blob: cf7d607736de2f45ff1112dcc52ed70ef2539998 [file] [log] [blame]
#include "precompiled.h"
//
// Copyright (c) 2012-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Renderer11.cpp: Implements a back-end specific class for the D3D11 renderer.
#include "libGLESv2/main.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/RenderBuffer.h"
#include "libGLESv2/renderer/Renderer11.h"
#include "libGLESv2/renderer/RenderTarget11.h"
#include "libGLESv2/renderer/renderer11_utils.h"
#include "libGLESv2/renderer/ShaderExecutable11.h"
#include "libGLESv2/renderer/SwapChain11.h"
#include "libGLESv2/renderer/Image11.h"
#include "libGLESv2/renderer/VertexBuffer11.h"
#include "libGLESv2/renderer/IndexBuffer11.h"
#include "libGLESv2/renderer/BufferStorage11.h"
#include "libGLESv2/renderer/VertexDataManager.h"
#include "libGLESv2/renderer/IndexDataManager.h"
#include "libGLESv2/renderer/TextureStorage11.h"
#include "libGLESv2/renderer/Query11.h"
#include "libGLESv2/renderer/Fence11.h"
#include "libGLESv2/renderer/shaders/compiled/passthrough11vs.h"
#include "libGLESv2/renderer/shaders/compiled/passthroughrgba11ps.h"
#include "libGLESv2/renderer/shaders/compiled/passthroughrgb11ps.h"
#include "libGLESv2/renderer/shaders/compiled/passthroughlum11ps.h"
#include "libGLESv2/renderer/shaders/compiled/passthroughlumalpha11ps.h"
#include "libGLESv2/renderer/shaders/compiled/clear11vs.h"
#include "libGLESv2/renderer/shaders/compiled/clear11ps.h"
#include "libEGL/Display.h"
#ifdef _DEBUG
// this flag enables suppressing some spurious warnings that pop up in certain WebGL samples
// and conformance tests. to enable all warnings, remove this define.
#define ANGLE_SUPPRESS_D3D11_HAZARD_WARNINGS 1
#endif
namespace rx
{
static const DXGI_FORMAT RenderTargetFormats[] =
{
DXGI_FORMAT_B8G8R8A8_UNORM,
DXGI_FORMAT_R8G8B8A8_UNORM
};
static const DXGI_FORMAT DepthStencilFormats[] =
{
DXGI_FORMAT_UNKNOWN,
DXGI_FORMAT_D24_UNORM_S8_UINT,
DXGI_FORMAT_D16_UNORM
};
enum
{
MAX_TEXTURE_IMAGE_UNITS_VTF_SM4 = 16
};
Renderer11::Renderer11(egl::Display *display, HDC hDc) : Renderer(display), mDc(hDc)
{
mVertexDataManager = NULL;
mIndexDataManager = NULL;
mLineLoopIB = NULL;
mTriangleFanIB = NULL;
mCopyResourcesInitialized = false;
mCopyVB = NULL;
mCopySampler = NULL;
mCopyIL = NULL;
mCopyVS = NULL;
mCopyRGBAPS = NULL;
mCopyRGBPS = NULL;
mCopyLumPS = NULL;
mCopyLumAlphaPS = NULL;
mClearResourcesInitialized = false;
mClearVB = NULL;
mClearIL = NULL;
mClearVS = NULL;
mClearPS = NULL;
mClearScissorRS = NULL;
mClearNoScissorRS = NULL;
mSyncQuery = NULL;
mD3d11Module = NULL;
mDxgiModule = NULL;
mDeviceLost = false;
mMaxSupportedSamples = 0;
mDevice = NULL;
mDeviceContext = NULL;
mDxgiAdapter = NULL;
mDxgiFactory = NULL;
mDriverConstantBufferVS = NULL;
mDriverConstantBufferPS = NULL;
mBGRATextureSupport = false;
mIsGeometryShaderActive = false;
}
Renderer11::~Renderer11()
{
release();
}
Renderer11 *Renderer11::makeRenderer11(Renderer *renderer)
{
ASSERT(HAS_DYNAMIC_TYPE(rx::Renderer11*, renderer));
return static_cast<rx::Renderer11*>(renderer);
}
EGLint Renderer11::initialize()
{
if (!initializeCompiler())
{
return EGL_NOT_INITIALIZED;
}
mDxgiModule = LoadLibrary(TEXT("dxgi.dll"));
mD3d11Module = LoadLibrary(TEXT("d3d11.dll"));
if (mD3d11Module == NULL || mDxgiModule == NULL)
{
ERR("Could not load D3D11 or DXGI library - aborting!\n");
return EGL_NOT_INITIALIZED;
}
// create the D3D11 device
ASSERT(mDevice == NULL);
PFN_D3D11_CREATE_DEVICE D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)GetProcAddress(mD3d11Module, "D3D11CreateDevice");
if (D3D11CreateDevice == NULL)
{
ERR("Could not retrieve D3D11CreateDevice address - aborting!\n");
return EGL_NOT_INITIALIZED;
}
D3D_FEATURE_LEVEL featureLevels[] =
{
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
};
HRESULT result = D3D11CreateDevice(NULL,
D3D_DRIVER_TYPE_HARDWARE,
NULL,
#if defined(_DEBUG)
D3D11_CREATE_DEVICE_DEBUG,
#else
0,
#endif
featureLevels,
ArraySize(featureLevels),
D3D11_SDK_VERSION,
&mDevice,
&mFeatureLevel,
&mDeviceContext);
if (!mDevice || FAILED(result))
{
ERR("Could not create D3D11 device - aborting!\n");
return EGL_NOT_INITIALIZED; // Cleanup done by destructor through glDestroyRenderer
}
IDXGIDevice *dxgiDevice = NULL;
result = mDevice->QueryInterface(__uuidof(IDXGIDevice), (void**)&dxgiDevice);
if (FAILED(result))
{
ERR("Could not query DXGI device - aborting!\n");
return EGL_NOT_INITIALIZED;
}
result = dxgiDevice->GetParent(__uuidof(IDXGIAdapter), (void**)&mDxgiAdapter);
if (FAILED(result))
{
ERR("Could not retrieve DXGI adapter - aborting!\n");
return EGL_NOT_INITIALIZED;
}
dxgiDevice->Release();
mDxgiAdapter->GetDesc(&mAdapterDescription);
memset(mDescription, 0, sizeof(mDescription));
wcstombs(mDescription, mAdapterDescription.Description, sizeof(mDescription) - 1);
result = mDxgiAdapter->GetParent(__uuidof(IDXGIFactory), (void**)&mDxgiFactory);
if (!mDxgiFactory || FAILED(result))
{
ERR("Could not create DXGI factory - aborting!\n");
return EGL_NOT_INITIALIZED;
}
// Disable some spurious D3D11 debug warnings to prevent them from flooding the output log
#if defined(ANGLE_SUPPRESS_D3D11_HAZARD_WARNINGS) && defined(_DEBUG)
ID3D11InfoQueue *infoQueue;
result = mDevice->QueryInterface(__uuidof(ID3D11InfoQueue), (void **)&infoQueue);
if (SUCCEEDED(result))
{
D3D11_MESSAGE_ID hideMessages[] =
{
D3D11_MESSAGE_ID_DEVICE_OMSETRENDERTARGETS_HAZARD,
D3D11_MESSAGE_ID_DEVICE_PSSETSHADERRESOURCES_HAZARD
};
D3D11_INFO_QUEUE_FILTER filter = {0};
filter.DenyList.NumIDs = ArraySize(hideMessages);
filter.DenyList.pIDList = hideMessages;
infoQueue->AddStorageFilterEntries(&filter);
infoQueue->Release();
}
#endif
unsigned int maxSupportedSamples = 0;
unsigned int rtFormatCount = ArraySize(RenderTargetFormats);
unsigned int dsFormatCount = ArraySize(DepthStencilFormats);
for (unsigned int i = 0; i < rtFormatCount + dsFormatCount; ++i)
{
DXGI_FORMAT format = (i < rtFormatCount) ? RenderTargetFormats[i] : DepthStencilFormats[i - rtFormatCount];
if (format != DXGI_FORMAT_UNKNOWN)
{
UINT formatSupport;
result = mDevice->CheckFormatSupport(format, &formatSupport);
if (SUCCEEDED(result) && (formatSupport & D3D11_FORMAT_SUPPORT_MULTISAMPLE_RENDERTARGET))
{
MultisampleSupportInfo supportInfo;
for (unsigned int j = 1; j <= D3D11_MAX_MULTISAMPLE_SAMPLE_COUNT; j++)
{
result = mDevice->CheckMultisampleQualityLevels(format, j, &supportInfo.qualityLevels[j - 1]);
if (SUCCEEDED(result) && supportInfo.qualityLevels[j - 1] > 0)
{
maxSupportedSamples = std::max(j, maxSupportedSamples);
}
else
{
supportInfo.qualityLevels[j - 1] = 0;
}
}
mMultisampleSupportMap.insert(std::make_pair(format, supportInfo));
}
}
}
mMaxSupportedSamples = maxSupportedSamples;
initializeDevice();
// BGRA texture support is optional in feature levels 10 and 10_1
UINT formatSupport;
result = mDevice->CheckFormatSupport(DXGI_FORMAT_B8G8R8A8_UNORM, &formatSupport);
if (FAILED(result))
{
ERR("Error checking BGRA format support: 0x%08X", result);
}
else
{
const int flags = (D3D11_FORMAT_SUPPORT_TEXTURE2D | D3D11_FORMAT_SUPPORT_RENDER_TARGET);
mBGRATextureSupport = (formatSupport & flags) == flags;
}
// Check floating point texture support
static const unsigned int requiredTextureFlags = D3D11_FORMAT_SUPPORT_TEXTURE2D | D3D11_FORMAT_SUPPORT_TEXTURECUBE;
static const unsigned int requiredRenderableFlags = D3D11_FORMAT_SUPPORT_RENDER_TARGET;
static const unsigned int requiredFilterFlags = D3D11_FORMAT_SUPPORT_SHADER_SAMPLE;
DXGI_FORMAT float16Formats[] =
{
DXGI_FORMAT_R16_FLOAT,
DXGI_FORMAT_R16G16_FLOAT,
DXGI_FORMAT_R16G16B16A16_FLOAT,
};
DXGI_FORMAT float32Formats[] =
{
DXGI_FORMAT_R32_FLOAT,
DXGI_FORMAT_R32G32_FLOAT,
DXGI_FORMAT_R32G32B32_FLOAT,
DXGI_FORMAT_R32G32B32A32_FLOAT,
};
mFloat16TextureSupport = true;
mFloat16FilterSupport = true;
mFloat16RenderSupport = true;
for (unsigned int i = 0; i < ArraySize(float16Formats); i++)
{
if (SUCCEEDED(mDevice->CheckFormatSupport(float16Formats[i], &formatSupport)))
{
mFloat16TextureSupport = mFloat16TextureSupport && (formatSupport & requiredTextureFlags) == requiredTextureFlags;
