blob: fc3024f0c809387954b3efe1451d6e13bb9b18ab [file] [log] [blame]
/*
* Copyright (C) 2011 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "core/rendering/RenderFlowThread.h"
#include "core/dom/Node.h"
#include "core/rendering/FlowThreadController.h"
#include "core/rendering/HitTestRequest.h"
#include "core/rendering/HitTestResult.h"
#include "core/rendering/PaintInfo.h"
#include "core/rendering/RenderBoxRegionInfo.h"
#include "core/rendering/RenderInline.h"
#include "core/rendering/RenderLayer.h"
#include "core/rendering/RenderRegion.h"
#include "core/rendering/RenderView.h"
#include "platform/PODIntervalTree.h"
#include "platform/geometry/TransformState.h"
namespace WebCore {
RenderFlowThread::RenderFlowThread()
: RenderBlockFlow(0)
, m_previousRegionCount(0)
, m_autoLogicalHeightRegionsCount(0)
, m_regionsInvalidated(false)
, m_regionsHaveUniformLogicalWidth(true)
, m_regionsHaveUniformLogicalHeight(true)
, m_hasRegionsWithStyling(false)
, m_dispatchRegionLayoutUpdateEvent(false)
, m_dispatchRegionOversetChangeEvent(false)
, m_pageLogicalSizeChanged(false)
, m_inConstrainedLayoutPhase(false)
, m_needsTwoPhasesLayout(false)
{
setFlowThreadState(InsideOutOfFlowThread);
}
PassRefPtr<RenderStyle> RenderFlowThread::createFlowThreadStyle(RenderStyle* parentStyle)
{
RefPtr<RenderStyle> newStyle(RenderStyle::create());
newStyle->inheritFrom(parentStyle);
newStyle->setDisplay(BLOCK);
newStyle->setPosition(AbsolutePosition);
newStyle->setZIndex(0);
newStyle->setLeft(Length(0, Fixed));
newStyle->setTop(Length(0, Fixed));
newStyle->setWidth(Length(100, Percent));
newStyle->setHeight(Length(100, Percent));
newStyle->font().update(0);
return newStyle.release();
}
void RenderFlowThread::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
if (oldStyle && oldStyle->writingMode() != style()->writingMode())
invalidateRegions();
}
void RenderFlowThread::removeFlowChildInfo(RenderObject* child)
{
if (child->isBox())
removeRenderBoxRegionInfo(toRenderBox(child));
clearRenderObjectCustomStyle(child);
}
void RenderFlowThread::addRegionToThread(RenderRegion* renderRegion)
{
ASSERT(renderRegion);
m_regionList.add(renderRegion);
renderRegion->setIsValid(true);
}
void RenderFlowThread::removeRegionFromThread(RenderRegion* renderRegion)
{
ASSERT(renderRegion);
m_regionList.remove(renderRegion);
}
void RenderFlowThread::invalidateRegions()
{
if (m_regionsInvalidated) {
ASSERT(selfNeedsLayout());
return;
}
m_regionRangeMap.clear();
m_breakBeforeToRegionMap.clear();
m_breakAfterToRegionMap.clear();
setNeedsLayout();
m_regionsInvalidated = true;
}
class CurrentRenderFlowThreadDisabler {
WTF_MAKE_NONCOPYABLE(CurrentRenderFlowThreadDisabler);
public:
CurrentRenderFlowThreadDisabler(RenderView* view)
: m_view(view)
, m_renderFlowThread(0)
{
m_renderFlowThread = m_view->flowThreadController()->currentRenderFlowThread();
if (m_renderFlowThread)
view->flowThreadController()->setCurrentRenderFlowThread(0);
}
~CurrentRenderFlowThreadDisabler()
{
if (m_renderFlowThread)
m_view->flowThreadController()->setCurrentRenderFlowThread(m_renderFlowThread);
}
private:
RenderView* m_view;
RenderFlowThread* m_renderFlowThread;
};
void RenderFlowThread::validateRegions()
{
if (m_regionsInvalidated) {
m_regionsInvalidated = false;
m_regionsHaveUniformLogicalWidth = true;
m_regionsHaveUniformLogicalHeight = true;
if (hasRegions()) {
LayoutUnit previousRegionLogicalWidth = 0;
LayoutUnit previousRegionLogicalHeight = 0;
bool firstRegionVisited = false;
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->needsLayout() || region->isRenderRegionSet());
region->deleteAllRenderBoxRegionInfo();
// In the normal layout phase we need to initialize the computedAutoHeight for auto-height regions.
