientShaderBase::~SkGradientShaderBase() {
if (fCache16Storage) {
sk_free(fCache16Storage);
}
SkSafeUnref(fCache32PixelRef);
if (fOrigColors != fStorage) {
sk_free(fOrigColors);
}
SkSafeUnref(fMapper);
}
void SkGradientShaderBase::initCommon() {
fFlags = 0;
unsigned colorAlpha = 0xFF;
for (int i = 0; i < fColorCount; i++) {
colorAlpha &= SkColorGetA(fOrigColors[i]);
}
fColorsAreOpaque = colorAlpha == 0xFF;
}
void SkGradientShaderBase::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeFlattenable(fMapper);
buffer.writeColorArray(fOrigColors, fColorCount);
buffer.writeUInt(pack_mode_flags(fTileMode, fGradFlags));
if (fColorCount > 2) {
Rec* recs = fRecs;
for (int i = 1; i < fColorCount; i++) {
buffer.writeInt(recs[i].fPos);
buffer.writeUInt(recs[i].fScale);
}
}
buffer.writeMatrix(fPtsToUnit);
}
bool SkGradientShaderBase::isOpaque() const {
return fColorsAreOpaque;
}
bool SkGradientShaderBase::setContext(const SkBitmap& device,
const SkPaint& paint,
const SkMatrix& matrix) {
if (!this->INHERITED::setContext(device, paint, matrix)) {
return false;
}
const SkMatrix& inverse = this->getTotalInverse();
if (!fDstToIndex.setConcat(fPtsToUnit, inverse)) {
// need to keep our set/end context calls balanced.
this->INHERITED::endContext();
return false;
}
fDstToIndexProc = fDstToIndex.getMapXYProc();
fDstToIndexClass = (uint8_t)SkShader::ComputeMatrixClass(fDstToIndex);
// now convert our colors in to PMColors
unsigned paintAlpha = this->getPaintAlpha();
fFlags = this->INHERITED::getFlags();
if (fColorsAreOpaque && paintAlpha == 0xFF) {
fFlags |= kOpaqueAlpha_Flag;
}
// we can do span16 as long as our individual colors are opaque,
// regardless of the paint's alpha
if (fColorsAreOpaque) {
fFlags |= kHasSpan16_Flag;
}
this->setCacheAlpha(paintAlpha);
return true;
}
void SkGradientShaderBase::setCacheAlpha(U8CPU alpha) const {
// if the new alpha differs from the previous time we were called, inval our cache
// this will trigger the cache to be rebuilt.
// we don't care about the first time, since the cache ptrs will already be NULL
if (fCacheAlpha != alpha) {
fCache16 = NULL; // inval the cache
fCache32 = NULL; // inval the cache
fCacheAlpha = alpha; // record the new alpha
// inform our subclasses
if (fCache32PixelRef) {
fCache32PixelRef->notifyPixelsChanged();
}
}
}
#define Fixed_To_Dot8(x) (((x) + 0x80) >> 8)
/** We take the original colors, not our premultiplied PMColors, since we can
build a 16bit table as long as the original colors are opaque, even if the
paint specifies a non-opaque alpha.
*/
void SkGradientShaderBase::Build16bitCache(uint16_t cache[], SkColor c0, SkColor c1,
int count) {
SkASSERT(count > 1);
SkASSERT(SkColorGetA(c0) == 0xFF);
SkASSERT(SkColorGetA(c1) == 0xFF);
SkFixed r = SkColorGetR(c0);
SkFixed g = SkColorGetG(c0);
SkFixed b = SkColorGetB(c0);
SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1);
SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1);
SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1);
r = SkIntToFixed(r) + 0x8000;
g = SkIntToFixed(g) + 0x8000;
b = SkIntToFixed(b) + 0x8000;
do {
unsigned rr = r >> 16;
unsigned gg = g >> 16;
unsigned bb = b >> 16;
cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb));
cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb);
cache += 1;
r += dr;
g += dg;
b += db;
} while (--count != 0);
}
/*
* r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in
* release builds, we saw a compiler error where the 0xFF parameter in
* SkPackARGB32() was being totally ignored whenever it was called with
* a non-zero add (e.g. 0x8000).
