blob: a92e7ccad4de090344a267a5906ae12aca884445 [file] [log] [blame]
/*
* libjingle
* Copyright 2011, Google Inc.
* Copyright 2011, RTFM, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "talk/p2p/base/dtlstransportchannel.h"
#include "talk/base/buffer.h"
#include "talk/base/dscp.h"
#include "talk/base/messagequeue.h"
#include "talk/base/stream.h"
#include "talk/base/sslstreamadapter.h"
#include "talk/base/thread.h"
#include "talk/p2p/base/common.h"
namespace cricket {
// We don't pull the RTP constants from rtputils.h, to avoid a layer violation.
static const size_t kDtlsRecordHeaderLen = 13;
static const size_t kMaxDtlsPacketLen = 2048;
static const size_t kMinRtpPacketLen = 12;
static bool IsDtlsPacket(const char* data, size_t len) {
const uint8* u = reinterpret_cast<const uint8*>(data);
return (len >= kDtlsRecordHeaderLen && (u[0] > 19 && u[0] < 64));
}
static bool IsRtpPacket(const char* data, size_t len) {
const uint8* u = reinterpret_cast<const uint8*>(data);
return (len >= kMinRtpPacketLen && (u[0] & 0xC0) == 0x80);
}
talk_base::StreamResult StreamInterfaceChannel::Read(void* buffer,
size_t buffer_len,
size_t* read,
int* error) {
if (state_ == talk_base::SS_CLOSED)
return talk_base::SR_EOS;
if (state_ == talk_base::SS_OPENING)
return talk_base::SR_BLOCK;
return fifo_.Read(buffer, buffer_len, read, error);
}
talk_base::StreamResult StreamInterfaceChannel::Write(const void* data,
size_t data_len,
size_t* written,
int* error) {
// Always succeeds, since this is an unreliable transport anyway.
// TODO: Should this block if channel_'s temporarily unwritable?
channel_->SendPacket(
static_cast<const char*>(data), data_len, talk_base::DSCP_NO_CHANGE);
if (written) {
*written = data_len;
}
return talk_base::SR_SUCCESS;
}
bool StreamInterfaceChannel::OnPacketReceived(const char* data, size_t size) {
// We force a read event here to ensure that we don't overflow our FIFO.
// Under high packet rate this can occur if we wait for the FIFO to post its
// own SE_READ.
bool ret = (fifo_.WriteAll(data, size, NULL, NULL) == talk_base::SR_SUCCESS);
if (ret) {
SignalEvent(this, talk_base::SE_READ, 0);
}
return ret;
}
void StreamInterfaceChannel::OnEvent(talk_base::StreamInterface* stream,
int sig, int err) {
SignalEvent(this, sig, err);
}
DtlsTransportChannelWrapper::DtlsTransportChannelWrapper(
Transport* transport,
TransportChannelImpl* channel)
: TransportChannelImpl(channel->content_name(), channel->component()),
transport_(transport),
worker_thread_(talk_base::Thread::Current()),
channel_(channel),
downward_(NULL),
dtls_state_(STATE_NONE),
local_identity_(NULL),
ssl_role_(talk_base::SSL_CLIENT) {
channel_->SignalReadableState.connect(this,
&DtlsTransportChannelWrapper::OnReadableState);
channel_->SignalWritableState.connect(this,
&DtlsTransportChannelWrapper::OnWritableState);
channel_->SignalReadPacket.connect(this,
&DtlsTransportChannelWrapper::OnReadPacket);
channel_->SignalReadyToSend.connect(this,
&DtlsTransportChannelWrapper::OnReadyToSend);
channel_->SignalRequestSignaling.connect(this,
&DtlsTransportChannelWrapper::OnRequestSignaling);
channel_->SignalCandidateReady.connect(this,
&DtlsTransportChannelWrapper::OnCandidateReady);
channel_->SignalCandidatesAllocationDone.connect(this,
&DtlsTransportChannelWrapper::OnCandidatesAllocationDone);
channel_->SignalRoleConflict.connect(this,
&DtlsTransportChannelWrapper::OnRoleConflict);
channel_->SignalRouteChange.connect(this,
&DtlsTransportChannelWrapper::OnRouteChange);
}
DtlsTransportChannelWrapper::~DtlsTransportChannelWrapper() {
}
void DtlsTransportChannelWrapper::Connect() {
// We should only get a single call to Connect.