// See initializeRegionsComputedAutoHeight for the explanation.
// Also, if we have auto-height regions we can't assume m_regionsHaveUniformLogicalHeight to be true in the first phase
// because the auto-height regions don't have their height computed yet.
if (!inConstrainedLayoutPhase() && region->hasAutoLogicalHeight()) {
region->setComputedAutoHeight(region->maxPageLogicalHeight());
m_regionsHaveUniformLogicalHeight = false;
}
LayoutUnit regionLogicalWidth = region->pageLogicalWidth();
LayoutUnit regionLogicalHeight = region->pageLogicalHeight();
if (!firstRegionVisited) {
firstRegionVisited = true;
} else {
if (m_regionsHaveUniformLogicalWidth && previousRegionLogicalWidth != regionLogicalWidth)
m_regionsHaveUniformLogicalWidth = false;
if (m_regionsHaveUniformLogicalHeight && previousRegionLogicalHeight != regionLogicalHeight)
m_regionsHaveUniformLogicalHeight = false;
}
previousRegionLogicalWidth = regionLogicalWidth;
}
}
}
updateLogicalWidth(); // Called to get the maximum logical width for the region.
updateRegionsFlowThreadPortionRect();
}
void RenderFlowThread::layout()
{
m_pageLogicalSizeChanged = m_regionsInvalidated && everHadLayout();
// In case this is the second pass of the normal phase we need to update the auto-height regions to their initial value.
// If the region chain was invalidated this will happen anyway.
if (!m_regionsInvalidated && !inConstrainedLayoutPhase())
initializeRegionsComputedAutoHeight();
validateRegions();
// This is the first phase of the layout and because we have auto-height regions we'll need a second
// pass to update the flow with the computed auto-height regions.
m_needsTwoPhasesLayout = !inConstrainedLayoutPhase() && hasAutoLogicalHeightRegions();
CurrentRenderFlowThreadMaintainer currentFlowThreadSetter(this);
RenderBlockFlow::layout();
m_pageLogicalSizeChanged = false;
if (lastRegion())
lastRegion()->expandToEncompassFlowThreadContentsIfNeeded();
if (shouldDispatchRegionLayoutUpdateEvent())
dispatchRegionLayoutUpdateEvent();
if (shouldDispatchRegionOversetChangeEvent())
dispatchRegionOversetChangeEvent();
}
void RenderFlowThread::updateLogicalWidth()
{
LayoutUnit logicalWidth = initialLogicalWidth();
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->needsLayout() || region->isRenderRegionSet());
logicalWidth = max(region->pageLogicalWidth(), logicalWidth);
}
setLogicalWidth(logicalWidth);
// If the regions have non-uniform logical widths, then insert inset information for the RenderFlowThread.
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
LayoutUnit regionLogicalWidth = region->pageLogicalWidth();
if (regionLogicalWidth != logicalWidth) {
LayoutUnit logicalLeft = style()->direction() == LTR ? LayoutUnit() : logicalWidth - regionLogicalWidth;
region->setRenderBoxRegionInfo(this, logicalLeft, regionLogicalWidth, false);
}
}
}
void RenderFlowThread::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const
{
computedValues.m_position = logicalTop;
computedValues.m_extent = 0;
for (RenderRegionList::const_iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->needsLayout() || region->isRenderRegionSet());
computedValues.m_extent += region->logicalHeightOfAllFlowThreadContent();
}
}
LayoutRect RenderFlowThread::computeRegionClippingRect(const LayoutPoint& offset, const LayoutRect& flowThreadPortionRect, const LayoutRect& flowThreadPortionOverflowRect) const
{
LayoutRect regionClippingRect(offset + (flowThreadPortionOverflowRect.location() - flowThreadPortionRect.location()), flowThreadPortionOverflowRect.size());
if (style()->isFlippedBlocksWritingMode())
regionClippingRect.move(flowThreadPortionRect.size() - flowThreadPortionOverflowRect.size());
return regionClippingRect;
}
void RenderFlowThread::paintFlowThreadPortionInRegion(PaintInfo& paintInfo, RenderRegion* region, const LayoutRect& flowThreadPortionRect, const LayoutRect& flowThreadPortionOverflowRect, const LayoutPoint& paintOffset) const
{
GraphicsContext* context = paintInfo.context;
if (!context)
return;
// RenderFlowThread should start painting its content in a position that is offset
// from the region rect's current position. The amount of offset is equal to the location of
// the flow thread portion in the flow thread's local coordinates.