mFloat16FilterSupport = mFloat16FilterSupport && (formatSupport & requiredFilterFlags) == requiredFilterFlags;
mFloat16RenderSupport = mFloat16RenderSupport && (formatSupport & requiredRenderableFlags) == requiredRenderableFlags;
}
else
{
mFloat16TextureSupport = false;
mFloat16RenderSupport = false;
mFloat16FilterSupport = false;
}
}
mFloat32TextureSupport = true;
mFloat32FilterSupport = true;
mFloat32RenderSupport = true;
for (unsigned int i = 0; i < ArraySize(float32Formats); i++)
{
if (SUCCEEDED(mDevice->CheckFormatSupport(float32Formats[i], &formatSupport)))
{
mFloat32TextureSupport = mFloat32TextureSupport && (formatSupport & requiredTextureFlags) == requiredTextureFlags;
mFloat32FilterSupport = mFloat32FilterSupport && (formatSupport & requiredFilterFlags) == requiredFilterFlags;
mFloat32RenderSupport = mFloat32RenderSupport && (formatSupport & requiredRenderableFlags) == requiredRenderableFlags;
}
else
{
mFloat32TextureSupport = false;
mFloat32FilterSupport = false;
mFloat32RenderSupport = false;
}
}
// Check compressed texture support
const unsigned int requiredCompressedTextureFlags = D3D11_FORMAT_SUPPORT_TEXTURE2D;
if (SUCCEEDED(mDevice->CheckFormatSupport(DXGI_FORMAT_BC1_UNORM, &formatSupport)))
{
mDXT1TextureSupport = (formatSupport & requiredCompressedTextureFlags) == requiredCompressedTextureFlags;
}
else
{
mDXT1TextureSupport = false;
}
if (SUCCEEDED(mDevice->CheckFormatSupport(DXGI_FORMAT_BC3_UNORM, &formatSupport)))
{
mDXT3TextureSupport = (formatSupport & requiredCompressedTextureFlags) == requiredCompressedTextureFlags;
}
else
{
mDXT3TextureSupport = false;
}
if (SUCCEEDED(mDevice->CheckFormatSupport(DXGI_FORMAT_BC5_UNORM, &formatSupport)))
{
mDXT5TextureSupport = (formatSupport & requiredCompressedTextureFlags) == requiredCompressedTextureFlags;
}
else
{
mDXT5TextureSupport = false;
}
// Check depth texture support
DXGI_FORMAT depthTextureFormats[] =
{
DXGI_FORMAT_D16_UNORM,
DXGI_FORMAT_D24_UNORM_S8_UINT,
};
static const unsigned int requiredDepthTextureFlags = D3D11_FORMAT_SUPPORT_DEPTH_STENCIL |
D3D11_FORMAT_SUPPORT_TEXTURE2D;
mDepthTextureSupport = true;
for (unsigned int i = 0; i < ArraySize(depthTextureFormats); i++)
{
if (SUCCEEDED(mDevice->CheckFormatSupport(depthTextureFormats[i], &formatSupport)))
{
mDepthTextureSupport = mDepthTextureSupport && ((formatSupport & requiredDepthTextureFlags) == requiredDepthTextureFlags);
}
else
{
mDepthTextureSupport = false;
}
}
return EGL_SUCCESS;
}
// do any one-time device initialization
// NOTE: this is also needed after a device lost/reset
// to reset the scene status and ensure the default states are reset.
void Renderer11::initializeDevice()
{
mStateCache.initialize(mDevice);
mInputLayoutCache.initialize(mDevice, mDeviceContext);
ASSERT(!mVertexDataManager && !mIndexDataManager);
mVertexDataManager = new VertexDataManager(this);
mIndexDataManager = new IndexDataManager(this);
markAllStateDirty();
}
int Renderer11::generateConfigs(ConfigDesc **configDescList)
{
unsigned int numRenderFormats = ArraySize(RenderTargetFormats);
unsigned int numDepthFormats = ArraySize(DepthStencilFormats);
(*configDescList) = new ConfigDesc[numRenderFormats * numDepthFormats];
int numConfigs = 0;
for (unsigned int formatIndex = 0; formatIndex < numRenderFormats; formatIndex++)
{
for (unsigned int depthStencilIndex = 0; depthStencilIndex < numDepthFormats; depthStencilIndex++)
{
DXGI_FORMAT renderTargetFormat = RenderTargetFormats[formatIndex];
UINT formatSupport = 0;
HRESULT result = mDevice->CheckFormatSupport(renderTargetFormat, &formatSupport);
if (SUCCEEDED(result) && (formatSupport & D3D11_FORMAT_SUPPORT_RENDER_TARGET))
{
DXGI_FORMAT depthStencilFormat = DepthStencilFormats[depthStencilIndex];
bool depthStencilFormatOK = true;
if (depthStencilFormat != DXGI_FORMAT_UNKNOWN)
{
UINT formatSupport = 0;
result = mDevice->CheckFormatSupport(depthStencilFormat, &formatSupport);
depthStencilFormatOK = SUCCEEDED(result) && (formatSupport & D3D11_FORMAT_SUPPORT_DEPTH_STENCIL);
}
if (depthStencilFormatOK)
{
ConfigDesc newConfig;
newConfig.renderTargetFormat = d3d11_gl::ConvertBackBufferFormat(renderTargetFormat);
newConfig.depthStencilFormat = d3d11_gl::ConvertDepthStencilFormat(depthStencilFormat);
newConfig.multiSample = 0; // FIXME: enumerate multi-sampling
newConfig.fastConfig = true; // Assume all DX11 format conversions to be fast
(*configDescList)[numConfigs++] = newConfig;
}
}
}
}
return numConfigs;
}
void Renderer11::deleteConfigs(ConfigDesc *configDescList)
{
delete [] (configDescList);
}
void Renderer11::sync(bool block)
{
if (block)
{
HRESULT result;
if (!mSyncQuery)
{
D3D11_QUERY_DESC queryDesc;
queryDesc.Query = D3D11_QUERY_EVENT;
queryDesc.MiscFlags = 0;
result = mDevice->CreateQuery(&queryDesc, &mSyncQuery);
ASSERT(SUCCEEDED(result));
}
mDeviceContext->End(mSyncQuery);
mDeviceContext->Flush();
do
{
result = mDeviceContext->GetData(mSyncQuery, NULL, 0, D3D11_ASYNC_GETDATA_DONOTFLUSH);
// Keep polling, but allow other threads to do something useful first
Sleep(0);
if (testDeviceLost(true))
{
return;
}
}
while (result == S_FALSE);
}
else
{
mDeviceContext->Flush();
}
}
SwapChain *Renderer11::createSwapChain(HWND window, HANDLE shareHandle, GLenum backBufferFormat, GLenum depthBufferFormat)
{
return new rx::SwapChain11(this, window, shareHandle, backBufferFormat, depthBufferFormat);
}
void Renderer11::setSamplerState(gl::SamplerType type, int index, const gl::SamplerState &samplerState)
{
if (type == gl::SAMPLER_PIXEL)
{
if (index < 0 || index >= gl::MAX_TEXTURE_IMAGE_UNITS)
{
ERR("Pixel shader sampler index %i is not valid.", index);
return;
}
if (mForceSetPixelSamplerStates[index] || memcmp(&samplerState, &mCurPixelSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = mStateCache.getSamplerState(samplerState);
if (!dxSamplerState)
{
ERR("NULL sampler state returned by RenderStateCache::getSamplerState, setting the default"
"sampler state for pixel shaders at slot %i.", index);
}
mDeviceContext->PSSetSamplers(index, 1, &dxSamplerState);
mCurPixelSamplerStates[index] = samplerState;
}
mForceSetPixelSamplerStates[index] = false;
}
else if (type == gl::SAMPLER_VERTEX)
{
if (index < 0 || index >= (int)getMaxVertexTextureImageUnits())
{
ERR("Vertex shader sampler index %i is not valid.", index);
return;
}
if (mForceSetVertexSamplerStates[index] || memcmp(&samplerState, &mCurVertexSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = mStateCache.getSamplerState(samplerState);
if (!dxSamplerState)
{
ERR("NULL sampler state returned by RenderStateCache::getSamplerState, setting the default"
"sampler state for vertex shaders at slot %i.", index);
}
mDeviceContext->VSSetSamplers(index, 1, &dxSamplerState);
mCurVertexSamplerStates[index] = samplerState;
}
mForceSetVertexSamplerStates[index] = false;
}
else UNREACHABLE();
}
void Renderer11::setTexture(gl::SamplerType type, int index, gl::Texture *texture)
{
ID3D11ShaderResourceView *textureSRV = NULL;
unsigned int serial = 0;
bool forceSetTexture = false;
if (texture)
{
TextureStorageInterface *texStorage = texture->getNativeTexture();
if (texStorage)
{
TextureStorage11 *storage11 = TextureStorage11::makeTextureStorage11(texStorage->getStorageInstance());
textureSRV = storage11->getSRV();
}
// If we get NULL back from getSRV here, something went wrong in the texture class and we're unexpectedly
// missing the shader resource view
ASSERT(textureSRV != NULL);
serial = texture->getTextureSerial();
forceSetTexture = texture->hasDirtyImages();
}
if (type == gl::SAMPLER_PIXEL)
{
if (index < 0 || index >= gl::MAX_TEXTURE_IMAGE_UNITS)
{
ERR("Pixel shader sampler index %i is not valid.", index);
return;
}
if (forceSetTexture || mCurPixelTextureSerials[index] != serial)
{
mDeviceContext->PSSetShaderResources(index, 1, &textureSRV);
}
mCurPixelTextureSerials[index] = serial;
}
else if (type == gl::SAMPLER_VERTEX)
{
if (index < 0 || index >= (int)getMaxVertexTextureImageUnits())
{
ERR("Vertex shader sampler index %i is not valid.", index);
return;
}
if (forceSetTexture || mCurVertexTextureSerials[index] != serial)
{
