blob: 97aeba95754069b593ef9fc506df595a983305d9 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is the implementation of decompression of the proposed WOFF Ultra
// Condensed file format.
#include <cassert>
#include <cstdlib>
#include <vector>
#include <zlib.h>
#include "third_party/brotli/src/brotli/dec/decode.h"
#include "opentype-sanitiser.h"
#include "ots-memory-stream.h"
#include "ots.h"
#include "woff2.h"
namespace {
// simple glyph flags
const int kGlyfOnCurve = 1 << 0;
const int kGlyfXShort = 1 << 1;
const int kGlyfYShort = 1 << 2;
const int kGlyfRepeat = 1 << 3;
const int kGlyfThisXIsSame = 1 << 4;
const int kGlyfThisYIsSame = 1 << 5;
// composite glyph flags
const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0;
const int FLAG_WE_HAVE_A_SCALE = 1 << 3;
const int FLAG_MORE_COMPONENTS = 1 << 5;
const int FLAG_WE_HAVE_AN_X_AND_Y_SCALE = 1 << 6;
const int FLAG_WE_HAVE_A_TWO_BY_TWO = 1 << 7;
const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8;
const size_t kSfntHeaderSize = 12;
const size_t kSfntEntrySize = 16;
const size_t kCheckSumAdjustmentOffset = 8;
const size_t kEndPtsOfContoursOffset = 10;
const size_t kCompositeGlyphBegin = 10;
// Note that the byte order is big-endian, not the same as ots.cc
#define TAG(a, b, c, d) ((a << 24) | (b << 16) | (c << 8) | d)
const unsigned int kWoff2FlagsContinueStream = 1 << 4;
const unsigned int kWoff2FlagsTransform = 1 << 5;
// Compression type values common to both short and long formats
const uint32_t kCompressionTypeMask = 0xf;
const uint32_t kCompressionTypeNone = 0;
const uint32_t kCompressionTypeGzip = 1;
const uint32_t kCompressionTypeBrotli = 2;
const uint32_t kKnownTags[] = {
TAG('c', 'm', 'a', 'p'), // 0
TAG('h', 'e', 'a', 'd'), // 1
TAG('h', 'h', 'e', 'a'), // 2
TAG('h', 'm', 't', 'x'), // 3
TAG('m', 'a', 'x', 'p'), // 4
TAG('n', 'a', 'm', 'e'), // 5
TAG('O', 'S', '/', '2'), // 6
TAG('p', 'o', 's', 't'), // 7
TAG('c', 'v', 't', ' '), // 8
TAG('f', 'p', 'g', 'm'), // 9
TAG('g', 'l', 'y', 'f'), // 10
TAG('l', 'o', 'c', 'a'), // 11
TAG('p', 'r', 'e', 'p'), // 12
TAG('C', 'F', 'F', ' '), // 13
TAG('V', 'O', 'R', 'G'), // 14
TAG('E', 'B', 'D', 'T'), // 15
TAG('E', 'B', 'L', 'C'), // 16
TAG('g', 'a', 's', 'p'), // 17
TAG('h', 'd', 'm', 'x'), // 18
TAG('k', 'e', 'r', 'n'), // 19
TAG('L', 'T', 'S', 'H'), // 20
TAG('P', 'C', 'L', 'T'), // 21
TAG('V', 'D', 'M', 'X'), // 22
TAG('v', 'h', 'e', 'a'), // 23
TAG('v', 'm', 't', 'x'), // 24
TAG('B', 'A', 'S', 'E'), // 25
TAG('G', 'D', 'E', 'F'), // 26
TAG('G', 'P', 'O', 'S'), // 27
TAG('G', 'S', 'U', 'B'), // 28
TAG('E', 'B', 'S', 'C'), // 29
TAG('J', 'S', 'T', 'F'), // 30
TAG('M', 'A', 'T', 'H'), // 31
TAG('C', 'B', 'D', 'T'), // 32
TAG('C', 'B', 'L', 'C'), // 33
TAG('C', 'O', 'L', 'R'), // 34
TAG('C', 'P', 'A', 'L'), // 35
TAG('S', 'V', 'G', ' '), // 36
TAG('s', 'b', 'i', 'x'), // 37
TAG('a', 'c', 'n', 't'), // 38
TAG('a', 'v', 'a', 'r'), // 39
TAG('b', 'd', 'a', 't'), // 40
TAG('b', 'l', 'o', 'c'), // 41
TAG('b', 's', 'l', 'n'), // 42
TAG('c', 'v', 'a', 'r'), // 43