// Note that we have to pixel snap the location at which we're going to paint, since this is necessary
// to minimize the amount of incorrect snapping that would otherwise occur.
// If we tried to paint by applying a non-integral translation, then all the
// layout code that attempted to pixel snap would be incorrect.
IntPoint adjustedPaintOffset;
LayoutPoint portionLocation;
if (style()->isFlippedBlocksWritingMode()) {
LayoutRect flippedFlowThreadPortionRect(flowThreadPortionRect);
flipForWritingMode(flippedFlowThreadPortionRect);
portionLocation = flippedFlowThreadPortionRect.location();
} else {
portionLocation = flowThreadPortionRect.location();
}
adjustedPaintOffset = roundedIntPoint(paintOffset - portionLocation);
// The clipping rect for the region is set up by assuming the flowThreadPortionRect is going to paint offset from adjustedPaintOffset.
// Remember that we pixel snapped and moved the paintOffset and stored the snapped result in adjustedPaintOffset. Now we add back in
// the flowThreadPortionRect's location to get the spot where we expect the portion to actually paint. This can be non-integral and
// that's ok. We then pixel snap the resulting clipping rect to account for snapping that will occur when the flow thread paints.
IntRect regionClippingRect = pixelSnappedIntRect(computeRegionClippingRect(adjustedPaintOffset + portionLocation, flowThreadPortionRect, flowThreadPortionOverflowRect));
PaintInfo info(paintInfo);
info.rect.intersect(regionClippingRect);
if (!info.rect.isEmpty()) {
context->save();
context->clip(regionClippingRect);
context->translate(adjustedPaintOffset.x(), adjustedPaintOffset.y());
info.rect.moveBy(-adjustedPaintOffset);
if (info.phase == PaintPhaseTextClip)
info.paintBehavior = PaintBehaviorForceBlackText;
layer()->paint(context, info.rect, info.paintBehavior, 0, region, PaintLayerTemporaryClipRects);
context->restore();
}
}
bool RenderFlowThread::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction)
{
if (hitTestAction == HitTestBlockBackground)
return false;
return RenderBlock::nodeAtPoint(request, result, locationInContainer, accumulatedOffset, hitTestAction);
}
bool RenderFlowThread::hitTestFlowThreadPortionInRegion(RenderRegion* region, const LayoutRect& flowThreadPortionRect, const LayoutRect& flowThreadPortionOverflowRect, const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset) const
{
LayoutRect regionClippingRect = computeRegionClippingRect(accumulatedOffset, flowThreadPortionRect, flowThreadPortionOverflowRect);
if (!regionClippingRect.contains(locationInContainer.point()))
return false;
LayoutSize renderFlowThreadOffset;
if (style()->isFlippedBlocksWritingMode()) {
LayoutRect flippedFlowThreadPortionRect(flowThreadPortionRect);
flipForWritingMode(flippedFlowThreadPortionRect);
renderFlowThreadOffset = accumulatedOffset - flippedFlowThreadPortionRect.location();
} else {
renderFlowThreadOffset = accumulatedOffset - flowThreadPortionRect.location();
}
// Always ignore clipping, since the RenderFlowThread has nothing to do with the bounds of the FrameView.
HitTestRequest newRequest(request.type() | HitTestRequest::IgnoreClipping | HitTestRequest::DisallowShadowContent);
// Make a new temporary HitTestLocation in the new region.