mDeviceContext->VSSetShaderResources(index, 1, &textureSRV);
}
mCurVertexTextureSerials[index] = serial;
}
else UNREACHABLE();
}
void Renderer11::setRasterizerState(const gl::RasterizerState &rasterState)
{
if (mForceSetRasterState || memcmp(&rasterState, &mCurRasterState, sizeof(gl::RasterizerState)) != 0)
{
ID3D11RasterizerState *dxRasterState = mStateCache.getRasterizerState(rasterState, mScissorEnabled,
mCurDepthSize);
if (!dxRasterState)
{
ERR("NULL rasterizer state returned by RenderStateCache::getRasterizerState, setting the default"
"rasterizer state.");
}
mDeviceContext->RSSetState(dxRasterState);
mCurRasterState = rasterState;
}
mForceSetRasterState = false;
}
void Renderer11::setBlendState(const gl::BlendState &blendState, const gl::Color &blendColor,
unsigned int sampleMask)
{
if (mForceSetBlendState ||
memcmp(&blendState, &mCurBlendState, sizeof(gl::BlendState)) != 0 ||
memcmp(&blendColor, &mCurBlendColor, sizeof(gl::Color)) != 0 ||
sampleMask != mCurSampleMask)
{
ID3D11BlendState *dxBlendState = mStateCache.getBlendState(blendState);
if (!dxBlendState)
{
ERR("NULL blend state returned by RenderStateCache::getBlendState, setting the default "
"blend state.");
}
const float blendColors[] = { blendColor.red, blendColor.green, blendColor.blue, blendColor.alpha };
mDeviceContext->OMSetBlendState(dxBlendState, blendColors, sampleMask);
mCurBlendState = blendState;
mCurBlendColor = blendColor;
mCurSampleMask = sampleMask;
}
mForceSetBlendState = false;
}
void Renderer11::setDepthStencilState(const gl::DepthStencilState &depthStencilState, int stencilRef,
int stencilBackRef, bool frontFaceCCW)
{
if (mForceSetDepthStencilState ||
memcmp(&depthStencilState, &mCurDepthStencilState, sizeof(gl::DepthStencilState)) != 0 ||
stencilRef != mCurStencilRef || stencilBackRef != mCurStencilBackRef)
{
if (depthStencilState.stencilWritemask != depthStencilState.stencilBackWritemask ||
stencilRef != stencilBackRef ||
depthStencilState.stencilMask != depthStencilState.stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are "
"invalid under WebGL.");
return gl::error(GL_INVALID_OPERATION);
}
ID3D11DepthStencilState *dxDepthStencilState = mStateCache.getDepthStencilState(depthStencilState);
if (!dxDepthStencilState)
{
ERR("NULL depth stencil state returned by RenderStateCache::getDepthStencilState, "
"setting the default depth stencil state.");
}
mDeviceContext->OMSetDepthStencilState(dxDepthStencilState, static_cast<UINT>(stencilRef));
mCurDepthStencilState = depthStencilState;
mCurStencilRef = stencilRef;
mCurStencilBackRef = stencilBackRef;
}
mForceSetDepthStencilState = false;
}
void Renderer11::setScissorRectangle(const gl::Rectangle &scissor, bool enabled)
{
if (mForceSetScissor || memcmp(&scissor, &mCurScissor, sizeof(gl::Rectangle)) != 0 ||
enabled != mScissorEnabled)
{
if (enabled)
{
D3D11_RECT rect;
rect.left = std::max(0, scissor.x);
rect.top = std::max(0, scissor.y);
rect.right = scissor.x + std::max(0, scissor.width);
rect.bottom = scissor.y + std::max(0, scissor.height);
mDeviceContext->RSSetScissorRects(1, &rect);
}
if (enabled != mScissorEnabled)
{
mForceSetRasterState = true;
}
mCurScissor = scissor;
mScissorEnabled = enabled;
}
mForceSetScissor = false;
}
bool Renderer11::setViewport(const gl::Rectangle &viewport, float zNear, float zFar, GLenum drawMode, GLenum frontFace,
bool ignoreViewport)
{
gl::Rectangle actualViewport = viewport;
float actualZNear = gl::clamp01(zNear);
float actualZFar = gl::clamp01(zFar);
if (ignoreViewport)
{
actualViewport.x = 0;
actualViewport.y = 0;
actualViewport.width = mRenderTargetDesc.width;
actualViewport.height = mRenderTargetDesc.height;
actualZNear = 0.0f;
actualZFar = 1.0f;
}
// Get D3D viewport bounds, which depends on the feature level
const Range& viewportBounds = getViewportBounds();
// Clamp width and height first to the gl maximum, then clamp further if we extend past the D3D maximum bounds
D3D11_VIEWPORT dxViewport;
dxViewport.TopLeftX = gl::clamp(actualViewport.x, viewportBounds.start, viewportBounds.end);
dxViewport.TopLeftY = gl::clamp(actualViewport.y, viewportBounds.start, viewportBounds.end);
dxViewport.Width = gl::clamp(actualViewport.width, 0, getMaxViewportDimension());
dxViewport.Height = gl::clamp(actualViewport.height, 0, getMaxViewportDimension());
dxViewport.Width = std::min((int)dxViewport.Width, viewportBounds.end - static_cast<int>(dxViewport.TopLeftX));
dxViewport.Height = std::min((int)dxViewport.Height, viewportBounds.end - static_cast<int>(dxViewport.TopLeftY));
dxViewport.MinDepth = actualZNear;
dxViewport.MaxDepth = actualZFar;
if (dxViewport.Width <= 0 || dxViewport.Height <= 0)
{
return false; // Nothing to render
}
bool viewportChanged = mForceSetViewport || memcmp(&actualViewport, &mCurViewport, sizeof(gl::Rectangle)) != 0 ||
actualZNear != mCurNear || actualZFar != mCurFar;
if (viewportChanged)
{
mDeviceContext->RSSetViewports(1, &dxViewport);
mCurViewport = actualViewport;
mCurNear = actualZNear;
mCurFar = actualZFar;
mPixelConstants.viewCoords[0] = actualViewport.width * 0.5f;
mPixelConstants.viewCoords[1] = actualViewport.height * 0.5f;
mPixelConstants.viewCoords[2] = actualViewport.x + (actualViewport.width * 0.5f);
mPixelConstants.viewCoords[3] = actualViewport.y + (actualViewport.height * 0.5f);
mPixelConstants.depthFront[0] = (actualZFar - actualZNear) * 0.5f;
mPixelConstants.depthFront[1] = (actualZNear + actualZFar) * 0.5f;
mVertexConstants.depthRange[0] = actualZNear;
mVertexConstants.depthRange[1] = actualZFar;
mVertexConstants.depthRange[2] = actualZFar - actualZNear;
mPixelConstants.depthRange[0] = actualZNear;
mPixelConstants.depthRange[1] = actualZFar;
mPixelConstants.depthRange[2] = actualZFar - actualZNear;
}
mForceSetViewport = false;
return true;
}
bool Renderer11::applyPrimitiveType(GLenum mode, GLsizei count)
{
D3D11_PRIMITIVE_TOPOLOGY primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_UNDEFINED;
switch (mode)
{
case GL_POINTS: primitiveTopology = D3D11_PRIMITIVE_TOPOLOGY_POINTLIST; break;
case GL_LINES: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINELIST; break;
case GL_LINE_LOOP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINESTRIP; break;
case GL_LINE_STRIP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINESTRIP; break;
case GL_TRIANGLES: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST; break;
case GL_TRIANGLE_STRIP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP; break;
// emulate fans via rewriting index buffer
case GL_TRIANGLE_FAN: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST; break;
default:
return gl::error(GL_INVALID_ENUM, false);
}
mDeviceContext->IASetPrimitiveTopology(primitiveTopology);
return count > 0;
}
bool Renderer11::applyRenderTarget(gl::Framebuffer *framebuffer)
{
// Get the color render buffer and serial
// Also extract the render target dimensions and view
unsigned int renderTargetWidth = 0;
unsigned int renderTargetHeight = 0;
GLenum renderTargetFormat = 0;
unsigned int renderTargetSerials[gl::IMPLEMENTATION_MAX_DRAW_BUFFERS] = {0};
ID3D11RenderTargetView* framebufferRTVs[gl::IMPLEMENTATION_MAX_DRAW_BUFFERS] = {NULL};
bool missingColorRenderTarget = true;
for (unsigned int colorAttachment = 0; colorAttachment < gl::IMPLEMENTATION_MAX_DRAW_BUFFERS; colorAttachment++)
{
const GLenum drawBufferState = framebuffer->getDrawBufferState(colorAttachment);
if (framebuffer->getColorbufferType(colorAttachment) != GL_NONE && drawBufferState != GL_NONE)
{
// the draw buffer must be either "none", "back" for the default buffer or the same index as this color (in order)
ASSERT(drawBufferState == GL_BACK || drawBufferState == (GL_COLOR_ATTACHMENT0_EXT + colorAttachment));
gl::Renderbuffer *colorbuffer = framebuffer->getColorbuffer(colorAttachment);
if (!colorbuffer)
{
ERR("render target pointer unexpectedly null.");
return false;
}
// check for zero-sized default framebuffer, which is a special case.
// in this case we do not wish to modify any state and just silently return false.
// this will not report any gl error but will cause the calling method to return.