*
* We found two work-arounds:
* 1. change r,g,b to unsigned (or just one of them)
* 2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead
* of using |
*
* We chose #1 just because it was more localized.
* See http://code.google.com/p/skia/issues/detail?id=1113
*
* The type SkUFixed encapsulate this need for unsigned, but logically Fixed.
*/
typedef uint32_t SkUFixed;
void SkGradientShaderBase::Build32bitCache(SkPMColor cache[], SkColor c0, SkColor c1,
int count, U8CPU paintAlpha, uint32_t gradFlags) {
SkASSERT(count > 1);
// need to apply paintAlpha to our two endpoints
uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha);
const bool interpInPremul = SkToBool(gradFlags &
SkGradientShader::kInterpolateColorsInPremul_Flag);
uint32_t r0 = SkColorGetR(c0);
uint32_t g0 = SkColorGetG(c0);
uint32_t b0 = SkColorGetB(c0);
uint32_t r1 = SkColorGetR(c1);
uint32_t g1 = SkColorGetG(c1);
uint32_t b1 = SkColorGetB(c1);
if (interpInPremul) {
r0 = SkMulDiv255Round(r0, a0);
g0 = SkMulDiv255Round(g0, a0);
b0 = SkMulDiv255Round(b0, a0);
r1 = SkMulDiv255Round(r1, a1);
g1 = SkMulDiv255Round(g1, a1);
b1 = SkMulDiv255Round(b1, a1);
}
SkFixed da = SkIntToFixed(a1 - a0) / (count - 1);
SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1);
SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1);
SkFixed db = SkIntToFixed(b1 - b0) / (count - 1);
/* We pre-add 1/8 to avoid having to add this to our [0] value each time
in the loop. Without this, the bias for each would be
0x2000 0xA000 0xE000 0x6000
With this trick, we can add 0 for the first (no-op) and just adjust the
others.
*/
SkUFixed a = SkIntToFixed(a0) + 0x2000;
SkUFixed r = SkIntToFixed(r0) + 0x2000;
SkUFixed g = SkIntToFixed(g0) + 0x2000;
SkUFixed b = SkIntToFixed(b0) + 0x2000;
/*
* Our dither-cell (spatially) is
* 0 2
* 3 1
* Where
* [0] -> [-1/8 ... 1/8 ) values near 0
* [1] -> [ 1/8 ... 3/8 ) values near 1/4
* [2] -> [ 3/8 ... 5/8 ) values near 1/2
* [3] -> [ 5/8 ... 7/8 ) values near 3/4
*/
if (0xFF == a0 && 0 == da) {
do {
cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0 ) >> 16,
(g + 0 ) >> 16,
(b + 0 ) >> 16);
cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + 0x8000) >> 16,
(g + 0x8000) >> 16,
(b + 0x8000) >> 16);
cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + 0xC000) >> 16,
(g + 0xC000) >> 16,
(b + 0xC000) >> 16);
cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + 0x4000) >> 16,
(g + 0x4000) >> 16,
(b + 0x4000) >> 16);
cache += 1;
r += dr;
g += dg;
b += db;
} while (--count != 0);
} else if (interpInPremul) {
do {
cache[kCache32Count*0] = SkPackARGB32((a + 0 ) >> 16,
(r + 0 ) >> 16,
(g + 0 ) >> 16,
(b + 0 ) >> 16);
cache[kCache32Count*1] = SkPackARGB32((a + 0x8000) >> 16,
(r + 0x8000) >> 16,
(g + 0x8000) >> 16,
(b + 0x8000) >> 16);
cache[kCache32Count*2] = SkPackARGB32((a + 0xC000) >> 16,
(r + 0xC000) >> 16,
(g + 0xC000) >> 16,
(b + 0xC000) >> 16);
cache[kCache32Count*3] = SkPackARGB32((a + 0x4000) >> 16,
(r + 0x4000) >> 16,
(g + 0x4000) >> 16,
(b + 0x4000) >> 16);
cache += 1;
a += da;
r += dr;
g += dg;
b += db;
} while (--count != 0);
} else { // interpolate in unpreml space
do {
cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0 ) >> 16,
(r + 0 ) >> 16,
(g + 0 ) >> 16,
(b + 0 ) >> 16);
cache[kCache32Count*1] = SkPremultiplyARGBInline((a + 0x8000) >> 16,
(r + 0x8000) >> 16,
(g + 0x8000) >> 16,
(b + 0x8000) >> 16);
cache[kCache32Count*2] = SkPremultiplyARGBInline((a + 0xC000) >> 16,
(r + 0xC000) >> 16,
(g + 0xC000) >> 16,