HitTestLocation newHitTestLocation(locationInContainer, -renderFlowThreadOffset, region);
bool isPointInsideFlowThread = layer()->hitTest(newRequest, newHitTestLocation, result);
// FIXME: Should we set result.m_localPoint back to the RenderRegion's coordinate space or leave it in the RenderFlowThread's coordinate
// space? Right now it's staying in the RenderFlowThread's coordinate space, which may end up being ok. We will know more when we get around to
// patching positionForPoint.
return isPointInsideFlowThread;
}
bool RenderFlowThread::shouldRepaint(const LayoutRect& r) const
{
if (view()->document().printing() || r.isEmpty())
return false;
return true;
}
void RenderFlowThread::repaintRectangleInRegions(const LayoutRect& repaintRect) const
{
if (!shouldRepaint(repaintRect) || !hasValidRegionInfo())
return;
LayoutStateDisabler layoutStateDisabler(view()); // We can't use layout state to repaint, since the regions are somewhere else.
// We can't use currentFlowThread as it is possible to have interleaved flow threads and the wrong one could be used.
// Let each region figure out the proper enclosing flow thread.
CurrentRenderFlowThreadDisabler disabler(view());
for (RenderRegionList::const_iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
region->repaintFlowThreadContent(repaintRect);
}
}
RenderRegion* RenderFlowThread::regionAtBlockOffset(LayoutUnit offset, bool extendLastRegion, RegionAutoGenerationPolicy autoGenerationPolicy)
{
ASSERT(!m_regionsInvalidated);
if (autoGenerationPolicy == AllowRegionAutoGeneration)
autoGenerateRegionsToBlockOffset(offset);
if (offset <= 0)
return m_regionList.isEmpty() ? 0 : m_regionList.first();
RegionSearchAdapter adapter(offset);
m_regionIntervalTree.allOverlapsWithAdapter<RegionSearchAdapter>(adapter);
// If no region was found, the offset is in the flow thread overflow.
// The last region will contain the offset if extendLastRegion is set or if the last region is a set.
if (!adapter.result() && !m_regionList.isEmpty() && (extendLastRegion || m_regionList.last()->isRenderRegionSet()))
return m_regionList.last();
return adapter.result();
}
LayoutPoint RenderFlowThread::adjustedPositionRelativeToOffsetParent(const RenderBoxModelObject& boxModelObject, const LayoutPoint& startPoint)
{
LayoutPoint referencePoint = startPoint;
// FIXME: This needs to be adapted for different writing modes inside the flow thread.
RenderRegion* startRegion = regionAtBlockOffset(referencePoint.y());
if (startRegion) {
// Take into account the offset coordinates of the region.
RenderObject* currObject = startRegion;
RenderObject* currOffsetParentRenderer;
Element* currOffsetParentElement;
while ((currOffsetParentElement = currObject->offsetParent()) && (currOffsetParentRenderer = currOffsetParentElement->renderer())) {
if (currObject->isBoxModelObject())
referencePoint.move(toRenderBoxModelObject(currObject)->offsetLeft(), toRenderBoxModelObject(currObject)->offsetTop());
// Since we're looking for the offset relative to the body, we must also
// take into consideration the borders of the region's offsetParent.
if (currOffsetParentRenderer->isBox() && !currOffsetParentRenderer->isBody())
referencePoint.move(toRenderBox(currOffsetParentRenderer)->borderLeft(), toRenderBox(currOffsetParentRenderer)->borderTop());
currObject = currOffsetParentRenderer;
}
// We need to check if any of this box's containing blocks start in a different region
// and if so, drop the object's top position (which was computed relative to its containing block
// and is no longer valid) and recompute it using the region in which it flows as reference.
bool wasComputedRelativeToOtherRegion = false;
const RenderBlock* objContainingBlock = boxModelObject.containingBlock();
while (objContainingBlock && !objContainingBlock->isRenderNamedFlowThread()) {
// Check if this object is in a different region.
RenderRegion* parentStartRegion = 0;
RenderRegion* parentEndRegion = 0;
getRegionRangeForBox(objContainingBlock, parentStartRegion, parentEndRegion);
if (parentStartRegion && parentStartRegion != startRegion) {
wasComputedRelativeToOtherRegion = true;
break;
}
objContainingBlock = objContainingBlock->containingBlock();
}
if (wasComputedRelativeToOtherRegion) {
if (boxModelObject.isBox()) {
// Use borderBoxRectInRegion to account for variations such as percentage margins.