TAG('f', 'd', 's', 'c'), // 44
TAG('f', 'e', 'a', 't'), // 45
TAG('f', 'm', 't', 'x'), // 46
TAG('f', 'v', 'a', 'r'), // 47
TAG('g', 'v', 'a', 'r'), // 48
TAG('h', 's', 't', 'y'), // 49
TAG('j', 'u', 's', 't'), // 50
TAG('l', 'c', 'a', 'r'), // 51
TAG('m', 'o', 'r', 't'), // 52
TAG('m', 'o', 'r', 'x'), // 53
TAG('o', 'p', 'b', 'd'), // 54
TAG('p', 'r', 'o', 'p'), // 55
TAG('t', 'r', 'a', 'k'), // 56
TAG('Z', 'a', 'p', 'f'), // 57
TAG('S', 'i', 'l', 'f'), // 58
TAG('G', 'l', 'a', 't'), // 59
TAG('G', 'l', 'o', 'c'), // 60
TAG('F', 'e', 'a', 't'), // 61
TAG('S', 'i', 'l', 'l'), // 62
};
struct Point {
int x;
int y;
bool on_curve;
};
struct Table {
uint32_t tag;
uint32_t flags;
uint32_t src_offset;
uint32_t src_length;
uint32_t transform_length;
uint32_t dst_offset;
uint32_t dst_length;
Table()
: tag(0),
flags(0),
src_offset(0),
src_length(0),
transform_length(0),
dst_offset(0),
dst_length(0) {}
};
// Based on section 6.1.1 of MicroType Express draft spec
bool Read255UShort(ots::Buffer* buf, unsigned int* value) {
static const int kWordCode = 253;
static const int kOneMoreByteCode2 = 254;
static const int kOneMoreByteCode1 = 255;
static const int kLowestUCode = 253;
uint8_t code = 0;
if (!buf->ReadU8(&code)) {
return OTS_FAILURE();
}
if (code == kWordCode) {
uint16_t result = 0;
if (!buf->ReadU16(&result)) {
return OTS_FAILURE();
}
*value = result;
return true;
} else if (code == kOneMoreByteCode1) {
uint8_t result = 0;
if (!buf->ReadU8(&result)) {
return OTS_FAILURE();
}
*value = result + kLowestUCode;
return true;
} else if (code == kOneMoreByteCode2) {
uint8_t result = 0;
if (!buf->ReadU8(&result)) {
return OTS_FAILURE();
}
*value = result + kLowestUCode * 2;
return true;
} else {
*value = code;
return true;
}
}
bool ReadBase128(ots::Buffer* buf, uint32_t* value) {
uint32_t result = 0;
for (size_t i = 0; i < 5; ++i) {
uint8_t code = 0;
if (!buf->ReadU8(&code)) {
return OTS_FAILURE();
}
// If any of the top seven bits are set then we're about to overflow.
if (result & 0xe0000000U) {
return OTS_FAILURE();
}
result = (result << 7) | (code & 0x7f);
if ((code & 0x80) == 0) {
*value = result;
return true;
}
}
// Make sure not to exceed the size bound
return OTS_FAILURE();
}
// Caller must ensure that buffer overrun won't happen.
// TODO(ksakamaoto): Consider creating 'writer' version of the Buffer class
// and use it across the code.
size_t StoreU32(uint8_t* dst, size_t offset, uint32_t x) {
dst[offset] = x >> 24;
dst[offset + 1] = x >> 16;
dst[offset + 2] = x >> 8;
dst[offset + 3] = x;
return offset + 4;
}
size_t Store16(uint8_t* dst, size_t offset, int x) {
dst[offset] = x >> 8;
dst[offset + 1] = x;
return offset + 2;
}
int WithSign(int flag, int baseval) {
assert(0 <= baseval && baseval < 65536);
return (flag & 1) ? baseval : -baseval;
}
bool TripletDecode(const uint8_t* flags_in, const uint8_t* in, size_t in_size,
unsigned int n_points, std::vector<Point>* result,
size_t* in_bytes_consumed) {
int x = 0;
int y = 0;
// Early return if |in| buffer is too small. Each point consumes 1-4 bytes.