(b + 0xC000) >> 16);
cache[kCache32Count*3] = SkPremultiplyARGBInline((a + 0x4000) >> 16,
(r + 0x4000) >> 16,
(g + 0x4000) >> 16,
(b + 0x4000) >> 16);
cache += 1;
a += da;
r += dr;
g += dg;
b += db;
} while (--count != 0);
}
}
static inline int SkFixedToFFFF(SkFixed x) {
SkASSERT((unsigned)x <= SK_Fixed1);
return x - (x >> 16);
}
static inline U16CPU bitsTo16(unsigned x, const unsigned bits) {
SkASSERT(x < (1U << bits));
if (6 == bits) {
return (x << 10) | (x << 4) | (x >> 2);
}
if (8 == bits) {
return (x << 8) | x;
}
sk_throw();
return 0;
}
const uint16_t* SkGradientShaderBase::getCache16() const {
if (fCache16 == NULL) {
// double the count for dither entries
const int entryCount = kCache16Count * 2;
const size_t allocSize = sizeof(uint16_t) * entryCount;
if (fCache16Storage == NULL) { // set the storage and our working ptr
fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
}
fCache16 = fCache16Storage;
if (fColorCount == 2) {
Build16bitCache(fCache16, fOrigColors[0], fOrigColors[1],
kCache16Count);
} else {
Rec* rec = fRecs;
int prevIndex = 0;
for (int i = 1; i < fColorCount; i++) {
int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift;
SkASSERT(nextIndex < kCache16Count);
if (nextIndex > prevIndex)
Build16bitCache(fCache16 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1);
prevIndex = nextIndex;
}
}
if (fMapper) {
fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize);
uint16_t* linear = fCache16; // just computed linear data
uint16_t* mapped = fCache16Storage; // storage for mapped data
SkUnitMapper* map = fMapper;
for (int i = 0; i < kCache16Count; i++) {
int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift;
mapped[i] = linear[index];
mapped[i + kCache16Count] = linear[index + kCache16Count];
}
sk_free(fCache16);
fCache16 = fCache16Storage;
}
}
return fCache16;
}
const SkPMColor* SkGradientShaderBase::getCache32() const {
if (fCache32 == NULL) {
// double the count for dither entries
const int entryCount = kCache32Count * 4;
const size_t allocSize = sizeof(SkPMColor) * entryCount;
if (NULL == fCache32PixelRef) {
fCache32PixelRef = SkNEW_ARGS(SkMallocPixelRef,
(NULL, allocSize, NULL));
}
fCache32 = (SkPMColor*)fCache32PixelRef->getAddr();
if (fColorCount == 2) {
Build32bitCache(fCache32, fOrigColors[0], fOrigColors[1],
kCache32Count, fCacheAlpha, fGradFlags);
} else {
Rec* rec = fRecs;
int prevIndex = 0;
for (int i = 1; i < fColorCount; i++) {
int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
SkASSERT(nextIndex < kCache32Count);
if (nextIndex > prevIndex)
Build32bitCache(fCache32 + prevIndex, fOrigColors[i-1],
fOrigColors[i], nextIndex - prevIndex + 1,
fCacheAlpha, fGradFlags);
prevIndex = nextIndex;
}
}
if (fMapper) {
SkMallocPixelRef* newPR = SkNEW_ARGS(SkMallocPixelRef,
(NULL, allocSize, NULL));
SkPMColor* linear = fCache32; // just computed linear data
SkPMColor* mapped = (SkPMColor*)newPR->getAddr(); // storage for mapped data
SkUnitMapper* map = fMapper;
for (int i = 0; i < kCache32Count; i++) {
int index = map->mapUnit16((i << 8) | i) >> 8;
mapped[i + kCache32Count*0] = linear[index + kCache32Count*0];
mapped[i + kCache32Count*1] = linear[index + kCache32Count*1];
mapped[i + kCache32Count*2] = linear[index + kCache32Count*2];
mapped[i + kCache32Count*3] = linear[index + kCache32Count*3];
}
fCache32PixelRef->unref();
fCache32PixelRef = newPR;
fCache32 = (SkPMColor*)newPR->getAddr();
}
}
return fCache32;
}
/*
* Because our caller might rebuild the same (logically the same) gradient