LayoutRect borderBoxRect = toRenderBox(&boxModelObject)->borderBoxRectInRegion(startRegion, RenderBox::DoNotCacheRenderBoxRegionInfo);
referencePoint.move(borderBoxRect.location().x(), 0);
}
// Get the logical top coordinate of the current object.
LayoutUnit top = 0;
if (boxModelObject.isRenderBlock()) {
top = toRenderBlock(&boxModelObject)->offsetFromLogicalTopOfFirstPage();
} else {
if (boxModelObject.containingBlock())
top = boxModelObject.containingBlock()->offsetFromLogicalTopOfFirstPage();
if (boxModelObject.isBox())
top += toRenderBox(&boxModelObject)->topLeftLocation().y();
else if (boxModelObject.isRenderInline())
top -= toRenderInline(&boxModelObject)->borderTop();
}
// Get the logical top of the region this object starts in
// and compute the object's top, relative to the region's top.
LayoutUnit regionLogicalTop = startRegion->pageLogicalTopForOffset(top);
LayoutUnit topRelativeToRegion = top - regionLogicalTop;
referencePoint.setY(startRegion->offsetTop() + topRelativeToRegion);
// Since the top has been overriden, check if the
// relative/sticky positioning must be reconsidered.
if (boxModelObject.isRelPositioned())
referencePoint.move(0, boxModelObject.relativePositionOffset().height());
else if (boxModelObject.isStickyPositioned())
referencePoint.move(0, boxModelObject.stickyPositionOffset().height());
}
// Since we're looking for the offset relative to the body, we must also
// take into consideration the borders of the region.
referencePoint.move(startRegion->borderLeft(), startRegion->borderTop());
}
return referencePoint;
}
LayoutUnit RenderFlowThread::pageLogicalTopForOffset(LayoutUnit offset)
{
RenderRegion* region = regionAtBlockOffset(offset);
return region ? region->pageLogicalTopForOffset(offset) : LayoutUnit();
}
LayoutUnit RenderFlowThread::pageLogicalWidthForOffset(LayoutUnit offset)
{
RenderRegion* region = regionAtBlockOffset(offset, true);
return region ? region->pageLogicalWidth() : contentLogicalWidth();
}
LayoutUnit RenderFlowThread::pageLogicalHeightForOffset(LayoutUnit offset)
{
RenderRegion* region = regionAtBlockOffset(offset);
if (!region)
return 0;
return region->pageLogicalHeight();
}
LayoutUnit RenderFlowThread::pageRemainingLogicalHeightForOffset(LayoutUnit offset, PageBoundaryRule pageBoundaryRule)
{
RenderRegion* region = regionAtBlockOffset(offset);
if (!region)
return 0;
LayoutUnit pageLogicalTop = region->pageLogicalTopForOffset(offset);
LayoutUnit pageLogicalHeight = region->pageLogicalHeight();
LayoutUnit pageLogicalBottom = pageLogicalTop + pageLogicalHeight;
LayoutUnit remainingHeight = pageLogicalBottom - offset;
if (pageBoundaryRule == IncludePageBoundary) {
// If IncludePageBoundary is set, the line exactly on the top edge of a
// region will act as being part of the previous region.
remainingHeight = intMod(remainingHeight, pageLogicalHeight);
}
return remainingHeight;
}
RenderRegion* RenderFlowThread::mapFromFlowToRegion(TransformState& transformState) const
{
if (!hasValidRegionInfo())
return 0;
LayoutRect boxRect = transformState.mappedQuad().enclosingBoundingBox();
flipForWritingMode(boxRect);
// FIXME: We need to refactor RenderObject::absoluteQuads to be able to split the quads across regions,
// for now we just take the center of the mapped enclosing box and map it to a region.
// Note: Using the center in order to avoid rounding errors.