if (colorbuffer->getWidth() == 0 || colorbuffer->getHeight() == 0)
{
return false;
}
renderTargetSerials[colorAttachment] = colorbuffer->getSerial();
// Extract the render target dimensions and view
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(colorbuffer->getRenderTarget());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return false;
}
framebufferRTVs[colorAttachment] = renderTarget->getRenderTargetView();
if (!framebufferRTVs[colorAttachment])
{
ERR("render target view pointer unexpectedly null.");
return false;
}
if (missingColorRenderTarget)
{
renderTargetWidth = colorbuffer->getWidth();
renderTargetHeight = colorbuffer->getHeight();
renderTargetFormat = colorbuffer->getActualFormat();
missingColorRenderTarget = false;
}
}
}
// Get the depth stencil render buffer and serials
gl::Renderbuffer *depthStencil = NULL;
unsigned int depthbufferSerial = 0;
unsigned int stencilbufferSerial = 0;
if (framebuffer->getDepthbufferType() != GL_NONE)
{
depthStencil = framebuffer->getDepthbuffer();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
SafeRelease(framebufferRTVs);
return false;
}
depthbufferSerial = depthStencil->getSerial();
}
else if (framebuffer->getStencilbufferType() != GL_NONE)
{
depthStencil = framebuffer->getStencilbuffer();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
SafeRelease(framebufferRTVs);
return false;
}
stencilbufferSerial = depthStencil->getSerial();
}
// Extract the depth stencil sizes and view
unsigned int depthSize = 0;
unsigned int stencilSize = 0;
ID3D11DepthStencilView* framebufferDSV = NULL;
if (depthStencil)
{
RenderTarget11 *depthStencilRenderTarget = RenderTarget11::makeRenderTarget11(depthStencil->getDepthStencil());
if (!depthStencilRenderTarget)
{
ERR("render target pointer unexpectedly null.");
SafeRelease(framebufferRTVs);
return false;
}
framebufferDSV = depthStencilRenderTarget->getDepthStencilView();
if (!framebufferDSV)
{
ERR("depth stencil view pointer unexpectedly null.");
SafeRelease(framebufferRTVs);
return false;
}
// If there is no render buffer, the width, height and format values come from
// the depth stencil
if (missingColorRenderTarget)
{
renderTargetWidth = depthStencil->getWidth();
renderTargetHeight = depthStencil->getHeight();
renderTargetFormat = depthStencil->getActualFormat();
}
depthSize = depthStencil->getDepthSize();
stencilSize = depthStencil->getStencilSize();
}
// Apply the render target and depth stencil
if (!mRenderTargetDescInitialized || !mDepthStencilInitialized ||
memcmp(renderTargetSerials, mAppliedRenderTargetSerials, sizeof(renderTargetSerials)) != 0 ||
depthbufferSerial != mAppliedDepthbufferSerial ||
stencilbufferSerial != mAppliedStencilbufferSerial)
{
mDeviceContext->OMSetRenderTargets(getMaxRenderTargets(), framebufferRTVs, framebufferDSV);
mRenderTargetDesc.width = renderTargetWidth;
mRenderTargetDesc.height = renderTargetHeight;
mRenderTargetDesc.format = renderTargetFormat;
mForceSetViewport = true;
mForceSetScissor = true;
if (!mDepthStencilInitialized || depthSize != mCurDepthSize)
{
mCurDepthSize = depthSize;
mForceSetRasterState = true;
}
mCurStencilSize = stencilSize;
for (unsigned int rtIndex = 0; rtIndex < gl::IMPLEMENTATION_MAX_DRAW_BUFFERS; rtIndex++)
{
mAppliedRenderTargetSerials[rtIndex] = renderTargetSerials[rtIndex];
}
mAppliedDepthbufferSerial = depthbufferSerial;
mAppliedStencilbufferSerial = stencilbufferSerial;
mRenderTargetDescInitialized = true;
mDepthStencilInitialized = true;
}
SafeRelease(framebufferRTVs);
SafeRelease(framebufferDSV);
return true;
}
GLenum Renderer11::applyVertexBuffer(gl::ProgramBinary *programBinary, gl::VertexAttribute vertexAttributes[], GLint first, GLsizei count, GLsizei instances)
{
TranslatedAttribute attributes[gl::MAX_VERTEX_ATTRIBS];
GLenum err = mVertexDataManager->prepareVertexData(vertexAttributes, programBinary, first, count, attributes, instances);
if (err != GL_NO_ERROR)
{
return err;
}
return mInputLayoutCache.applyVertexBuffers(attributes, programBinary);
}
GLenum Renderer11::applyIndexBuffer(const GLvoid *indices, gl::Buffer *elementArrayBuffer, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
GLenum err = mIndexDataManager->prepareIndexData(type, count, elementArrayBuffer, indices, indexInfo);
if (err == GL_NO_ERROR)
{
if (indexInfo->storage)
{
if (indexInfo->serial != mAppliedStorageIBSerial || indexInfo->startOffset != mAppliedIBOffset)
{
BufferStorage11 *storage = BufferStorage11::makeBufferStorage11(indexInfo->storage);
IndexBuffer11* indexBuffer = IndexBuffer11::makeIndexBuffer11(indexInfo->indexBuffer);
mDeviceContext->IASetIndexBuffer(storage->getBuffer(), indexBuffer->getIndexFormat(), indexInfo->startOffset);
mAppliedIBSerial = 0;
mAppliedStorageIBSerial = storage->getSerial();
mAppliedIBOffset = indexInfo->startOffset;
}
}
else if (indexInfo->serial != mAppliedIBSerial || indexInfo->startOffset != mAppliedIBOffset)
{
IndexBuffer11* indexBuffer = IndexBuffer11::makeIndexBuffer11(indexInfo->indexBuffer);
mDeviceContext->IASetIndexBuffer(indexBuffer->getBuffer(), indexBuffer->getIndexFormat(), indexInfo->startOffset);
mAppliedIBSerial = indexInfo->serial;
mAppliedStorageIBSerial = 0;
mAppliedIBOffset = indexInfo->startOffset;
}
}
return err;
}
void Renderer11::drawArrays(GLenum mode, GLsizei count, GLsizei instances)
{
if (mode == GL_LINE_LOOP)
{
drawLineLoop(count, GL_NONE, NULL, 0, NULL);
}
else if (mode == GL_TRIANGLE_FAN)
{
drawTriangleFan(count, GL_NONE, NULL, 0, NULL, instances);
}
else if (instances > 0)
{
mDeviceContext->DrawInstanced(count, instances, 0, 0);
}
else
{
mDeviceContext->Draw(count, 0);
}
}
void Renderer11::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, gl::Buffer *elementArrayBuffer, const TranslatedIndexData &indexInfo, GLsizei instances)
{
if (mode == GL_LINE_LOOP)
{
drawLineLoop(count, type, indices, indexInfo.minIndex, elementArrayBuffer);
}
else if (mode == GL_TRIANGLE_FAN)
{
drawTriangleFan(count, type, indices, indexInfo.minIndex, elementArrayBuffer, instances);
}
else if (instances > 0)
{
mDeviceContext->DrawIndexedInstanced(count, instances, 0, -static_cast<int>(indexInfo.minIndex), 0);
}
else
{
mDeviceContext->DrawIndexed(count, 0, -static_cast<int>(indexInfo.minIndex));
}
}
void Renderer11::drawLineLoop(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && elementArrayBuffer)
{
gl::Buffer *indexBuffer = elementArrayBuffer;
BufferStorage *storage = indexBuffer->getStorage();
intptr_t offset = reinterpret_cast<intptr_t>(indices);
indices = static_cast<const GLubyte*>(storage->getData()) + offset;
}
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
if (!mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT))
{
delete mLineLoopIB;
mLineLoopIB = NULL;
ERR("Could not create a 32-bit looping index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
}
const int spaceNeeded = (count + 1) * sizeof(unsigned int);
if (!mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT))
{
ERR("Could not reserve enough space in looping index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
void* mappedMemory = NULL;
int offset = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory);
if (offset == -1 || mappedMemory == NULL)
{
ERR("Could not map index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
unsigned int *data = reinterpret_cast<unsigned int*>(mappedMemory);
unsigned int indexBufferOffset = static_cast<unsigned int>(offset);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint*>(indices)[i];
}
data[count] = static_cast<const GLuint*>(indices)[0];
break;
default: UNREACHABLE();
}
if (!mLineLoopIB->unmapBuffer())
{
ERR("Could not unmap index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
if (mAppliedIBSerial != mLineLoopIB->getSerial() || mAppliedIBOffset != indexBufferOffset)
{
IndexBuffer11 *indexBuffer = IndexBuffer11::makeIndexBuffer11(mLineLoopIB->getIndexBuffer());
mDeviceContext->IASetIndexBuffer(indexBuffer->getBuffer(), indexBuffer->getIndexFormat(), indexBufferOffset);
mAppliedIBSerial = mLineLoopIB->getSerial();
mAppliedStorageIBSerial = 0;
mAppliedIBOffset = indexBufferOffset;
}
mDeviceContext->DrawIndexed(count + 1, 0, -minIndex);
}
void Renderer11::drawTriangleFan(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer, int instances)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && elementArrayBuffer)
{
gl::Buffer *indexBuffer = elementArrayBuffer;
BufferStorage *storage = indexBuffer->getStorage();
intptr_t offset = reinterpret_cast<intptr_t>(indices);
indices = static_cast<const GLubyte*>(storage->getData()) + offset;
}
if (!mTriangleFanIB)
{
mTriangleFanIB = new StreamingIndexBufferInterface(this);
if (!mTriangleFanIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT))
{
delete mTriangleFanIB;
mTriangleFanIB = NULL;
ERR("Could not create a scratch index buffer for GL_TRIANGLE_FAN.");
return gl::error(GL_OUT_OF_MEMORY);
}
}
const int numTris = count - 2;
const int spaceNeeded = (numTris * 3) * sizeof(unsigned int);
if (!mTriangleFanIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT))
{
ERR("Could not reserve enough space in scratch index buffer for GL_TRIANGLE_FAN.");
return gl::error(GL_OUT_OF_MEMORY);
}
void* mappedMemory = NULL;
int offset = mTriangleFanIB->mapBuffer(spaceNeeded, &mappedMemory);
if (offset == -1 || mappedMemory == NULL)
{
ERR("Could not map scratch index buffer for GL_TRIANGLE_FAN.");
return gl::error(GL_OUT_OF_MEMORY);
}
unsigned int *data = reinterpret_cast<unsigned int*>(mappedMemory);
unsigned int indexBufferOffset = static_cast<unsigned int>(offset);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < numTris; i++)
{
data[i*3 + 0] = 0;
data[i*3 + 1] = i + 1;
data[i*3 + 2] = i + 2;
}
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < numTris; i++)
{
data[i*3 + 0] = static_cast<const GLubyte*>(indices)[0];
data[i*3 + 1] = static_cast<const GLubyte*>(indices)[i + 1];