* over and over, we'd like to return exactly the same "bitmap" if possible,
* allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
* To do that, we maintain a private cache of built-bitmaps, based on our
* colors and positions. Note: we don't try to flatten the fMapper, so if one
* is present, we skip the cache for now.
*/
void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const {
// our caller assumes no external alpha, so we ensure that our cache is
// built with 0xFF
this->setCacheAlpha(0xFF);
// don't have a way to put the mapper into our cache-key yet
if (fMapper) {
// force our cahce32pixelref to be built
(void)this->getCache32();
bitmap->setConfig(SkBitmap::kARGB_8888_Config, kCache32Count, 1);
bitmap->setPixelRef(fCache32PixelRef);
return;
}
// build our key: [numColors + colors[] + {positions[]} + flags ]
int count = 1 + fColorCount + 1;
if (fColorCount > 2) {
count += fColorCount - 1; // fRecs[].fPos
}
SkAutoSTMalloc<16, int32_t> storage(count);
int32_t* buffer = storage.get();
*buffer++ = fColorCount;
memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor));
buffer += fColorCount;
if (fColorCount > 2) {
for (int i = 1; i < fColorCount; i++) {
*buffer++ = fRecs[i].fPos;
}
}
*buffer++ = fGradFlags;
SkASSERT(buffer - storage.get() == count);
///////////////////////////////////
SK_DECLARE_STATIC_MUTEX(gMutex);
static SkBitmapCache* gCache;
// each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp
static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32;
SkAutoMutexAcquire ama(gMutex);
if (NULL == gCache) {
gCache = SkNEW_ARGS(SkBitmapCache, (MAX_NUM_CACHED_GRADIENT_BITMAPS));
}
size_t size = count * sizeof(int32_t);
if (!gCache->find(storage.get(), size, bitmap)) {
// force our cahce32pixelref to be built
(void)this->getCache32();
bitmap->setConfig(SkBitmap::kARGB_8888_Config, kCache32Count, 1);
bitmap->setPixelRef(fCache32PixelRef);
gCache->add(storage.get(), size, *bitmap);
}
}
void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const {
if (info) {
if (info->fColorCount >= fColorCount) {
if (info->fColors) {
memcpy(info->fColors, fOrigColors, fColorCount * sizeof(SkColor));
}
if (info->fColorOffsets) {
if (fColorCount == 2) {
info->fColorOffsets[0] = 0;
info->fColorOffsets[1] = SK_Scalar1;
} else if (fColorCount > 2) {
for (int i = 0; i < fColorCount; ++i) {
info->fColorOffsets[i] = SkFixedToScalar(fRecs[i].fPos);
}
}
}
}
info->fColorCount = fColorCount;
info->fTileMode = fTileMode;
info->fGradientFlags = fGradFlags;
}
}
#ifdef SK_DEVELOPER
void SkGradientShaderBase::toString(SkString* str) const {
str->appendf("%d colors: ", fColorCount);
for (int i = 0; i < fColorCount; ++i) {
str->appendHex(fOrigColors[i]);
if (i < fColorCount-1) {
str->append(", ");
}
}
if (fColorCount > 2) {
str->append(" points: (");
for (int i = 0; i < fColorCount; ++i) {
str->appendScalar(SkFixedToScalar(fRecs[i].fPos));
if (i < fColorCount-1) {
str->append(", ");
}
}
str->append(")");
}
static const char* gTileModeName[SkShader::kTileModeCount] = {
"clamp", "repeat", "mirror"
};
str->append(" ");
str->append(gTileModeName[fTileMode]);
// TODO: add "fMapper->toString(str);" when SkUnitMapper::toString is added
this->INHERITED::toString(str);
}
#endif
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "SkEmptyShader.h"
// assumes colors is SkColor* and pos is SkScalar*
#define EXPAND_1_COLOR(count) \
SkColor tmp[2]; \
do { \
if (1 == count) { \
tmp[0] = tmp[1] = colors[0]; \