if (n_points > in_size) {
return OTS_FAILURE();
}
unsigned int triplet_index = 0;
for (unsigned int i = 0; i < n_points; ++i) {
uint8_t flag = flags_in[i];
bool on_curve = !(flag >> 7);
flag &= 0x7f;
unsigned int n_data_bytes;
if (flag < 84) {
n_data_bytes = 1;
} else if (flag < 120) {
n_data_bytes = 2;
} else if (flag < 124) {
n_data_bytes = 3;
} else {
n_data_bytes = 4;
}
if (triplet_index + n_data_bytes > in_size ||
triplet_index + n_data_bytes < triplet_index) {
return OTS_FAILURE();
}
int dx, dy;
if (flag < 10) {
dx = 0;
dy = WithSign(flag, ((flag & 14) << 7) + in[triplet_index]);
} else if (flag < 20) {
dx = WithSign(flag, (((flag - 10) & 14) << 7) + in[triplet_index]);
dy = 0;
} else if (flag < 84) {
int b0 = flag - 20;
int b1 = in[triplet_index];
dx = WithSign(flag, 1 + (b0 & 0x30) + (b1 >> 4));
dy = WithSign(flag >> 1, 1 + ((b0 & 0x0c) << 2) + (b1 & 0x0f));
} else if (flag < 120) {
int b0 = flag - 84;
dx = WithSign(flag, 1 + ((b0 / 12) << 8) + in[triplet_index]);
dy = WithSign(flag >> 1,
1 + (((b0 % 12) >> 2) << 8) + in[triplet_index + 1]);
} else if (flag < 124) {
int b2 = in[triplet_index + 1];
dx = WithSign(flag, (in[triplet_index] << 4) + (b2 >> 4));
dy = WithSign(flag >> 1, ((b2 & 0x0f) << 8) + in[triplet_index + 2]);
} else {
dx = WithSign(flag, (in[triplet_index] << 8) + in[triplet_index + 1]);
dy = WithSign(flag >> 1,
(in[triplet_index + 2] << 8) + in[triplet_index + 3]);
}
triplet_index += n_data_bytes;
// Possible overflow but coordinate values are not security sensitive
x += dx;
y += dy;
result->push_back(Point());
Point& back = result->back();
back.x = x;
back.y = y;
back.on_curve = on_curve;
}
*in_bytes_consumed = triplet_index;
return true;
}
// This function stores just the point data. On entry, dst points to the
// beginning of a simple glyph. Returns true on success.
bool StorePoints(const std::vector<Point>& points,
unsigned int n_contours, unsigned int instruction_length,
uint8_t* dst, size_t dst_size, size_t* glyph_size) {
// I believe that n_contours < 65536, in which case this is safe. However, a
// comment and/or an assert would be good.
unsigned int flag_offset = kEndPtsOfContoursOffset + 2 * n_contours + 2 +
instruction_length;
int last_flag = -1;
int repeat_count = 0;
int last_x = 0;
int last_y = 0;
unsigned int x_bytes = 0;
unsigned int y_bytes = 0;
for (size_t i = 0; i < points.size(); ++i) {
const Point& point = points.at(i);
int flag = point.on_curve ? kGlyfOnCurve : 0;
int dx = point.x - last_x;
int dy = point.y - last_y;
if (dx == 0) {
flag |= kGlyfThisXIsSame;
} else if (dx > -256 && dx < 256) {
flag |= kGlyfXShort | (dx > 0 ? kGlyfThisXIsSame : 0);
x_bytes += 1;
} else {
x_bytes += 2;
}
if (dy == 0) {
flag |= kGlyfThisYIsSame;
} else if (dy > -256 && dy < 256) {
flag |= kGlyfYShort | (dy > 0 ? kGlyfThisYIsSame : 0);
y_bytes += 1;
} else {
y_bytes += 2;
}
if (flag == last_flag && repeat_count != 255) {
dst[flag_offset - 1] |= kGlyfRepeat;
repeat_count++;
} else {
if (repeat_count != 0) {
if (flag_offset >= dst_size) {
return OTS_FAILURE();
}
dst[flag_offset++] = repeat_count;
}
if (flag_offset >= dst_size) {
return OTS_FAILURE();
}
dst[flag_offset++] = flag;
repeat_count = 0;
}
last_x = point.x;
last_y = point.y;
last_flag = flag;
}
if (repeat_count != 0) {
if (flag_offset >= dst_size) {
return OTS_FAILURE();
}
dst[flag_offset++] = repeat_count;
}
unsigned int xy_bytes = x_bytes + y_bytes;
if (xy_bytes < x_bytes ||
flag_offset + xy_bytes < flag_offset ||
flag_offset + xy_bytes > dst_size) {
return OTS_FAILURE();
}
int x_offset = flag_offset;
int y_offset = flag_offset + x_bytes;
last_x = 0;
last_y = 0;
for (size_t i = 0; i < points.size(); ++i) {
int dx = points.at(i).x - last_x;
if (dx == 0) {
// pass
} else if (dx > -256 && dx < 256) {
dst[x_offset++] = std::abs(dx);
} else {
// will always fit for valid input, but overflow is harmless
x_offset = Store16(dst, x_offset, dx);
}
last_x += dx;
int dy = points.at(i).y - last_y;
if (dy == 0) {
// pass
} else if (dy > -256 && dy < 256) {
dst[y_offset++] = std::abs(dy);
} else {
y_offset = Store16(dst, y_offset, dy);
}
last_y += dy;
}
*glyph_size = y_offset;
return true;
}
// Compute the bounding box of the coordinates, and store into a glyf buffer.