ASSERT(dtls_state_ == STATE_NONE ||
dtls_state_ == STATE_OFFERED ||
dtls_state_ == STATE_ACCEPTED);
channel_->Connect();
}
void DtlsTransportChannelWrapper::Reset() {
channel_->Reset();
set_writable(false);
set_readable(false);
// Re-call SetupDtls()
if (!SetupDtls()) {
LOG_J(LS_ERROR, this) << "Error re-initializing DTLS";
dtls_state_ = STATE_CLOSED;
return;
}
dtls_state_ = STATE_ACCEPTED;
}
bool DtlsTransportChannelWrapper::SetLocalIdentity(
talk_base::SSLIdentity* identity) {
if (dtls_state_ == STATE_OPEN && identity == local_identity_) {
return true;
}
// TODO(ekr@rtfm.com): Forbid this if Connect() has been called.
if (dtls_state_ != STATE_NONE) {
LOG_J(LS_ERROR, this) << "Can't set DTLS local identity in this state";
return false;
}
if (identity) {
local_identity_ = identity;
dtls_state_ = STATE_OFFERED;
} else {
LOG_J(LS_INFO, this) << "NULL DTLS identity supplied. Not doing DTLS";
}
return true;
}
bool DtlsTransportChannelWrapper::GetLocalIdentity(
talk_base::SSLIdentity** identity) const {
if (!local_identity_)
return false;
*identity = local_identity_->GetReference();
return true;
}
bool DtlsTransportChannelWrapper::SetSslRole(talk_base::SSLRole role) {
if (dtls_state_ == STATE_OPEN) {
if (ssl_role_ != role) {
LOG(LS_ERROR) << "SSL Role can't be reversed after the session is setup.";
return false;
}
return true;
}
ssl_role_ = role;
return true;
}
bool DtlsTransportChannelWrapper::GetSslRole(talk_base::SSLRole* role) const {
*role = ssl_role_;
return true;
}
bool DtlsTransportChannelWrapper::SetRemoteFingerprint(
const std::string& digest_alg,
const uint8* digest,
size_t digest_len) {
talk_base::Buffer remote_fingerprint_value(digest, digest_len);
if ((dtls_state_ == STATE_OPEN) &&
(remote_fingerprint_value_ == remote_fingerprint_value)) {
return true;
}
// Allow SetRemoteFingerprint with a NULL digest even if SetLocalIdentity
// hasn't been called.
if (dtls_state_ > STATE_OFFERED ||
(dtls_state_ == STATE_NONE && !digest_alg.empty())) {
LOG_J(LS_ERROR, this) << "Can't set DTLS remote settings in this state.";
return false;
}
if (digest_alg.empty()) {
LOG_J(LS_INFO, this) << "Other side didn't support DTLS.";
dtls_state_ = STATE_NONE;
return true;
}
// At this point we know we are doing DTLS
remote_fingerprint_value.TransferTo(&remote_fingerprint_value_);
remote_fingerprint_algorithm_ = digest_alg;
if (!SetupDtls()) {
dtls_state_ = STATE_CLOSED;
return false;
}
dtls_state_ = STATE_ACCEPTED;
return true;
}
bool DtlsTransportChannelWrapper::GetRemoteCertificate(
talk_base::SSLCertificate** cert) const {
if (!dtls_)
return false;
return dtls_->GetPeerCertificate(cert);
}
bool DtlsTransportChannelWrapper::SetupDtls() {
StreamInterfaceChannel* downward =
new StreamInterfaceChannel(worker_thread_, channel_);
dtls_.reset(talk_base::SSLStreamAdapter::Create(downward));
if (!dtls_) {
LOG_J(LS_ERROR, this) << "Failed to create DTLS adapter.";
delete downward;
return false;
}
downward_ = downward;
dtls_->SetIdentity(local_identity_->GetReference());
dtls_->SetMode(talk_base::SSL_MODE_DTLS);
dtls_->SetServerRole(ssl_role_);
dtls_->SignalEvent.connect(this, &DtlsTransportChannelWrapper::OnDtlsEvent);
if (!dtls_->SetPeerCertificateDigest(
remote_fingerprint_algorithm_,
reinterpret_cast<unsigned char *>(remote_fingerprint_value_.data()),
remote_fingerprint_value_.length())) {
LOG_J(LS_ERROR, this) << "Couldn't set DTLS certificate digest.";
return false;
}
// Set up DTLS-SRTP, if it's been enabled.
if (!srtp_ciphers_.empty()) {
if (!dtls_->SetDtlsSrtpCiphers(srtp_ciphers_)) {
LOG_J(LS_ERROR, this) << "Couldn't set DTLS-SRTP ciphers.";
return false;
}
} else {
LOG_J(LS_INFO, this) << "Not using DTLS.";
}
LOG_J(LS_INFO, this) << "DTLS setup complete.";
return true;
}
bool DtlsTransportChannelWrapper::SetSrtpCiphers(const std::vector<std::string>&
ciphers) {
// SRTP ciphers must be set before the DTLS handshake starts.