colors = tmp; \
pos = NULL; \
count = 2; \
} \
} while (0)
static void desc_init(SkGradientShaderBase::Descriptor* desc,
const SkColor colors[],
const SkScalar pos[], int colorCount,
SkShader::TileMode mode,
SkUnitMapper* mapper, uint32_t flags) {
desc->fColors = colors;
desc->fPos = pos;
desc->fCount = colorCount;
desc->fTileMode = mode;
desc->fMapper = mapper;
desc->fFlags = flags;
}
SkShader* SkGradientShader::CreateLinear(const SkPoint pts[2],
const SkColor colors[],
const SkScalar pos[], int colorCount,
SkShader::TileMode mode,
SkUnitMapper* mapper,
uint32_t flags) {
if (NULL == pts || NULL == colors || colorCount < 1) {
return NULL;
}
EXPAND_1_COLOR(colorCount);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
return SkNEW_ARGS(SkLinearGradient, (pts, desc));
}
SkShader* SkGradientShader::CreateRadial(const SkPoint& center, SkScalar radius,
const SkColor colors[],
const SkScalar pos[], int colorCount,
SkShader::TileMode mode,
SkUnitMapper* mapper,
uint32_t flags) {
if (radius <= 0 || NULL == colors || colorCount < 1) {
return NULL;
}
EXPAND_1_COLOR(colorCount);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
return SkNEW_ARGS(SkRadialGradient, (center, radius, desc));
}
SkShader* SkGradientShader::CreateTwoPointRadial(const SkPoint& start,
SkScalar startRadius,
const SkPoint& end,
SkScalar endRadius,
const SkColor colors[],
const SkScalar pos[],
int colorCount,
SkShader::TileMode mode,
SkUnitMapper* mapper,
uint32_t flags) {
if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
return NULL;
}
EXPAND_1_COLOR(colorCount);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
return SkNEW_ARGS(SkTwoPointRadialGradient,
(start, startRadius, end, endRadius, desc));
}
SkShader* SkGradientShader::CreateTwoPointConical(const SkPoint& start,
SkScalar startRadius,
const SkPoint& end,
SkScalar endRadius,
const SkColor colors[],
const SkScalar pos[],
int colorCount,
SkShader::TileMode mode,
SkUnitMapper* mapper,
uint32_t flags) {
if (startRadius < 0 || endRadius < 0 || NULL == colors || colorCount < 1) {
return NULL;
}
if (start == end && startRadius == endRadius) {
return SkNEW(SkEmptyShader);
}
EXPAND_1_COLOR(colorCount);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, colors, pos, colorCount, mode, mapper, flags);
return SkNEW_ARGS(SkTwoPointConicalGradient,
(start, startRadius, end, endRadius, desc));
}
SkShader* SkGradientShader::CreateSweep(SkScalar cx, SkScalar cy,
const SkColor colors[],
const SkScalar pos[],
int colorCount, SkUnitMapper* mapper,
uint32_t flags) {
if (NULL == colors || colorCount < 1) {
return NULL;
}
EXPAND_1_COLOR(colorCount);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, colors, pos, colorCount, SkShader::kClamp_TileMode, mapper, flags);
return SkNEW_ARGS(SkSweepGradient, (cx, cy, desc));
}
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointRadialGradient)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
///////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "effects/GrTextureStripAtlas.h"
#include "GrTBackendEffectFactory.h"
#include "SkGr.h"
GrGLGradientEffect::GrGLGradientEffect(const GrBackendEffectFactory& factory)
: INHERITED(factory)
, fCachedYCoord(SK_ScalarMax) {
}
GrGLGradientEffect::~GrGLGradientEffect() { }
void GrGLGradientEffect::emitUniforms(GrGLShaderBuilder* builder, EffectKey key) {
if (GrGradientEffect::kTwo_ColorType == ColorTypeFromKey(key)) { // 2 Color case
fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "GradientStartColor");
fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "GradientEndColor");
} else if (GrGradientEffect::kThree_ColorType == ColorTypeFromKey(key)){ // 3 Color Case
fColorStartUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "GradientStartColor");
fColorMidUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "GradientMidColor");
fColorEndUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "GradientEndColor");
} else { // if not a fast case
fFSYUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kFloat_GrSLType, "GradientYCoordFS");
}
}
static inline void set_color_uni(const GrGLUniformManager& uman,
const GrGLUniformManager::UniformHandle uni,
const SkColor* color) {
uman.set4f(uni,
SkColorGetR(*color) / 255.f,
SkColorGetG(*color) / 255.f,
SkColorGetB(*color) / 255.f,
SkColorGetA(*color) / 255.f);
}
static inline void set_mul_color_uni(const GrGLUniformManager& uman,
const GrGLUniformManager::UniformHandle uni,
const SkColor* color){
float a = SkColorGetA(*color) / 255.f;
float aDiv255 = a / 255.f;
uman.set4f(uni,
SkColorGetR(*color) * aDiv255,
SkColorGetG(*color) * aDiv255,
SkColorGetB(*color) * aDiv255,
a);
}
void GrGLGradientEffect::setData(const GrGLUniformManager& uman,
const GrDrawEffect& drawEffect) {
const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
if (GrGradientEffect::kTwo_ColorType == e.getColorType()){
if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
set_mul_color_uni(uman, fColorEndUni, e.getColors(1));
} else {
set_color_uni(uman, fColorStartUni, e.getColors(0));
set_color_uni(uman, fColorEndUni, e.getColors(1));
}
} else if (GrGradientEffect::kThree_ColorType == e.getColorType()){
if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
set_mul_color_uni(uman, fColorStartUni, e.getColors(0));
set_mul_color_uni(uman, fColorMidUni, e.getColors(1));
set_mul_color_uni(uman, fColorEndUni, e.getColors(2));
} else {
set_color_uni(uman, fColorStartUni, e.getColors(0));
set_color_uni(uman, fColorMidUni, e.getColors(1));
set_color_uni(uman, fColorEndUni, e.getColors(2));
}
} else {
SkScalar yCoord = e.getYCoord();
if (yCoord != fCachedYCoord) {
uman.set1f(fFSYUni, yCoord);
fCachedYCoord = yCoord;
}
}
}
GrGLEffect::EffectKey GrGLGradientEffect::GenBaseGradientKey(const GrDrawEffect& drawEffect) {
const GrGradientEffect& e = drawEffect.castEffect<GrGradientEffect>();
EffectKey key = 0;
if (GrGradientEffect::kTwo_ColorType == e.getColorType()) {
key |= kTwoColorKey;
} else if (GrGradientEffect::kThree_ColorType == e.getColorType()){
key |= kThreeColorKey;
}
if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) {
key |= kPremulBeforeInterpKey;
}
return key;
}
void GrGLGradientEffect::emitColor(GrGLShaderBuilder* builder,
const char* gradientTValue,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TextureSamplerArray& samplers) {
if (GrGradientEffect::kTwo_ColorType == ColorTypeFromKey(key)){
builder->fsCodeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n",
builder->getUniformVariable(fColorStartUni).c_str(),
builder->getUniformVariable(fColorEndUni).c_str(),
gradientTValue);
// Note that we could skip this step if both colors are known to be opaque. Two
// considerations:
// The gradient SkShader reporting opaque is more restrictive than necessary in the two pt
// case. Make sure the key reflects this optimization (and note that it can use the same
// shader as thekBeforeIterp case). This same optimization applies to the 3 color case below.