// A precondition is that there are at least 10 bytes available.
void ComputeBbox(const std::vector<Point>& points, uint8_t* dst) {
int x_min = 0;
int y_min = 0;
int x_max = 0;
int y_max = 0;
for (size_t i = 0; i < points.size(); ++i) {
int x = points.at(i).x;
int y = points.at(i).y;
if (i == 0 || x < x_min) x_min = x;
if (i == 0 || x > x_max) x_max = x;
if (i == 0 || y < y_min) y_min = y;
if (i == 0 || y > y_max) y_max = y;
}
size_t offset = 2;
offset = Store16(dst, offset, x_min);
offset = Store16(dst, offset, y_min);
offset = Store16(dst, offset, x_max);
offset = Store16(dst, offset, y_max);
}
// Process entire bbox stream. This is done as a separate pass to allow for
// composite bbox computations (an optional more aggressive transform).
bool ProcessBboxStream(ots::Buffer* bbox_stream, unsigned int n_glyphs,
const std::vector<uint32_t>& loca_values, uint8_t* glyf_buf,
size_t glyf_buf_length) {
const uint8_t* buf = bbox_stream->buffer();
if (n_glyphs >= 65536 || loca_values.size() != n_glyphs + 1) {
return OTS_FAILURE();
}
// Safe because n_glyphs is bounded
unsigned int bitmap_length = ((n_glyphs + 31) >> 5) << 2;
if (!bbox_stream->Skip(bitmap_length)) {
return OTS_FAILURE();
}
for (unsigned int i = 0; i < n_glyphs; ++i) {
if (buf[i >> 3] & (0x80 >> (i & 7))) {
uint32_t loca_offset = loca_values.at(i);
if (loca_values.at(i + 1) - loca_offset < kEndPtsOfContoursOffset) {
return OTS_FAILURE();
}
if (glyf_buf_length < 2 + 10 ||
loca_offset > glyf_buf_length - 2 - 10) {
return OTS_FAILURE();
}
if (!bbox_stream->Read(glyf_buf + loca_offset + 2, 8)) {
return OTS_FAILURE();
}
}
}
return true;
}
bool ProcessComposite(ots::Buffer* composite_stream, uint8_t* dst,
size_t dst_size, size_t* glyph_size, bool* have_instructions) {
size_t start_offset = composite_stream->offset();
bool we_have_instructions = false;
uint16_t flags = FLAG_MORE_COMPONENTS;
while (flags & FLAG_MORE_COMPONENTS) {
if (!composite_stream->ReadU16(&flags)) {
return OTS_FAILURE();
}
we_have_instructions |= (flags & FLAG_WE_HAVE_INSTRUCTIONS) != 0;
size_t arg_size = 2; // glyph index
if (flags & FLAG_ARG_1_AND_2_ARE_WORDS) {
arg_size += 4;
} else {
arg_size += 2;
}
if (flags & FLAG_WE_HAVE_A_SCALE) {
arg_size += 2;
} else if (flags & FLAG_WE_HAVE_AN_X_AND_Y_SCALE) {
arg_size += 4;
} else if (flags & FLAG_WE_HAVE_A_TWO_BY_TWO) {
arg_size += 8;
}
if (!composite_stream->Skip(arg_size)) {
return OTS_FAILURE();
}
}
size_t composite_glyph_size = composite_stream->offset() - start_offset;
if (composite_glyph_size + kCompositeGlyphBegin > dst_size) {
return OTS_FAILURE();
}
Store16(dst, 0, 0xffff); // nContours = -1 for composite glyph
std::memcpy(dst + kCompositeGlyphBegin,
composite_stream->buffer() + start_offset,
composite_glyph_size);
*glyph_size = kCompositeGlyphBegin + composite_glyph_size;
*have_instructions = we_have_instructions;
return true;
}
// Build TrueType loca table
bool StoreLoca(const std::vector<uint32_t>& loca_values, int index_format,
uint8_t* dst, size_t dst_size) {
const uint64_t loca_size = loca_values.size();
const uint64_t offset_size = index_format ? 4 : 2;
if ((loca_size << 2) >> 2 != loca_size) {
return OTS_FAILURE();
}
// No integer overflow here (loca_size <= 2^16).