LayoutPoint center = boxRect.center();
RenderRegion* renderRegion = const_cast<RenderFlowThread*>(this)->regionAtBlockOffset(isHorizontalWritingMode() ? center.y() : center.x(), true, DisallowRegionAutoGeneration);
if (!renderRegion)
return 0;
LayoutRect flippedRegionRect(renderRegion->flowThreadPortionRect());
flipForWritingMode(flippedRegionRect);
transformState.move(renderRegion->contentBoxRect().location() - flippedRegionRect.location());
return renderRegion;
}
void RenderFlowThread::removeRenderBoxRegionInfo(RenderBox* box)
{
if (!hasRegions())
return;
// If the region chain was invalidated the next layout will clear the box information from all the regions.
if (m_regionsInvalidated) {
ASSERT(selfNeedsLayout());
return;
}
RenderRegion* startRegion;
RenderRegion* endRegion;
getRegionRangeForBox(box, startRegion, endRegion);
for (RenderRegionList::iterator iter = m_regionList.find(startRegion); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
region->removeRenderBoxRegionInfo(box);
if (region == endRegion)
break;
}
#ifndef NDEBUG
// We have to make sure we did not leave any RenderBoxRegionInfo attached.
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->renderBoxRegionInfo(box));
}
#endif
m_regionRangeMap.remove(box);
}
bool RenderFlowThread::logicalWidthChangedInRegionsForBlock(const RenderBlock* block)
{
if (!hasRegions())
return false;
RenderRegion* startRegion;
RenderRegion* endRegion;
getRegionRangeForBox(block, startRegion, endRegion);
// When the region chain is invalidated the box information is discarded so we must assume the width has changed.
if (m_pageLogicalSizeChanged && !startRegion)
return true;
// Not necessary for the flow thread, since we already computed the correct info for it.
if (block == this)
return false;
for (RenderRegionList::iterator iter = m_regionList.find(startRegion); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->needsLayout() || region->isRenderRegionSet());
OwnPtr<RenderBoxRegionInfo> oldInfo = region->takeRenderBoxRegionInfo(block);
if (!oldInfo)
continue;
LayoutUnit oldLogicalWidth = oldInfo->logicalWidth();
RenderBoxRegionInfo* newInfo = block->renderBoxRegionInfo(region);
if (!newInfo || newInfo->logicalWidth() != oldLogicalWidth)
return true;
if (region == endRegion)
break;
}
return false;
}
LayoutUnit RenderFlowThread::contentLogicalWidthOfFirstRegion() const
{
RenderRegion* firstValidRegionInFlow = firstRegion();
if (!firstValidRegionInFlow)
return 0;
return isHorizontalWritingMode() ? firstValidRegionInFlow->contentWidth() : firstValidRegionInFlow->contentHeight();
}
LayoutUnit RenderFlowThread::contentLogicalHeightOfFirstRegion() const
{
RenderRegion* firstValidRegionInFlow = firstRegion();
if (!firstValidRegionInFlow)
return 0;
return isHorizontalWritingMode() ? firstValidRegionInFlow->contentHeight() : firstValidRegionInFlow->contentWidth();
}
LayoutUnit RenderFlowThread::contentLogicalLeftOfFirstRegion() const
{
RenderRegion* firstValidRegionInFlow = firstRegion();
if (!firstValidRegionInFlow)
return 0;
return isHorizontalWritingMode() ? firstValidRegionInFlow->flowThreadPortionRect().x() : firstValidRegionInFlow->flowThreadPortionRect().y();
}
RenderRegion* RenderFlowThread::firstRegion() const
{
if (!hasValidRegionInfo())
return 0;
return m_regionList.first();
}
RenderRegion* RenderFlowThread::lastRegion() const
{
if (!hasValidRegionInfo())
return 0;
return m_regionList.last();
}
void RenderFlowThread::clearRenderObjectCustomStyle(const RenderObject* object,
const RenderRegion* oldStartRegion, const RenderRegion* oldEndRegion,
const RenderRegion* newStartRegion, const RenderRegion* newEndRegion)
{
// Clear the styles for the object in the regions.