// TODO(juberti): In multiplex situations, we may end up calling this function
// once for each muxed channel. Depending on the order of calls, this may
// result in slightly undesired results, e.g. 32 vs 80-bit MAC. The right way to
// fix this would be for the TransportProxyChannels to intersect the ciphers
// instead of overwriting, so that "80" followed by "32, 80" results in "80".
if (dtls_state_ != STATE_NONE &&
dtls_state_ != STATE_OFFERED &&
dtls_state_ != STATE_ACCEPTED) {
ASSERT(false);
return false;
}
srtp_ciphers_ = ciphers;
return true;
}
bool DtlsTransportChannelWrapper::GetSrtpCipher(std::string* cipher) {
if (dtls_state_ != STATE_OPEN) {
return false;
}
return dtls_->GetDtlsSrtpCipher(cipher);
}
// Called from upper layers to send a media packet.
int DtlsTransportChannelWrapper::SendPacket(const char* data, size_t size,
talk_base::DiffServCodePoint dscp,
int flags) {
int result = -1;
switch (dtls_state_) {
case STATE_OFFERED:
// We don't know if we are doing DTLS yet, so we can't send a packet.
// TODO(ekr@rtfm.com): assert here?
result = -1;
break;
case STATE_STARTED:
case STATE_ACCEPTED:
// Can't send data until the connection is active
result = -1;
break;
case STATE_OPEN:
if (flags & PF_SRTP_BYPASS) {
ASSERT(!srtp_ciphers_.empty());
if (!IsRtpPacket(data, size)) {
result = false;
break;
}
result = channel_->SendPacket(data, size, dscp);
} else {
result = (dtls_->WriteAll(data, size, NULL, NULL) ==
talk_base::SR_SUCCESS) ? static_cast<int>(size) : -1;
}
break;
// Not doing DTLS.
case STATE_NONE:
result = channel_->SendPacket(data, size, dscp);
break;
case STATE_CLOSED: // Can't send anything when we're closed.
return -1;
}
return result;
}
// The state transition logic here is as follows:
// (1) If we're not doing DTLS-SRTP, then the state is just the
// state of the underlying impl()
// (2) If we're doing DTLS-SRTP:
// - Prior to the DTLS handshake, the state is neither readable or
// writable
// - When the impl goes writable for the first time we
// start the DTLS handshake
// - Once the DTLS handshake completes, the state is that of the
// impl again
void DtlsTransportChannelWrapper::OnReadableState(TransportChannel* channel) {
ASSERT(talk_base::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
LOG_J(LS_VERBOSE, this)
<< "DTLSTransportChannelWrapper: channel readable state changed.";
if (dtls_state_ == STATE_NONE || dtls_state_ == STATE_OPEN) {
set_readable(channel_->readable());
// Note: SignalReadableState fired by set_readable.
}
}
void DtlsTransportChannelWrapper::OnWritableState(TransportChannel* channel) {
ASSERT(talk_base::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
LOG_J(LS_VERBOSE, this)
<< "DTLSTransportChannelWrapper: channel writable state changed.";
switch (dtls_state_) {
case STATE_NONE:
case STATE_OPEN:
set_writable(channel_->writable());
// Note: SignalWritableState fired by set_writable.
break;
case STATE_OFFERED:
// Do nothing
break;
case STATE_ACCEPTED:
if (!MaybeStartDtls()) {
// This should never happen:
// Because we are operating in a nonblocking mode and all
// incoming packets come in via OnReadPacket(), which rejects
// packets in this state, the incoming queue must be empty. We
// ignore write errors, thus any errors must be because of
// configuration and therefore are our fault.
// Note that in non-debug configurations, failure in
// MaybeStartDtls() changes the state to STATE_CLOSED.
ASSERT(false);
}
break;
case STATE_STARTED:
// Do nothing
break;
case STATE_CLOSED:
// Should not happen. Do nothing
break;
}
}
void DtlsTransportChannelWrapper::OnReadPacket(TransportChannel* channel,
const char* data, size_t size,
int flags) {
ASSERT(talk_base::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
ASSERT(flags == 0);
switch (dtls_state_) {
case STATE_NONE:
// We are not doing DTLS
SignalReadPacket(this, data, size, 0);
break;
case STATE_OFFERED:
// Currently drop the packet, but we might in future
// decide to take this as evidence that the other
// side is ready to do DTLS and start the handshake
// on our end
LOG_J(LS_WARNING, this) << "Received packet before we know if we are "
<< "doing DTLS or not; dropping.";
break;
case STATE_ACCEPTED:
// Drop packets received before DTLS has actually started
LOG_J(LS_INFO, this) << "Dropping packet received before DTLS started.";
break;
case STATE_STARTED:
case STATE_OPEN:
// We should only get DTLS or SRTP packets; STUN's already been demuxed.