if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
}
builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
(GrGLSLExpr<4>(inputColor) * GrGLSLExpr<4>("colorTemp")).c_str());
} else if (GrGradientEffect::kThree_ColorType == ColorTypeFromKey(key)){
builder->fsCodeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n",
gradientTValue);
builder->fsCodeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n",
builder->getUniformVariable(fColorStartUni).c_str());
if (kTegra3_GrGLRenderer == builder->ctxInfo().renderer()) {
// The Tegra3 compiler will sometimes never return if we have
// min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression.
builder->fsCodeAppend("\tfloat minAbs = abs(oneMinus2t);\n");
builder->fsCodeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n");
builder->fsCodeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n",
builder->getUniformVariable(fColorMidUni).c_str());
} else {
builder->fsCodeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n",
builder->getUniformVariable(fColorMidUni).c_str());
}
builder->fsCodeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n",
builder->getUniformVariable(fColorEndUni).c_str());
if (GrGradientEffect::kAfterInterp_PremulType == PremulTypeFromKey(key)) {
builder->fsCodeAppend("\tcolorTemp.rgb *= colorTemp.a;\n");
}
builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
(GrGLSLExpr<4>(inputColor) * GrGLSLExpr<4>("colorTemp")).c_str());
} else {
builder->fsCodeAppendf("\tvec2 coord = vec2(%s, %s);\n",
gradientTValue,
builder->getUniformVariable(fFSYUni).c_str());
builder->fsCodeAppendf("\t%s = ", outputColor);
builder->fsAppendTextureLookupAndModulate(inputColor,
samplers[0],
"coord");
builder->fsCodeAppend(";\n");
}
}
/////////////////////////////////////////////////////////////////////
GrGradientEffect::GrGradientEffect(GrContext* ctx,
const SkGradientShaderBase& shader,
const SkMatrix& matrix,
SkShader::TileMode tileMode) {
fIsOpaque = shader.isOpaque();
SkShader::GradientInfo info;
SkScalar pos[3] = {0};
info.fColorCount = 3;
info.fColors = &fColors[0];
info.fColorOffsets = &pos[0];
shader.asAGradient(&info);
// The two and three color specializations do not currently support tiling.
bool foundSpecialCase = false;
if (SkShader::kClamp_TileMode == info.fTileMode) {
if (2 == info.fColorCount) {
fRow = -1; // flag for no atlas
fColorType = kTwo_ColorType;
foundSpecialCase = true;
} else if (3 == info.fColorCount &&
(SkScalarAbs(pos[1] - SK_ScalarHalf) < SK_Scalar1 / 1000)) { // 3 color symmetric
fRow = -1; // flag for no atlas
fColorType = kThree_ColorType;
foundSpecialCase = true;
}
}
if (foundSpecialCase) {
if (SkGradientShader::kInterpolateColorsInPremul_Flag & info.fGradientFlags) {
fPremulType = kBeforeInterp_PremulType;
} else {
fPremulType = kAfterInterp_PremulType;
}
fCoordTransform.reset(kCoordSet, matrix);
} else {
// doesn't matter how this is set, just be consistent because it is part of the effect key.