data[i*3 + 2] = static_cast<const GLubyte*>(indices)[i + 2];
}
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < numTris; i++)
{
data[i*3 + 0] = static_cast<const GLushort*>(indices)[0];
data[i*3 + 1] = static_cast<const GLushort*>(indices)[i + 1];
data[i*3 + 2] = static_cast<const GLushort*>(indices)[i + 2];
}
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < numTris; i++)
{
data[i*3 + 0] = static_cast<const GLuint*>(indices)[0];
data[i*3 + 1] = static_cast<const GLuint*>(indices)[i + 1];
data[i*3 + 2] = static_cast<const GLuint*>(indices)[i + 2];
}
break;
default: UNREACHABLE();
}
if (!mTriangleFanIB->unmapBuffer())
{
ERR("Could not unmap scratch index buffer for GL_TRIANGLE_FAN.");
return gl::error(GL_OUT_OF_MEMORY);
}
if (mAppliedIBSerial != mTriangleFanIB->getSerial() || mAppliedIBOffset != indexBufferOffset)
{
IndexBuffer11 *indexBuffer = IndexBuffer11::makeIndexBuffer11(mTriangleFanIB->getIndexBuffer());
mDeviceContext->IASetIndexBuffer(indexBuffer->getBuffer(), indexBuffer->getIndexFormat(), indexBufferOffset);
mAppliedIBSerial = mTriangleFanIB->getSerial();
mAppliedStorageIBSerial = 0;
mAppliedIBOffset = indexBufferOffset;
}
if (instances > 0)
{
mDeviceContext->DrawIndexedInstanced(numTris * 3, instances, 0, -minIndex, 0);
}
else
{
mDeviceContext->DrawIndexed(numTris * 3, 0, -minIndex);
}
}
void Renderer11::applyShaders(gl::ProgramBinary *programBinary)
{
unsigned int programBinarySerial = programBinary->getSerial();
const bool updateProgramState = (programBinarySerial != mAppliedProgramBinarySerial);
if (updateProgramState)
{
ShaderExecutable *vertexExe = programBinary->getVertexExecutable();
ShaderExecutable *pixelExe = programBinary->getPixelExecutable();
ID3D11VertexShader *vertexShader = NULL;
if (vertexExe) vertexShader = ShaderExecutable11::makeShaderExecutable11(vertexExe)->getVertexShader();
ID3D11PixelShader *pixelShader = NULL;
if (pixelExe) pixelShader = ShaderExecutable11::makeShaderExecutable11(pixelExe)->getPixelShader();
mDeviceContext->PSSetShader(pixelShader, NULL, 0);
mDeviceContext->VSSetShader(vertexShader, NULL, 0);
programBinary->dirtyAllUniforms();
mAppliedProgramBinarySerial = programBinarySerial;
}
// Only use the geometry shader currently for point sprite drawing
const bool usesGeometryShader = (programBinary->usesGeometryShader() && mCurRasterState.pointDrawMode);
if (updateProgramState || usesGeometryShader != mIsGeometryShaderActive)
{
if (usesGeometryShader)
{
ShaderExecutable *geometryExe = programBinary->getGeometryExecutable();
ID3D11GeometryShader *geometryShader = ShaderExecutable11::makeShaderExecutable11(geometryExe)->getGeometryShader();
mDeviceContext->GSSetShader(geometryShader, NULL, 0);
}
else
{
mDeviceContext->GSSetShader(NULL, NULL, 0);
}
mIsGeometryShaderActive = usesGeometryShader;
}
}
void Renderer11::applyUniforms(gl::ProgramBinary *programBinary, gl::UniformArray *uniformArray)
{
ShaderExecutable11 *vertexExecutable = ShaderExecutable11::makeShaderExecutable11(programBinary->getVertexExecutable());
ShaderExecutable11 *pixelExecutable = ShaderExecutable11::makeShaderExecutable11(programBinary->getPixelExecutable());
unsigned int totalRegisterCountVS = 0;
unsigned int totalRegisterCountPS = 0;
bool vertexUniformsDirty = false;
bool pixelUniformsDirty = false;
for (gl::UniformArray::const_iterator uniform_iterator = uniformArray->begin(); uniform_iterator != uniformArray->end(); uniform_iterator++)
{
const gl::Uniform *uniform = *uniform_iterator;
if (uniform->vsRegisterIndex >= 0)
{
totalRegisterCountVS += uniform->registerCount;
vertexUniformsDirty = vertexUniformsDirty || uniform->dirty;
}
if (uniform->psRegisterIndex >= 0)
{
totalRegisterCountPS += uniform->registerCount;
pixelUniformsDirty = pixelUniformsDirty || uniform->dirty;
}
}
ID3D11Buffer *vertexConstantBuffer = vertexExecutable->getConstantBuffer(mDevice, totalRegisterCountVS);
ID3D11Buffer *pixelConstantBuffer = pixelExecutable->getConstantBuffer(mDevice, totalRegisterCountPS);
float (*mapVS)[4] = NULL;
float (*mapPS)[4] = NULL;
if (totalRegisterCountVS > 0 && vertexUniformsDirty)
{
D3D11_MAPPED_SUBRESOURCE map = {0};
HRESULT result = mDeviceContext->Map(vertexConstantBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &map);
ASSERT(SUCCEEDED(result));
mapVS = (float(*)[4])map.pData;
}
if (totalRegisterCountPS > 0 && pixelUniformsDirty)
{
D3D11_MAPPED_SUBRESOURCE map = {0};
HRESULT result = mDeviceContext->Map(pixelConstantBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &map);
ASSERT(SUCCEEDED(result));
mapPS = (float(*)[4])map.pData;
}
for (gl::UniformArray::iterator uniform_iterator = uniformArray->begin(); uniform_iterator != uniformArray->end(); uniform_iterator++)
{
gl::Uniform *uniform = *uniform_iterator;
if (uniform->type != GL_SAMPLER_2D && uniform->type != GL_SAMPLER_CUBE)
{
if (uniform->vsRegisterIndex >= 0 && mapVS)
{
memcpy(mapVS + uniform->vsRegisterIndex, uniform->data, uniform->registerCount * sizeof(float[4]));
}
if (uniform->psRegisterIndex >= 0 && mapPS)
{
memcpy(mapPS + uniform->psRegisterIndex, uniform->data, uniform->registerCount * sizeof(float[4]));
}
}
uniform->dirty = false;
}
if (mapVS)
{
mDeviceContext->Unmap(vertexConstantBuffer, 0);
}
if (mapPS)
{
mDeviceContext->Unmap(pixelConstantBuffer, 0);
}
mDeviceContext->VSSetConstantBuffers(0, 1, &vertexConstantBuffer);
mDeviceContext->PSSetConstantBuffers(0, 1, &pixelConstantBuffer);
// Driver uniforms
if (!mDriverConstantBufferVS)
{
D3D11_BUFFER_DESC constantBufferDescription = {0};
constantBufferDescription.ByteWidth = sizeof(dx_VertexConstants);
constantBufferDescription.Usage = D3D11_USAGE_DEFAULT;
constantBufferDescription.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
constantBufferDescription.CPUAccessFlags = 0;
constantBufferDescription.MiscFlags = 0;
constantBufferDescription.StructureByteStride = 0;
HRESULT result = mDevice->CreateBuffer(&constantBufferDescription, NULL, &mDriverConstantBufferVS);
ASSERT(SUCCEEDED(result));
mDeviceContext->VSSetConstantBuffers(1, 1, &mDriverConstantBufferVS);
}
if (!mDriverConstantBufferPS)
{
D3D11_BUFFER_DESC constantBufferDescription = {0};
constantBufferDescription.ByteWidth = sizeof(dx_PixelConstants);
constantBufferDescription.Usage = D3D11_USAGE_DEFAULT;
constantBufferDescription.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
constantBufferDescription.CPUAccessFlags = 0;
constantBufferDescription.MiscFlags = 0;
constantBufferDescription.StructureByteStride = 0;
HRESULT result = mDevice->CreateBuffer(&constantBufferDescription, NULL, &mDriverConstantBufferPS);
ASSERT(SUCCEEDED(result));
mDeviceContext->PSSetConstantBuffers(1, 1, &mDriverConstantBufferPS);
}
if (memcmp(&mVertexConstants, &mAppliedVertexConstants, sizeof(dx_VertexConstants)) != 0)
{
mDeviceContext->UpdateSubresource(mDriverConstantBufferVS, 0, NULL, &mVertexConstants, 16, 0);
memcpy(&mAppliedVertexConstants, &mVertexConstants, sizeof(dx_VertexConstants));
}
if (memcmp(&mPixelConstants, &mAppliedPixelConstants, sizeof(dx_PixelConstants)) != 0)
{
mDeviceContext->UpdateSubresource(mDriverConstantBufferPS, 0, NULL, &mPixelConstants, 16, 0);
memcpy(&mAppliedPixelConstants, &mPixelConstants, sizeof(dx_PixelConstants));
}
// needed for the point sprite geometry shader
mDeviceContext->GSSetConstantBuffers(0, 1, &mDriverConstantBufferPS);
}
void Renderer11::clear(const gl::ClearParameters &clearParams, gl::Framebuffer *frameBuffer)
{
bool alphaUnmasked = (gl::GetAlphaSize(mRenderTargetDesc.format) == 0) || clearParams.colorMaskAlpha;
bool needMaskedColorClear = (clearParams.mask & GL_COLOR_BUFFER_BIT) &&
!(clearParams.colorMaskRed && clearParams.colorMaskGreen &&
clearParams.colorMaskBlue && alphaUnmasked);
unsigned int stencilUnmasked = 0x0;
if (frameBuffer->hasStencil())
{
unsigned int stencilSize = gl::GetStencilSize(frameBuffer->getStencilbuffer()->getActualFormat());
stencilUnmasked = (0x1 << stencilSize) - 1;
}
bool needMaskedStencilClear = (clearParams.mask & GL_STENCIL_BUFFER_BIT) &&
(clearParams.stencilWriteMask & stencilUnmasked) != stencilUnmasked;
bool needScissoredClear = mScissorEnabled && (mCurScissor.x > 0 || mCurScissor.y > 0 ||
mCurScissor.x + mCurScissor.width < mRenderTargetDesc.width ||
mCurScissor.y + mCurScissor.height < mRenderTargetDesc.height);
if (needMaskedColorClear || needMaskedStencilClear || needScissoredClear)
{
maskedClear(clearParams);
}
else
{
if (clearParams.mask & GL_COLOR_BUFFER_BIT)
{
// TODO: mrt clear
gl::Renderbuffer *renderbufferObject = frameBuffer->getColorbuffer(0);
if (renderbufferObject)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(renderbufferObject->getRenderTarget());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return;
}
ID3D11RenderTargetView *framebufferRTV = renderTarget->getRenderTargetView();
if (!framebufferRTV)
{
ERR("render target view pointer unexpectedly null.");
return;
}
const float clearValues[4] = { clearParams.colorClearValue.red,
clearParams.colorClearValue.green,
clearParams.colorClearValue.blue,
clearParams.colorClearValue.alpha };
mDeviceContext->ClearRenderTargetView(framebufferRTV, clearValues);
framebufferRTV->Release();
}
}
if (clearParams.mask & GL_DEPTH_BUFFER_BIT || clearParams.mask & GL_STENCIL_BUFFER_BIT)
{
gl::Renderbuffer *renderbufferObject = frameBuffer->getDepthOrStencilbuffer();
if (renderbufferObject)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(renderbufferObject->getDepthStencil());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return;
}
ID3D11DepthStencilView *framebufferDSV = renderTarget->getDepthStencilView();
if (!framebufferDSV)
{
ERR("depth stencil view pointer unexpectedly null.");
return;
}
UINT clearFlags = 0;
if (clearParams.mask & GL_DEPTH_BUFFER_BIT)
{
clearFlags |= D3D11_CLEAR_DEPTH;
}
if (clearParams.mask & GL_STENCIL_BUFFER_BIT)
{
clearFlags |= D3D11_CLEAR_STENCIL;
}
float depthClear = gl::clamp01(clearParams.depthClearValue);