if (offset_size * loca_size > dst_size) {
return OTS_FAILURE();
}
size_t offset = 0;
for (size_t i = 0; i < loca_values.size(); ++i) {
uint32_t value = loca_values.at(i);
if (index_format) {
offset = StoreU32(dst, offset, value);
} else {
offset = Store16(dst, offset, value >> 1);
}
}
return true;
}
// Reconstruct entire glyf table based on transformed original
bool ReconstructGlyf(const uint8_t* data, size_t data_size,
uint8_t* dst, size_t dst_size,
uint8_t* loca_buf, size_t loca_size) {
static const int kNumSubStreams = 7;
ots::Buffer file(data, data_size);
uint32_t version;
std::vector<std::pair<const uint8_t*, size_t> > substreams(kNumSubStreams);
if (!file.ReadU32(&version)) {
return OTS_FAILURE();
}
uint16_t num_glyphs;
uint16_t index_format;
if (!file.ReadU16(&num_glyphs) ||
!file.ReadU16(&index_format)) {
return OTS_FAILURE();
}
unsigned int offset = (2 + kNumSubStreams) * 4;
if (offset > data_size) {
return OTS_FAILURE();
}
// Invariant from here on: data_size >= offset
for (int i = 0; i < kNumSubStreams; ++i) {
uint32_t substream_size;
if (!file.ReadU32(&substream_size)) {
return OTS_FAILURE();
}
if (substream_size > data_size - offset) {
return OTS_FAILURE();
}
substreams.at(i) = std::make_pair(data + offset, substream_size);
offset += substream_size;
}
ots::Buffer n_contour_stream(substreams.at(0).first, substreams.at(0).second);
ots::Buffer n_points_stream(substreams.at(1).first, substreams.at(1).second);
ots::Buffer flag_stream(substreams.at(2).first, substreams.at(2).second);
ots::Buffer glyph_stream(substreams.at(3).first, substreams.at(3).second);
ots::Buffer composite_stream(substreams.at(4).first, substreams.at(4).second);
ots::Buffer bbox_stream(substreams.at(5).first, substreams.at(5).second);
ots::Buffer instruction_stream(substreams.at(6).first,
substreams.at(6).second);
std::vector<uint32_t> loca_values;
loca_values.reserve(num_glyphs + 1);
std::vector<unsigned int> n_points_vec;
std::vector<Point> points;
uint32_t loca_offset = 0;
for (unsigned int i = 0; i < num_glyphs; ++i) {
size_t glyph_size = 0;
uint16_t n_contours = 0;
if (!n_contour_stream.ReadU16(&n_contours)) {
return OTS_FAILURE();
}
uint8_t* glyf_dst = dst + loca_offset;
size_t glyf_dst_size = dst_size - loca_offset;
if (n_contours == 0xffff) {
// composite glyph
bool have_instructions = false;
unsigned int instruction_size = 0;
if (!ProcessComposite(&composite_stream, glyf_dst, glyf_dst_size,
&glyph_size, &have_instructions)) {
return OTS_FAILURE();
}
if (have_instructions) {
if (!Read255UShort(&glyph_stream, &instruction_size)) {
return OTS_FAILURE();
}
// No integer overflow here (instruction_size < 2^16).
if (instruction_size + 2 > glyf_dst_size - glyph_size) {
return OTS_FAILURE();
}
Store16(glyf_dst, glyph_size, instruction_size);
if (!instruction_stream.Read(glyf_dst + glyph_size + 2,
instruction_size)) {
return OTS_FAILURE();
}
glyph_size += instruction_size + 2;
}
} else if (n_contours > 0) {
// simple glyph
n_points_vec.clear();
points.clear();
unsigned int total_n_points = 0;
unsigned int n_points_contour;
for (unsigned int j = 0; j < n_contours; ++j) {
if (!Read255UShort(&n_points_stream, &n_points_contour)) {
return OTS_FAILURE();
}
n_points_vec.push_back(n_points_contour);
if (total_n_points + n_points_contour < total_n_points) {
return OTS_FAILURE();
}
total_n_points += n_points_contour;
}
unsigned int flag_size = total_n_points;
if (flag_size > flag_stream.length() - flag_stream.offset()) {
return OTS_FAILURE();
}
const uint8_t* flags_buf = flag_stream.buffer() + flag_stream.offset();
const uint8_t* triplet_buf = glyph_stream.buffer() +
glyph_stream.offset();
size_t triplet_size = glyph_stream.length() - glyph_stream.offset();
size_t triplet_bytes_consumed = 0;
if (!TripletDecode(flags_buf, triplet_buf, triplet_size, total_n_points,
&points, &triplet_bytes_consumed)) {
return OTS_FAILURE();
}
const uint32_t header_and_endpts_contours_size =
kEndPtsOfContoursOffset + 2 * n_contours;
if (glyf_dst_size < header_and_endpts_contours_size) {
return OTS_FAILURE();
}
Store16(glyf_dst, 0, n_contours);
ComputeBbox(points, glyf_dst);
size_t offset = kEndPtsOfContoursOffset;
int end_point = -1;
for (unsigned int contour_ix = 0; contour_ix < n_contours; ++contour_ix) {
end_point += n_points_vec.at(contour_ix);
if (end_point >= 65536) {
return OTS_FAILURE();
}
offset = Store16(glyf_dst, offset, end_point);
}
if (!flag_stream.Skip(flag_size)) {
return OTS_FAILURE();
}
if (!glyph_stream.Skip(triplet_bytes_consumed)) {
return OTS_FAILURE();
}
unsigned int instruction_size;
if (!Read255UShort(&glyph_stream, &instruction_size)) {
return OTS_FAILURE();
}
// No integer overflow here (instruction_size < 2^16).