// Is this potentially a DTLS packet?
if (IsDtlsPacket(data, size)) {
if (!HandleDtlsPacket(data, size)) {
LOG_J(LS_ERROR, this) << "Failed to handle DTLS packet.";
return;
}
} else {
// Not a DTLS packet; our handshake should be complete by now.
if (dtls_state_ != STATE_OPEN) {
LOG_J(LS_ERROR, this) << "Received non-DTLS packet before DTLS "
<< "complete.";
return;
}
// And it had better be a SRTP packet.
if (!IsRtpPacket(data, size)) {
LOG_J(LS_ERROR, this) << "Received unexpected non-DTLS packet.";
return;
}
// Sanity check.
ASSERT(!srtp_ciphers_.empty());
// Signal this upwards as a bypass packet.
SignalReadPacket(this, data, size, PF_SRTP_BYPASS);
}
break;
case STATE_CLOSED:
// This shouldn't be happening. Drop the packet
break;
}
}
void DtlsTransportChannelWrapper::OnReadyToSend(TransportChannel* channel) {
if (writable()) {
SignalReadyToSend(this);
}
}
void DtlsTransportChannelWrapper::OnDtlsEvent(talk_base::StreamInterface* dtls,
int sig, int err) {
ASSERT(talk_base::Thread::Current() == worker_thread_);
ASSERT(dtls == dtls_.get());
if (sig & talk_base::SE_OPEN) {
// This is the first time.
LOG_J(LS_INFO, this) << "DTLS handshake complete.";
if (dtls_->GetState() == talk_base::SS_OPEN) {
// The check for OPEN shouldn't be necessary but let's make
// sure we don't accidentally frob the state if it's closed.
dtls_state_ = STATE_OPEN;
set_readable(true);
set_writable(true);
}
}
if (sig & talk_base::SE_READ) {
char buf[kMaxDtlsPacketLen];
size_t read;
if (dtls_->Read(buf, sizeof(buf), &read, NULL) == talk_base::SR_SUCCESS) {
SignalReadPacket(this, buf, read, 0);
}
}
if (sig & talk_base::SE_CLOSE) {
ASSERT(sig == talk_base::SE_CLOSE); // SE_CLOSE should be by itself.
if (!err) {
LOG_J(LS_INFO, this) << "DTLS channel closed";
} else {
LOG_J(LS_INFO, this) << "DTLS channel error, code=" << err;
}
set_readable(false);
set_writable(false);
dtls_state_ = STATE_CLOSED;
}
}
bool DtlsTransportChannelWrapper::MaybeStartDtls() {
if (channel_->writable()) {
if (dtls_->StartSSLWithPeer()) {
LOG_J(LS_ERROR, this) << "Couldn't start DTLS handshake";
dtls_state_ = STATE_CLOSED;
return false;
}
LOG_J(LS_INFO, this)
<< "DtlsTransportChannelWrapper: Started DTLS handshake";
dtls_state_ = STATE_STARTED;
}
return true;
}
// Called from OnReadPacket when a DTLS packet is received.
bool DtlsTransportChannelWrapper::HandleDtlsPacket(const char* data,
size_t size) {
// Sanity check we're not passing junk that
// just looks like DTLS.
const uint8* tmp_data = reinterpret_cast<const uint8* >(data);
size_t tmp_size = size;
while (tmp_size > 0) {
if (tmp_size < kDtlsRecordHeaderLen)
return false; // Too short for the header
size_t record_len = (tmp_data[11] << 8) | (tmp_data[12]);
if ((record_len + kDtlsRecordHeaderLen) > tmp_size)
return false; // Body too short
tmp_data += record_len + kDtlsRecordHeaderLen;
tmp_size -= record_len + kDtlsRecordHeaderLen;
}
// Looks good. Pass to the SIC which ends up being passed to
// the DTLS stack.
return downward_->OnPacketReceived(data, size);
}
void DtlsTransportChannelWrapper::OnRequestSignaling(
TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalRequestSignaling(this);
}
void DtlsTransportChannelWrapper::OnCandidateReady(
TransportChannelImpl* channel, const Candidate& c) {
ASSERT(channel == channel_);
SignalCandidateReady(this, c);
}
void DtlsTransportChannelWrapper::OnCandidatesAllocationDone(
TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalCandidatesAllocationDone(this);
}
void DtlsTransportChannelWrapper::OnRoleConflict(
TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalRoleConflict(this);
}
void DtlsTransportChannelWrapper::OnRouteChange(
TransportChannel* channel, const Candidate& candidate) {
ASSERT(channel == channel_);
SignalRouteChange(this, candidate);
}
} // namespace cricket