UINT8 stencilClear = clearParams.stencilClearValue & 0x000000FF;
mDeviceContext->ClearDepthStencilView(framebufferDSV, clearFlags, depthClear, stencilClear);
framebufferDSV->Release();
}
}
}
}
void Renderer11::maskedClear(const gl::ClearParameters &clearParams)
{
HRESULT result;
if (!mClearResourcesInitialized)
{
ASSERT(!mClearVB && !mClearVS && !mClearPS && !mClearScissorRS && !mClearNoScissorRS);
D3D11_BUFFER_DESC vbDesc;
vbDesc.ByteWidth = sizeof(d3d11::PositionDepthColorVertex) * 4;
vbDesc.Usage = D3D11_USAGE_DYNAMIC;
vbDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
vbDesc.MiscFlags = 0;
vbDesc.StructureByteStride = 0;
result = mDevice->CreateBuffer(&vbDesc, NULL, &mClearVB);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mClearVB, "Renderer11 masked clear vertex buffer");
D3D11_INPUT_ELEMENT_DESC quadLayout[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
result = mDevice->CreateInputLayout(quadLayout, 2, g_VS_Clear, sizeof(g_VS_Clear), &mClearIL);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mClearIL, "Renderer11 masked clear input layout");
result = mDevice->CreateVertexShader(g_VS_Clear, sizeof(g_VS_Clear), NULL, &mClearVS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mClearVS, "Renderer11 masked clear vertex shader");
result = mDevice->CreatePixelShader(g_PS_Clear, sizeof(g_PS_Clear), NULL, &mClearPS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mClearPS, "Renderer11 masked clear pixel shader");
D3D11_RASTERIZER_DESC rsScissorDesc;
rsScissorDesc.FillMode = D3D11_FILL_SOLID;
rsScissorDesc.CullMode = D3D11_CULL_NONE;
rsScissorDesc.FrontCounterClockwise = FALSE;
rsScissorDesc.DepthBias = 0;
rsScissorDesc.DepthBiasClamp = 0.0f;
rsScissorDesc.SlopeScaledDepthBias = 0.0f;
rsScissorDesc.DepthClipEnable = FALSE;
rsScissorDesc.ScissorEnable = TRUE;
rsScissorDesc.MultisampleEnable = FALSE;
rsScissorDesc.AntialiasedLineEnable = FALSE;
result = mDevice->CreateRasterizerState(&rsScissorDesc, &mClearScissorRS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mClearScissorRS, "Renderer11 masked clear scissor rasterizer state");
D3D11_RASTERIZER_DESC rsNoScissorDesc;
rsNoScissorDesc.FillMode = D3D11_FILL_SOLID;
rsNoScissorDesc.CullMode = D3D11_CULL_NONE;
rsNoScissorDesc.FrontCounterClockwise = FALSE;
rsNoScissorDesc.DepthBias = 0;
rsNoScissorDesc.DepthBiasClamp = 0.0f;
rsNoScissorDesc.SlopeScaledDepthBias = 0.0f;
rsNoScissorDesc.DepthClipEnable = FALSE;
rsNoScissorDesc.ScissorEnable = FALSE;
rsNoScissorDesc.MultisampleEnable = FALSE;
rsNoScissorDesc.AntialiasedLineEnable = FALSE;
result = mDevice->CreateRasterizerState(&rsNoScissorDesc, &mClearNoScissorRS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mClearNoScissorRS, "Renderer11 masked clear no scissor rasterizer state");
mClearResourcesInitialized = true;
}
// Prepare the depth stencil state to write depth values if the depth should be cleared
// and stencil values if the stencil should be cleared
gl::DepthStencilState glDSState;
glDSState.depthTest = (clearParams.mask & GL_DEPTH_BUFFER_BIT) != 0;
glDSState.depthFunc = GL_ALWAYS;
glDSState.depthMask = (clearParams.mask & GL_DEPTH_BUFFER_BIT) != 0;
glDSState.stencilTest = (clearParams.mask & GL_STENCIL_BUFFER_BIT) != 0;
glDSState.stencilFunc = GL_ALWAYS;
glDSState.stencilMask = 0;
glDSState.stencilFail = GL_REPLACE;
glDSState.stencilPassDepthFail = GL_REPLACE;
glDSState.stencilPassDepthPass = GL_REPLACE;
glDSState.stencilWritemask = clearParams.stencilWriteMask;
glDSState.stencilBackFunc = GL_ALWAYS;
glDSState.stencilBackMask = 0;
glDSState.stencilBackFail = GL_REPLACE;
glDSState.stencilBackPassDepthFail = GL_REPLACE;
glDSState.stencilBackPassDepthPass = GL_REPLACE;
glDSState.stencilBackWritemask = clearParams.stencilWriteMask;
int stencilClear = clearParams.stencilClearValue & 0x000000FF;
ID3D11DepthStencilState *dsState = mStateCache.getDepthStencilState(glDSState);
// Prepare the blend state to use a write mask if the color buffer should be cleared
gl::BlendState glBlendState;
glBlendState.blend = false;
glBlendState.sourceBlendRGB = GL_ONE;
glBlendState.destBlendRGB = GL_ZERO;
glBlendState.sourceBlendAlpha = GL_ONE;
glBlendState.destBlendAlpha = GL_ZERO;
glBlendState.blendEquationRGB = GL_FUNC_ADD;
glBlendState.blendEquationAlpha = GL_FUNC_ADD;
glBlendState.colorMaskRed = (clearParams.mask & GL_COLOR_BUFFER_BIT) ? clearParams.colorMaskRed : false;
glBlendState.colorMaskGreen = (clearParams.mask & GL_COLOR_BUFFER_BIT) ? clearParams.colorMaskGreen : false;
glBlendState.colorMaskBlue = (clearParams.mask & GL_COLOR_BUFFER_BIT) ? clearParams.colorMaskBlue : false;
glBlendState.colorMaskAlpha = (clearParams.mask & GL_COLOR_BUFFER_BIT) ? clearParams.colorMaskAlpha : false;
glBlendState.sampleAlphaToCoverage = false;
glBlendState.dither = false;
static const float blendFactors[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
static const UINT sampleMask = 0xFFFFFFFF;
ID3D11BlendState *blendState = mStateCache.getBlendState(glBlendState);
// Set the vertices
D3D11_MAPPED_SUBRESOURCE mappedResource;
result = mDeviceContext->Map(mClearVB, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
ERR("Failed to map masked clear vertex buffer, HRESULT: 0x%X.", result);
return;
}
d3d11::PositionDepthColorVertex *vertices = reinterpret_cast<d3d11::PositionDepthColorVertex*>(mappedResource.pData);
float depthClear = gl::clamp01(clearParams.depthClearValue);
d3d11::SetPositionDepthColorVertex(&vertices[0], -1.0f, 1.0f, depthClear, clearParams.colorClearValue);
d3d11::SetPositionDepthColorVertex(&vertices[1], -1.0f, -1.0f, depthClear, clearParams.colorClearValue);
d3d11::SetPositionDepthColorVertex(&vertices[2], 1.0f, 1.0f, depthClear, clearParams.colorClearValue);
d3d11::SetPositionDepthColorVertex(&vertices[3], 1.0f, -1.0f, depthClear, clearParams.colorClearValue);
mDeviceContext->Unmap(mClearVB, 0);
// Apply state
mDeviceContext->OMSetBlendState(blendState, blendFactors, sampleMask);
mDeviceContext->OMSetDepthStencilState(dsState, stencilClear);
mDeviceContext->RSSetState(mScissorEnabled ? mClearScissorRS : mClearNoScissorRS);
// Apply shaders
mDeviceContext->IASetInputLayout(mClearIL);
mDeviceContext->VSSetShader(mClearVS, NULL, 0);
mDeviceContext->PSSetShader(mClearPS, NULL, 0);
mDeviceContext->GSSetShader(NULL, NULL, 0);
// Apply vertex buffer
static UINT stride = sizeof(d3d11::PositionDepthColorVertex);
static UINT startIdx = 0;
mDeviceContext->IASetVertexBuffers(0, 1, &mClearVB, &stride, &startIdx);
mDeviceContext->IASetPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
// Draw the clear quad
mDeviceContext->Draw(4, 0);
// Clean up
markAllStateDirty();
}
void Renderer11::markAllStateDirty()
{
for (unsigned int rtIndex = 0; rtIndex < gl::IMPLEMENTATION_MAX_DRAW_BUFFERS; rtIndex++)
{
mAppliedRenderTargetSerials[rtIndex] = 0;
}
mAppliedDepthbufferSerial = 0;
mAppliedStencilbufferSerial = 0;
mDepthStencilInitialized = false;
mRenderTargetDescInitialized = false;
for (int i = 0; i < gl::IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; i++)
{
mForceSetVertexSamplerStates[i] = true;
mCurVertexTextureSerials[i] = 0;
}
for (int i = 0; i < gl::MAX_TEXTURE_IMAGE_UNITS; i++)
{
mForceSetPixelSamplerStates[i] = true;
mCurPixelTextureSerials[i] = 0;
}
mForceSetBlendState = true;
mForceSetRasterState = true;
mForceSetDepthStencilState = true;
mForceSetScissor = true;
mForceSetViewport = true;
mAppliedIBSerial = 0;
mAppliedStorageIBSerial = 0;
mAppliedIBOffset = 0;
mAppliedProgramBinarySerial = 0;
memset(&mAppliedVertexConstants, 0, sizeof(dx_VertexConstants));
memset(&mAppliedPixelConstants, 0, sizeof(dx_PixelConstants));
}
void Renderer11::releaseDeviceResources()
{
mStateCache.clear();
mInputLayoutCache.clear();
delete mVertexDataManager;
mVertexDataManager = NULL;
delete mIndexDataManager;
mIndexDataManager = NULL;
delete mLineLoopIB;
mLineLoopIB = NULL;
delete mTriangleFanIB;
mTriangleFanIB = NULL;
if (mCopyVB)
{
mCopyVB->Release();
mCopyVB = NULL;
}
if (mCopySampler)
{
mCopySampler->Release();
mCopySampler = NULL;
}
if (mCopyIL)
{
mCopyIL->Release();
mCopyIL = NULL;
}
if (mCopyVS)
{
mCopyVS->Release();
mCopyVS = NULL;
}
if (mCopyRGBAPS)
{
mCopyRGBAPS->Release();
mCopyRGBAPS = NULL;
}
if (mCopyRGBPS)
{
mCopyRGBPS->Release();
mCopyRGBPS = NULL;
}
if (mCopyLumPS)
{
mCopyLumPS->Release();
mCopyLumPS = NULL;
}
if (mCopyLumAlphaPS)
{
mCopyLumAlphaPS->Release();
mCopyLumAlphaPS = NULL;
}
mCopyResourcesInitialized = false;
if (mClearVB)
{
mClearVB->Release();
mClearVB = NULL;
}
if (mClearIL)
{
mClearIL->Release();
mClearIL = NULL;
}
if (mClearVS)
{
mClearVS->Release();
mClearVS = NULL;
}
if (mClearPS)
{
mClearPS->Release();
mClearPS = NULL;
}
if (mClearScissorRS)
{
mClearScissorRS->Release();
mClearScissorRS = NULL;
}
if (mClearNoScissorRS)
{
mClearNoScissorRS->Release();
mClearNoScissorRS = NULL;
}
mClearResourcesInitialized = false;
if (mDriverConstantBufferVS)
{
mDriverConstantBufferVS->Release();
mDriverConstantBufferVS = NULL;
}
if (mDriverConstantBufferPS)
{
mDriverConstantBufferPS->Release();
mDriverConstantBufferPS = NULL;
}
if (mSyncQuery)
{
mSyncQuery->Release();
mSyncQuery = NULL;
}
}
void Renderer11::notifyDeviceLost()
{
mDeviceLost = true;
mDisplay->notifyDeviceLost();
}
bool Renderer11::isDeviceLost()
{
return mDeviceLost;
}
// set notify to true to broadcast a message to all contexts of the device loss
bool Renderer11::testDeviceLost(bool notify)
{
bool isLost = false;
// GetRemovedReason is used to test if the device is removed
HRESULT result = mDevice->GetDeviceRemovedReason();
isLost = d3d11::isDeviceLostError(result);
if (isLost)
{
// Log error if this is a new device lost event
if (mDeviceLost == false)
{
ERR("The D3D11 device was removed: 0x%08X", result);
}
// ensure we note the device loss --
// we'll probably get this done again by notifyDeviceLost
// but best to remember it!