if (glyf_dst_size - header_and_endpts_contours_size <
instruction_size + 2) {
return OTS_FAILURE();
}
uint8_t* instruction_dst = glyf_dst + header_and_endpts_contours_size;
Store16(instruction_dst, 0, instruction_size);
if (!instruction_stream.Read(instruction_dst + 2, instruction_size)) {
return OTS_FAILURE();
}
if (!StorePoints(points, n_contours, instruction_size,
glyf_dst, glyf_dst_size, &glyph_size)) {
return OTS_FAILURE();
}
} else {
glyph_size = 0;
}
loca_values.push_back(loca_offset);
if (glyph_size + 3 < glyph_size) {
return OTS_FAILURE();
}
glyph_size = ots::Round2(glyph_size);
if (glyph_size > dst_size - loca_offset) {
// This shouldn't happen, but this test defensively maintains the
// invariant that loca_offset <= dst_size.
return OTS_FAILURE();
}
loca_offset += glyph_size;
}
loca_values.push_back(loca_offset);
assert(loca_values.size() == static_cast<size_t>(num_glyphs + 1));
if (!ProcessBboxStream(&bbox_stream, num_glyphs, loca_values,
dst, dst_size)) {
return OTS_FAILURE();
}
return StoreLoca(loca_values, index_format, loca_buf, loca_size);
}
// This is linear search, but could be changed to binary because we
// do have a guarantee that the tables are sorted by tag. But the total
// cpu time is expected to be very small in any case.
const Table* FindTable(const std::vector<Table>& tables, uint32_t tag) {
size_t n_tables = tables.size();
for (size_t i = 0; i < n_tables; ++i) {
if (tables.at(i).tag == tag) {
return &tables.at(i);
}
}
return NULL;
}
bool ReconstructTransformed(const std::vector<Table>& tables, uint32_t tag,
const uint8_t* transformed_buf, size_t transformed_size,
uint8_t* dst, size_t dst_length) {
if (tag == TAG('g', 'l', 'y', 'f')) {
const Table* glyf_table = FindTable(tables, tag);
const Table* loca_table = FindTable(tables, TAG('l', 'o', 'c', 'a'));
if (glyf_table == NULL || loca_table == NULL) {
return OTS_FAILURE();
}
if (static_cast<uint64_t>(glyf_table->dst_offset) + glyf_table->dst_length >
dst_length) {
return OTS_FAILURE();
}
if (static_cast<uint64_t>(loca_table->dst_offset) + loca_table->dst_length >
dst_length) {
return OTS_FAILURE();
}
return ReconstructGlyf(transformed_buf, transformed_size,
dst + glyf_table->dst_offset, glyf_table->dst_length,
dst + loca_table->dst_offset, loca_table->dst_length);
} else if (tag == TAG('l', 'o', 'c', 'a')) {
// processing was already done by glyf table, but validate
if (!FindTable(tables, TAG('g', 'l', 'y', 'f'))) {
return OTS_FAILURE();
}
} else {
// transform for the tag is not known
return OTS_FAILURE();
}
return true;
}
uint32_t ComputeChecksum(const uint8_t* buf, size_t size) {
uint32_t checksum = 0;
for (size_t i = 0; i < size; i += 4) {
// We assume the addition is mod 2^32, which is valid because unsigned
checksum += (buf[i] << 24) | (buf[i + 1] << 16) |
(buf[i + 2] << 8) | buf[i + 3];
}
return checksum;
}
bool FixChecksums(const std::vector<Table>& tables, uint8_t* dst) {
const Table* head_table = FindTable(tables, TAG('h', 'e', 'a', 'd'));
if (head_table == NULL ||
head_table->dst_length < kCheckSumAdjustmentOffset + 4) {
return OTS_FAILURE();
}
size_t adjustment_offset = head_table->dst_offset + kCheckSumAdjustmentOffset;
if (adjustment_offset < head_table->dst_offset) {
return OTS_FAILURE();
}
StoreU32(dst, adjustment_offset, 0);
size_t n_tables = tables.size();
uint32_t file_checksum = 0;
for (size_t i = 0; i < n_tables; ++i) {
const Table* table = &tables.at(i);
size_t table_length = table->dst_length;
uint8_t* table_data = dst + table->dst_offset;
uint32_t checksum = ComputeChecksum(table_data, table_length);
StoreU32(dst, kSfntHeaderSize + i * kSfntEntrySize + 4, checksum);
file_checksum += checksum; // The addition is mod 2^32
}
file_checksum += ComputeChecksum(dst,
kSfntHeaderSize + kSfntEntrySize * n_tables);