fPremulType = kBeforeInterp_PremulType;
SkBitmap bitmap;
shader.getGradientTableBitmap(&bitmap);
fColorType = kTexture_ColorType;
GrTextureStripAtlas::Desc desc;
desc.fWidth = bitmap.width();
desc.fHeight = 32;
desc.fRowHeight = bitmap.height();
desc.fContext = ctx;
desc.fConfig = SkBitmapConfig2GrPixelConfig(bitmap.config());
fAtlas = GrTextureStripAtlas::GetAtlas(desc);
SkASSERT(NULL != fAtlas);
// We always filter the gradient table. Each table is one row of a texture, always y-clamp.
GrTextureParams params;
params.setFilterMode(GrTextureParams::kBilerp_FilterMode);
params.setTileModeX(tileMode);
fRow = fAtlas->lockRow(bitmap);
if (-1 != fRow) {
fYCoord = fAtlas->getYOffset(fRow) + SK_ScalarHalf *
fAtlas->getVerticalScaleFactor();
fCoordTransform.reset(kCoordSet, matrix, fAtlas->getTexture());
fTextureAccess.reset(fAtlas->getTexture(), params);
} else {
GrTexture* texture = GrLockAndRefCachedBitmapTexture(ctx, bitmap, &params);
fCoordTransform.reset(kCoordSet, matrix, texture);
fTextureAccess.reset(texture, params);
fYCoord = SK_ScalarHalf;
// Unlock immediately, this is not great, but we don't have a way of
// knowing when else to unlock it currently, so it may get purged from
// the cache, but it'll still be ref'd until it's no longer being used.
GrUnlockAndUnrefCachedBitmapTexture(texture);
}
this->addTextureAccess(&fTextureAccess);
}
this->addCoordTransform(&fCoordTransform);
}
GrGradientEffect::~GrGradientEffect() {
if (this->useAtlas()) {
fAtlas->unlockRow(fRow);
}
}
bool GrGradientEffect::onIsEqual(const GrEffect& effect) const {
const GrGradientEffect& s = CastEffect<GrGradientEffect>(effect);
if (this->fColorType == s.getColorType()){
if (kTwo_ColorType == fColorType) {
if (*this->getColors(0) != *s.getColors(0) ||
*this->getColors(1) != *s.getColors(1)) {
return false;
}
} else if (kThree_ColorType == fColorType) {
if (*this->getColors(0) != *s.getColors(0) ||
*this->getColors(1) != *s.getColors(1) ||
*this->getColors(2) != *s.getColors(2)) {
return false;
}
} else {
if (fYCoord != s.getYCoord()) {
return false;
}
}
return fTextureAccess.getTexture() == s.fTextureAccess.getTexture() &&
fTextureAccess.getParams().getTileModeX() ==
s.fTextureAccess.getParams().getTileModeX() &&
this->useAtlas() == s.useAtlas() &&
fCoordTransform.getMatrix().cheapEqualTo(s.fCoordTransform.getMatrix());
}
return false;
}
void GrGradientEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const {
if (fIsOpaque && (kA_GrColorComponentFlag & *validFlags) && 0xff == GrColorUnpackA(*color)) {
*validFlags = kA_GrColorComponentFlag;
} else {
*validFlags = 0;
}
}
int GrGradientEffect::RandomGradientParams(SkRandom* random,
SkColor colors[],
SkScalar** stops,
SkShader::TileMode* tm) {
int outColors = random->nextRangeU(1, kMaxRandomGradientColors);
// if one color, omit stops, otherwise randomly decide whether or not to
if (outColors == 1 || (outColors >= 2 && random->nextBool())) {
*stops = NULL;
}
SkScalar stop = 0.f;
for (int i = 0; i < outColors; ++i) {
colors[i] = random->nextU();
if (NULL != *stops) {
(*stops)[i] = stop;
stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
}
}
*tm = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
return outColors;
}
#endif