// Note that we don't want to clear the device loss status here
// -- this needs to be done by resetDevice
mDeviceLost = true;
if (notify)
{
notifyDeviceLost();
}
}
return isLost;
}
bool Renderer11::testDeviceResettable()
{
// determine if the device is resettable by creating a dummy device
PFN_D3D11_CREATE_DEVICE D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)GetProcAddress(mD3d11Module, "D3D11CreateDevice");
if (D3D11CreateDevice == NULL)
{
return false;
}
D3D_FEATURE_LEVEL featureLevels[] =
{
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
};
ID3D11Device* dummyDevice;
D3D_FEATURE_LEVEL dummyFeatureLevel;
ID3D11DeviceContext* dummyContext;
HRESULT result = D3D11CreateDevice(NULL,
D3D_DRIVER_TYPE_HARDWARE,
NULL,
#if defined(_DEBUG)
D3D11_CREATE_DEVICE_DEBUG,
#else
0,
#endif
featureLevels,
ArraySize(featureLevels),
D3D11_SDK_VERSION,
&dummyDevice,
&dummyFeatureLevel,
&dummyContext);
if (!mDevice || FAILED(result))
{
return false;
}
dummyContext->Release();
dummyDevice->Release();
return true;
}
void Renderer11::release()
{
releaseDeviceResources();
if (mDxgiFactory)
{
mDxgiFactory->Release();
mDxgiFactory = NULL;
}
if (mDxgiAdapter)
{
mDxgiAdapter->Release();
mDxgiAdapter = NULL;
}
if (mDeviceContext)
{
mDeviceContext->ClearState();
mDeviceContext->Flush();
mDeviceContext->Release();
mDeviceContext = NULL;
}
if (mDevice)
{
mDevice->Release();
mDevice = NULL;
}
if (mD3d11Module)
{
FreeLibrary(mD3d11Module);
mD3d11Module = NULL;
}
if (mDxgiModule)
{
FreeLibrary(mDxgiModule);
mDxgiModule = NULL;
}
}
bool Renderer11::resetDevice()
{
// recreate everything
release();
EGLint result = initialize();
if (result != EGL_SUCCESS)
{
ERR("Could not reinitialize D3D11 device: %08X", result);
return false;
}
mDeviceLost = false;
return true;
}
DWORD Renderer11::getAdapterVendor() const
{
return mAdapterDescription.VendorId;
}
std::string Renderer11::getRendererDescription() const
{
std::ostringstream rendererString;
rendererString << mDescription;
rendererString << " Direct3D11";
rendererString << " vs_" << getMajorShaderModel() << "_" << getMinorShaderModel();
rendererString << " ps_" << getMajorShaderModel() << "_" << getMinorShaderModel();
return rendererString.str();
}
GUID Renderer11::getAdapterIdentifier() const
{
// Use the adapter LUID as our adapter ID
// This number is local to a machine is only guaranteed to be unique between restarts
META_ASSERT(sizeof(LUID) <= sizeof(GUID));
GUID adapterId = {0};
memcpy(&adapterId, &mAdapterDescription.AdapterLuid, sizeof(LUID));
return adapterId;
}
bool Renderer11::getBGRATextureSupport() const
{
return mBGRATextureSupport;
}
bool Renderer11::getDXT1TextureSupport()
{
return mDXT1TextureSupport;
}
bool Renderer11::getDXT3TextureSupport()
{
return mDXT3TextureSupport;
}
bool Renderer11::getDXT5TextureSupport()
{
return mDXT5TextureSupport;
}
bool Renderer11::getDepthTextureSupport() const
{
return mDepthTextureSupport;
}
bool Renderer11::getFloat32TextureSupport(bool *filtering, bool *renderable)
{
*renderable = mFloat32RenderSupport;
*filtering = mFloat32FilterSupport;
return mFloat32TextureSupport;
}
bool Renderer11::getFloat16TextureSupport(bool *filtering, bool *renderable)
{
*renderable = mFloat16RenderSupport;
*filtering = mFloat16FilterSupport;
return mFloat16TextureSupport;
}
bool Renderer11::getLuminanceTextureSupport()
{
return false;
}
bool Renderer11::getLuminanceAlphaTextureSupport()
{
return false;
}
bool Renderer11::getTextureFilterAnisotropySupport() const
{
return true;
}
float Renderer11::getTextureMaxAnisotropy() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
return D3D11_MAX_MAXANISOTROPY;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_MAX_MAXANISOTROPY;
default: UNREACHABLE();
return 0;
}
}
bool Renderer11::getEventQuerySupport()
{
return true;
}
Range Renderer11::getViewportBounds() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
return Range(D3D11_VIEWPORT_BOUNDS_MIN, D3D11_VIEWPORT_BOUNDS_MAX);
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return Range(D3D10_VIEWPORT_BOUNDS_MIN, D3D10_VIEWPORT_BOUNDS_MAX);
default: UNREACHABLE();
return Range(0, 0);
}
}
unsigned int Renderer11::getMaxVertexTextureImageUnits() const
{
META_ASSERT(MAX_TEXTURE_IMAGE_UNITS_VTF_SM4 <= gl::IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS);
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return MAX_TEXTURE_IMAGE_UNITS_VTF_SM4;
default: UNREACHABLE();
return 0;
}
}
unsigned int Renderer11::getMaxCombinedTextureImageUnits() const
{
return gl::MAX_TEXTURE_IMAGE_UNITS + getMaxVertexTextureImageUnits();
}
unsigned int Renderer11::getReservedVertexUniformVectors() const
{
return 0; // Driver uniforms are stored in a separate constant buffer
}
unsigned int Renderer11::getReservedFragmentUniformVectors() const
{
return 0; // Driver uniforms are stored in a separate constant buffer
}
unsigned int Renderer11::getMaxVertexUniformVectors() const
{
META_ASSERT(MAX_VERTEX_UNIFORM_VECTORS_D3D11 <= D3D10_REQ_CONSTANT_BUFFER_ELEMENT_COUNT);
ASSERT(mFeatureLevel >= D3D_FEATURE_LEVEL_10_0);
return MAX_VERTEX_UNIFORM_VECTORS_D3D11;
}
unsigned int Renderer11::getMaxFragmentUniformVectors() const
{
META_ASSERT(MAX_FRAGMENT_UNIFORM_VECTORS_D3D11 <= D3D10_REQ_CONSTANT_BUFFER_ELEMENT_COUNT);
ASSERT(mFeatureLevel >= D3D_FEATURE_LEVEL_10_0);
return MAX_FRAGMENT_UNIFORM_VECTORS_D3D11;
}
unsigned int Renderer11::getMaxVaryingVectors() const
{
META_ASSERT(gl::IMPLEMENTATION_MAX_VARYING_VECTORS == D3D11_VS_OUTPUT_REGISTER_COUNT);
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
return D3D11_VS_OUTPUT_REGISTER_COUNT;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_VS_OUTPUT_REGISTER_COUNT;
default: UNREACHABLE();
return 0;
}
}
bool Renderer11::getNonPower2TextureSupport() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
default: UNREACHABLE();
return false;
}
}
bool Renderer11::getOcclusionQuerySupport() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
default: UNREACHABLE();
return false;
}
}
bool Renderer11::getInstancingSupport() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
default: UNREACHABLE();
return false;
}
}
bool Renderer11::getShareHandleSupport() const
{
// We only currently support share handles with BGRA surfaces, because
// chrome needs BGRA. Once chrome fixes this, we should always support them.
// PIX doesn't seem to support using share handles, so disable them.
return getBGRATextureSupport() && !gl::perfActive();
}
bool Renderer11::getDerivativeInstructionSupport() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
default: UNREACHABLE();
return false;
}
}
bool Renderer11::getPostSubBufferSupport() const
{
// D3D11 does not support present with dirty rectangles until D3D11.1 and DXGI 1.2.
return false;
}
int Renderer11::getMajorShaderModel() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_SHADER_MAJOR_VERSION; // 5
case D3D_FEATURE_LEVEL_10_1: return D3D10_1_SHADER_MAJOR_VERSION; // 4
case D3D_FEATURE_LEVEL_10_0: return D3D10_SHADER_MAJOR_VERSION; // 4
default: UNREACHABLE(); return 0;
}
}
int Renderer11::getMinorShaderModel() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_SHADER_MINOR_VERSION; // 0
case D3D_FEATURE_LEVEL_10_1: return D3D10_1_SHADER_MINOR_VERSION; // 1
case D3D_FEATURE_LEVEL_10_0: return D3D10_SHADER_MINOR_VERSION; // 0
default: UNREACHABLE(); return 0;
}
}
float Renderer11::getMaxPointSize() const
{
// choose a reasonable maximum. we enforce this in the shader.
// (nb: on a Radeon 2600xt, DX9 reports a 256 max point size)
return 1024.0f;
}
int Renderer11::getMaxViewportDimension() const
{
// Maximum viewport size must be at least as large as the largest render buffer (or larger).
// In our case return the maximum texture size, which is the maximum render buffer size.