uint32_t checksum_adjustment = 0xb1b0afba - file_checksum;
StoreU32(dst, adjustment_offset, checksum_adjustment);
return true;
}
bool Woff2Uncompress(uint8_t* dst_buf, size_t dst_size,
const uint8_t* src_buf, size_t src_size, uint32_t compression_type) {
if (compression_type == kCompressionTypeGzip) {
uLongf uncompressed_length = dst_size;
int r = uncompress(reinterpret_cast<Bytef *>(dst_buf), &uncompressed_length,
src_buf, src_size);
if (r != Z_OK || uncompressed_length != dst_size) {
return OTS_FAILURE();
}
return true;
} else if (compression_type == kCompressionTypeBrotli) {
size_t uncompressed_size = dst_size;
int ok = BrotliDecompressBuffer(src_size, src_buf,
&uncompressed_size, dst_buf);
if (!ok || uncompressed_size != dst_size) {
return OTS_FAILURE();
}
return true;
}
// Unknown compression type
return OTS_FAILURE();
}
bool ReadShortDirectory(ots::Buffer* file, std::vector<Table>* tables,
size_t num_tables) {
for (size_t i = 0; i < num_tables; ++i) {
Table* table = &tables->at(i);
uint8_t flag_byte;
if (!file->ReadU8(&flag_byte)) {
return OTS_FAILURE();
}
uint32_t tag;
if ((flag_byte & 0x3f) == 0x3f) {
if (!file->ReadU32(&tag)) {
return OTS_FAILURE();
}
} else {
tag = kKnownTags[flag_byte & 0x3f];
}
// Bits 6 and 7 are reserved and must be 0.
if ((flag_byte & 0xc0) != 0) {
return OTS_FAILURE();
}
uint32_t flags = kCompressionTypeBrotli;
if (i > 0) {
flags |= kWoff2FlagsContinueStream;
}
// Always transform the glyf and loca tables
if (tag == TAG('g', 'l', 'y', 'f') ||
tag == TAG('l', 'o', 'c', 'a')) {
flags |= kWoff2FlagsTransform;
}
uint32_t dst_length;
if (!ReadBase128(file, &dst_length)) {
return OTS_FAILURE();
}
uint32_t transform_length = dst_length;
if ((flags & kWoff2FlagsTransform) != 0) {
if (!ReadBase128(file, &transform_length)) {
return OTS_FAILURE();
}
}
// Disallow huge numbers (> 1GB) for sanity.
if (transform_length > 1024 * 1024 * 1024 ||
dst_length > 1024 * 1024 * 1024) {
return OTS_FAILURE();
}
table->tag = tag;
table->flags = flags;
table->transform_length = transform_length;
table->dst_length = dst_length;
}
return true;
}
} // namespace
namespace ots {
size_t ComputeWOFF2FinalSize(const uint8_t* data, size_t length) {
ots::Buffer file(data, length);
uint32_t total_length;
if (!file.Skip(16) ||
!file.ReadU32(&total_length)) {
return 0;
}
return total_length;
}
bool ConvertWOFF2ToTTF(uint8_t* result, size_t result_length,
const uint8_t* data, size_t length) {
static const uint32_t kWoff2Signature = 0x774f4632; // "wOF2"
ots::Buffer file(data, length);
uint32_t signature;
uint32_t flavor;
if (!file.ReadU32(&signature) || signature != kWoff2Signature ||
!file.ReadU32(&flavor)) {
return OTS_FAILURE();
}
if (!IsValidVersionTag(ntohl(flavor))) {
return OTS_FAILURE();
}
uint32_t reported_length;
if (!file.ReadU32(&reported_length) || length != reported_length) {
return OTS_FAILURE();
}
uint16_t num_tables;
if (!file.ReadU16(&num_tables) || !num_tables) {
return OTS_FAILURE();
}
// We don't care about these fields of the header:
// uint16_t reserved
// uint32_t total_sfnt_size
if (!file.Skip(6)) {
return OTS_FAILURE();
}
uint32_t compressed_length;
if (!file.ReadU32(&compressed_length)) {
return OTS_FAILURE();
}
// We don't care about these fields of the header:
// uint16_t major_version, minor_version
// uint32_t meta_offset, meta_length, meta_orig_length
// uint32_t priv_offset, priv_length
if (!file.Skip(24)) {
return OTS_FAILURE();
}
std::vector<Table> tables(num_tables);
if (!ReadShortDirectory(&file, &tables, num_tables)) {
return OTS_FAILURE();
}
uint64_t src_offset = file.offset();
uint64_t dst_offset = kSfntHeaderSize +
kSfntEntrySize * static_cast<uint64_t>(num_tables);
uint64_t uncompressed_sum = 0;
for (uint16_t i = 0; i < num_tables; ++i) {