META_ASSERT(D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION * 2 - 1 <= D3D11_VIEWPORT_BOUNDS_MAX);
META_ASSERT(D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION * 2 - 1 <= D3D10_VIEWPORT_BOUNDS_MAX);
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 16384
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 8192
default: UNREACHABLE();
return 0;
}
}
int Renderer11::getMaxTextureWidth() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 16384
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 8192
default: UNREACHABLE(); return 0;
}
}
int Renderer11::getMaxTextureHeight() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 16384
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 8192
default: UNREACHABLE(); return 0;
}
}
bool Renderer11::get32BitIndexSupport() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_DRAWINDEXED_INDEX_COUNT_2_TO_EXP >= 32; // true
default: UNREACHABLE(); return false;
}
}
int Renderer11::getMinSwapInterval() const
{
return 0;
}
int Renderer11::getMaxSwapInterval() const
{
return 4;
}
int Renderer11::getMaxSupportedSamples() const
{
return mMaxSupportedSamples;
}
int Renderer11::getNearestSupportedSamples(DXGI_FORMAT format, unsigned int requested) const
{
if (requested == 0)
{
return 0;
}
MultisampleSupportMap::const_iterator iter = mMultisampleSupportMap.find(format);
if (iter != mMultisampleSupportMap.end())
{
const MultisampleSupportInfo& info = iter->second;
for (unsigned int i = requested - 1; i < D3D11_MAX_MULTISAMPLE_SAMPLE_COUNT; i++)
{
if (info.qualityLevels[i] > 0)
{
return i + 1;
}
}
}
return -1;
}
unsigned int Renderer11::getMaxRenderTargets() const
{
META_ASSERT(D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT <= gl::IMPLEMENTATION_MAX_DRAW_BUFFERS);
META_ASSERT(D3D10_SIMULTANEOUS_RENDER_TARGET_COUNT <= gl::IMPLEMENTATION_MAX_DRAW_BUFFERS);
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
return D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT; // 8
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_SIMULTANEOUS_RENDER_TARGET_COUNT; // 8
default:
UNREACHABLE();
return 1;
}
}
bool Renderer11::copyToRenderTarget(TextureStorageInterface2D *dest, TextureStorageInterface2D *source)
{
if (source && dest)
{
TextureStorage11_2D *source11 = TextureStorage11_2D::makeTextureStorage11_2D(source->getStorageInstance());
TextureStorage11_2D *dest11 = TextureStorage11_2D::makeTextureStorage11_2D(dest->getStorageInstance());
mDeviceContext->CopyResource(dest11->getBaseTexture(), source11->getBaseTexture());
return true;
}
return false;
}
bool Renderer11::copyToRenderTarget(TextureStorageInterfaceCube *dest, TextureStorageInterfaceCube *source)
{
if (source && dest)
{
TextureStorage11_Cube *source11 = TextureStorage11_Cube::makeTextureStorage11_Cube(source->getStorageInstance());
TextureStorage11_Cube *dest11 = TextureStorage11_Cube::makeTextureStorage11_Cube(dest->getStorageInstance());
mDeviceContext->CopyResource(dest11->getBaseTexture(), source11->getBaseTexture());
return true;
}
return false;
}
bool Renderer11::copyImage(gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
GLint xoffset, GLint yoffset, TextureStorageInterface2D *storage, GLint level)
{
gl::Renderbuffer *colorbuffer = framebuffer->getReadColorbuffer();
if (!colorbuffer)
{
ERR("Failed to retrieve the color buffer from the frame buffer.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
RenderTarget11 *sourceRenderTarget = RenderTarget11::makeRenderTarget11(colorbuffer->getRenderTarget());
if (!sourceRenderTarget)
{
ERR("Failed to retrieve the render target from the frame buffer.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
ID3D11ShaderResourceView *source = sourceRenderTarget->getShaderResourceView();
if (!source)
{
ERR("Failed to retrieve the render target view from the render target.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
TextureStorage11_2D *storage11 = TextureStorage11_2D::makeTextureStorage11_2D(storage->getStorageInstance());
if (!storage11)
{
source->Release();
ERR("Failed to retrieve the texture storage from the destination.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
RenderTarget11 *destRenderTarget = RenderTarget11::makeRenderTarget11(storage11->getRenderTarget(level));
if (!destRenderTarget)
{
source->Release();
ERR("Failed to retrieve the render target from the destination storage.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
ID3D11RenderTargetView *dest = destRenderTarget->getRenderTargetView();
if (!dest)
{
source->Release();
ERR("Failed to retrieve the render target view from the destination render target.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
gl::Rectangle destRect;
destRect.x = xoffset;
destRect.y = yoffset;
destRect.width = sourceRect.width;
destRect.height = sourceRect.height;
bool ret = copyTexture(source, sourceRect, sourceRenderTarget->getWidth(), sourceRenderTarget->getHeight(),
dest, destRect, destRenderTarget->getWidth(), destRenderTarget->getHeight(), destFormat);
source->Release();
dest->Release();
return ret;
}
bool Renderer11::copyImage(gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
GLint xoffset, GLint yoffset, TextureStorageInterfaceCube *storage, GLenum target, GLint level)
{
gl::Renderbuffer *colorbuffer = framebuffer->getReadColorbuffer();
if (!colorbuffer)
{
ERR("Failed to retrieve the color buffer from the frame buffer.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
RenderTarget11 *sourceRenderTarget = RenderTarget11::makeRenderTarget11(colorbuffer->getRenderTarget());
if (!sourceRenderTarget)
{
ERR("Failed to retrieve the render target from the frame buffer.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
ID3D11ShaderResourceView *source = sourceRenderTarget->getShaderResourceView();
if (!source)
{
ERR("Failed to retrieve the render target view from the render target.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
TextureStorage11_Cube *storage11 = TextureStorage11_Cube::makeTextureStorage11_Cube(storage->getStorageInstance());
if (!storage11)
{
source->Release();
ERR("Failed to retrieve the texture storage from the destination.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
RenderTarget11 *destRenderTarget = RenderTarget11::makeRenderTarget11(storage11->getRenderTarget(target, level));
if (!destRenderTarget)
{
source->Release();
ERR("Failed to retrieve the render target from the destination storage.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
ID3D11RenderTargetView *dest = destRenderTarget->getRenderTargetView();
if (!dest)
{
source->Release();
ERR("Failed to retrieve the render target view from the destination render target.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
gl::Rectangle destRect;
destRect.x = xoffset;
destRect.y = yoffset;
destRect.width = sourceRect.width;
destRect.height = sourceRect.height;
bool ret = copyTexture(source, sourceRect, sourceRenderTarget->getWidth(), sourceRenderTarget->getHeight(),
dest, destRect, destRenderTarget->getWidth(), destRenderTarget->getHeight(), destFormat);
source->Release();
dest->Release();
return ret;
}
bool Renderer11::copyTexture(ID3D11ShaderResourceView *source, const gl::Rectangle &sourceArea, unsigned int sourceWidth, unsigned int sourceHeight,
ID3D11RenderTargetView *dest, const gl::Rectangle &destArea, unsigned int destWidth, unsigned int destHeight, GLenum destFormat)
{
HRESULT result;
if (!mCopyResourcesInitialized)
{
ASSERT(!mCopyVB && !mCopySampler && !mCopyIL && !mCopyVS && !mCopyRGBAPS && !mCopyRGBPS && !mCopyLumPS && !mCopyLumAlphaPS);
D3D11_BUFFER_DESC vbDesc;
vbDesc.ByteWidth = sizeof(d3d11::PositionTexCoordVertex) * 4;
vbDesc.Usage = D3D11_USAGE_DYNAMIC;
vbDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
vbDesc.MiscFlags = 0;
vbDesc.StructureByteStride = 0;
result = mDevice->CreateBuffer(&vbDesc, NULL, &mCopyVB);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mCopyVB, "Renderer11 copy texture vertex buffer");
D3D11_SAMPLER_DESC samplerDesc;
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 0;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_NEVER;
samplerDesc.BorderColor[0] = 0.0f;
samplerDesc.BorderColor[1] = 0.0f;
samplerDesc.BorderColor[2] = 0.0f;
samplerDesc.BorderColor[3] = 0.0f;
samplerDesc.MinLOD = 0.0f;
samplerDesc.MaxLOD = 0.0f;
result = mDevice->CreateSamplerState(&samplerDesc, &mCopySampler);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mCopySampler, "Renderer11 copy sampler");
D3D11_INPUT_ELEMENT_DESC quadLayout[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 8, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
result = mDevice->CreateInputLayout(quadLayout, 2, g_VS_Passthrough, sizeof(g_VS_Passthrough), &mCopyIL);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mCopyIL, "Renderer11 copy texture input layout");
result = mDevice->CreateVertexShader(g_VS_Passthrough, sizeof(g_VS_Passthrough), NULL, &mCopyVS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mCopyVS, "Renderer11 copy texture vertex shader");
result = mDevice->CreatePixelShader(g_PS_PassthroughRGBA, sizeof(g_PS_PassthroughRGBA), NULL, &mCopyRGBAPS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mCopyRGBAPS, "Renderer11 copy texture RGBA pixel shader");
result = mDevice->CreatePixelShader(g_PS_PassthroughRGB, sizeof(g_PS_PassthroughRGB), NULL, &mCopyRGBPS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mCopyRGBPS, "Renderer11 copy texture RGB pixel shader");
result = mDevice->CreatePixelShader(g_PS_PassthroughLum, sizeof(g_PS_PassthroughLum), NULL, &mCopyLumPS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mCopyLumPS, "Renderer11 copy texture luminance pixel shader");
result = mDevice->CreatePixelShader(g_PS_PassthroughLumAlpha, sizeof(g_PS_PassthroughLumAlpha), NULL, &mCopyLumAlphaPS);
ASSERT(SUCCEEDED(result));
d3d11::SetDebugName(mCopyLumAlphaPS, "Renderer11 copy texture luminance alpha pixel shader");
mCopyResourcesInitialized = true;
}
// Verify the source and destination area sizes
if (sourceArea.x < 0 || sourceArea.x + sourceArea.width > static_cast<int>(sourceWidth) ||
sourceArea.y < 0 || sourceArea.y + sourceArea.height > static_cast<int>(sourceHeight) ||
destArea.x < 0 || destArea.x + destArea.width > static_cast<int>(destWidth) ||
destArea.y < 0 || destArea.y + destArea.height > static_cast<int>(destHeight))
{
return gl::error(GL_INVALID_VALUE, false);
}
// Set vertices
D3D11_MAPPED_SUBRESOURCE mappedResource;
result = mDeviceContext->Map(mCopyVB, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if (FAILED(result))
{
ERR("Failed to map vertex buffer for texture copy, HRESULT: 0x%X.", result);
return gl::error(GL_OUT_OF_MEMORY, false);
}
d3d11::PositionTexCoordVertex *vertices = static_cast<d3d11::PositionTexCoordVertex*>(mappedResource.pData);
// Create a quad in homogeneous coordinates
float x1 = (destArea.x / float(destWidth)) * 2.0f - 1.0f;
float y1 = ((destHeight - destArea.y - destArea.height) / float(destHeight)) * 2.0f - 1.0f;
float x2 = ((destArea.x + destArea.width) / float(destWidth)) * 2.0f - 1.0f;
float y2 = ((destHeight - destArea.y) / float(destHeight)) * 2.0f - 1.0f;
float u1 = sourceArea.x / float(sourceWidth);
float v1 = sourceArea.y / float(sourceHeight);
float u2 = (sourceArea.x + sourceArea.width) / float(sourceWidth);
float v2 = (sourceArea.y + sourceArea.height) / float(sourceHeight);
d3d11::SetPositionTexCoordVertex(&vertices[0], x1, y1, u1, v2);