Table* table = &tables.at(i);
table->src_offset = src_offset;
table->src_length = (i == 0 ? compressed_length : 0);
src_offset += table->src_length;
if (src_offset > std::numeric_limits<uint32_t>::max()) {
return OTS_FAILURE();
}
src_offset = ots::Round4(src_offset);
table->dst_offset = dst_offset;
dst_offset += table->dst_length;
if (dst_offset > std::numeric_limits<uint32_t>::max()) {
return OTS_FAILURE();
}
dst_offset = ots::Round4(dst_offset);
if ((table->flags & kCompressionTypeMask) != kCompressionTypeNone) {
uncompressed_sum += table->src_length;
if (uncompressed_sum > std::numeric_limits<uint32_t>::max()) {
return OTS_FAILURE();
}
}
}
// Enforce same 30M limit on uncompressed tables as OTS
if (uncompressed_sum > 30 * 1024 * 1024) {
return OTS_FAILURE();
}
if (src_offset > length || dst_offset > result_length) {
return OTS_FAILURE();
}
const uint32_t sfnt_header_and_table_directory_size = 12 + 16 * num_tables;
if (sfnt_header_and_table_directory_size > result_length) {
return OTS_FAILURE();
}
// Start building the font
size_t offset = 0;
offset = StoreU32(result, offset, flavor);
offset = Store16(result, offset, num_tables);
unsigned max_pow2 = 0;
while (1u << (max_pow2 + 1) <= num_tables) {
max_pow2++;
}
const uint16_t output_search_range = (1u << max_pow2) << 4;
offset = Store16(result, offset, output_search_range);
offset = Store16(result, offset, max_pow2);
offset = Store16(result, offset, (num_tables << 4) - output_search_range);
for (uint16_t i = 0; i < num_tables; ++i) {
const Table* table = &tables.at(i);
offset = StoreU32(result, offset, table->tag);
offset = StoreU32(result, offset, 0); // checksum, to fill in later
offset = StoreU32(result, offset, table->dst_offset);
offset = StoreU32(result, offset, table->dst_length);
}
std::vector<uint8_t> uncompressed_buf;
bool continue_valid = false;
const uint8_t* transform_buf = NULL;
for (uint16_t i = 0; i < num_tables; ++i) {
const Table* table = &tables.at(i);
uint32_t flags = table->flags;
const uint8_t* src_buf = data + table->src_offset;
uint32_t compression_type = flags & kCompressionTypeMask;
size_t transform_length = table->transform_length;
if ((flags & kWoff2FlagsContinueStream) != 0) {
if (!continue_valid) {
return OTS_FAILURE();
}
} else if (compression_type == kCompressionTypeNone) {
if (transform_length != table->src_length) {
return OTS_FAILURE();
}
transform_buf = src_buf;
continue_valid = false;
} else if ((flags & kWoff2FlagsContinueStream) == 0) {
uint64_t total_size = transform_length;
for (uint16_t j = i + 1; j < num_tables; ++j) {
if ((tables.at(j).flags & kWoff2FlagsContinueStream) == 0) {
break;
}
total_size += tables.at(j).transform_length;
if (total_size > std::numeric_limits<uint32_t>::max()) {
return OTS_FAILURE();
}
}
// Enforce same 30M limit on uncompressed tables as OTS
if (total_size > 30 * 1024 * 1024) {
return OTS_FAILURE();
}
uncompressed_buf.resize(total_size);
if (!Woff2Uncompress(&uncompressed_buf[0], total_size,
src_buf, compressed_length, compression_type)) {
return OTS_FAILURE();
}
transform_buf = &uncompressed_buf[0];
continue_valid = true;
} else {
return OTS_FAILURE();
}
if ((flags & kWoff2FlagsTransform) == 0) {
if (transform_length != table->dst_length) {
return OTS_FAILURE();
}
if (static_cast<uint64_t>(table->dst_offset) + transform_length >
result_length) {
return OTS_FAILURE();
}
std::memcpy(result + table->dst_offset, transform_buf,
transform_length);
} else {
if (!ReconstructTransformed(tables, table->tag,
transform_buf, transform_length, result, result_length)) {
return OTS_FAILURE();
}
}
if (continue_valid) {
transform_buf += transform_length;
if (transform_buf > &uncompressed_buf[0] + uncompressed_buf.size()) {
return OTS_FAILURE();
}
}
}
return FixChecksums(tables, result);
}
} // namespace ots