// The styles are not cleared for the regions that are contained in both ranges.
bool insideOldRegionRange = false;
bool insideNewRegionRange = false;
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
if (oldStartRegion == region)
insideOldRegionRange = true;
if (newStartRegion == region)
insideNewRegionRange = true;
if (!(insideOldRegionRange && insideNewRegionRange))
region->clearObjectStyleInRegion(object);
if (oldEndRegion == region)
insideOldRegionRange = false;
if (newEndRegion == region)
insideNewRegionRange = false;
}
}
void RenderFlowThread::setRegionRangeForBox(const RenderBox* box, LayoutUnit offsetFromLogicalTopOfFirstPage)
{
if (!hasRegions())
return;
// FIXME: Not right for differing writing-modes.
RenderRegion* startRegion = regionAtBlockOffset(offsetFromLogicalTopOfFirstPage, true);
RenderRegion* endRegion = regionAtBlockOffset(offsetFromLogicalTopOfFirstPage + box->logicalHeight(), true);
RenderRegionRangeMap::iterator it = m_regionRangeMap.find(box);
if (it == m_regionRangeMap.end()) {
m_regionRangeMap.set(box, RenderRegionRange(startRegion, endRegion));
clearRenderObjectCustomStyle(box);
return;
}
// If nothing changed, just bail.
RenderRegionRange& range = it->value;
if (range.startRegion() == startRegion && range.endRegion() == endRegion)
return;
// Delete any info that we find before our new startRegion and after our new endRegion.
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
if (region == startRegion) {
iter = m_regionList.find(endRegion);
continue;
}
region->removeRenderBoxRegionInfo(box);
if (region == range.endRegion())
break;
}
clearRenderObjectCustomStyle(box, range.startRegion(), range.endRegion(), startRegion, endRegion);
range.setRange(startRegion, endRegion);
}
void RenderFlowThread::getRegionRangeForBox(const RenderBox* box, RenderRegion*& startRegion, RenderRegion*& endRegion) const
{
startRegion = 0;
endRegion = 0;
RenderRegionRangeMap::const_iterator it = m_regionRangeMap.find(box);
if (it == m_regionRangeMap.end())
return;
const RenderRegionRange& range = it->value;
startRegion = range.startRegion();
endRegion = range.endRegion();
ASSERT(m_regionList.contains(startRegion) && m_regionList.contains(endRegion));
}
void RenderFlowThread::applyBreakAfterContent(LayoutUnit clientHeight)
{
// Simulate a region break at height. If it points inside an auto logical height region,
// then it may determine the region computed autoheight.
addForcedRegionBreak(clientHeight, this, false);
}
bool RenderFlowThread::regionInRange(const RenderRegion* targetRegion, const RenderRegion* startRegion, const RenderRegion* endRegion) const
{
ASSERT(targetRegion);
for (RenderRegionList::const_iterator it = m_regionList.find(const_cast<RenderRegion*>(startRegion)); it != m_regionList.end(); ++it) {
const RenderRegion* currRegion = *it;
if (targetRegion == currRegion)
return true;
if (currRegion == endRegion)
break;
}
return false;
}
// Check if the content is flown into at least a region with region styling rules.
void RenderFlowThread::checkRegionsWithStyling()
{
bool hasRegionsWithStyling = false;
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
if (region->hasCustomRegionStyle()) {
hasRegionsWithStyling = true;
break;
}
}
m_hasRegionsWithStyling = hasRegionsWithStyling;
}
bool RenderFlowThread::objectInFlowRegion(const RenderObject* object, const RenderRegion* region) const
{
ASSERT(object);
ASSERT(region);
RenderFlowThread* flowThread = object->flowThreadContainingBlock();
if (flowThread != this)
return false;
if (!m_regionList.contains(const_cast<RenderRegion*>(region)))
return false;
RenderBox* enclosingBox = object->enclosingBox();
RenderRegion* enclosingBoxStartRegion = 0;
RenderRegion* enclosingBoxEndRegion = 0;
getRegionRangeForBox(enclosingBox, enclosingBoxStartRegion, enclosingBoxEndRegion);
if (!regionInRange(region, enclosingBoxStartRegion, enclosingBoxEndRegion))
return false;
if (object->isBox())
return true;
LayoutRect objectABBRect = object->absoluteBoundingBoxRect(true);
if (!objectABBRect.width())
objectABBRect.setWidth(1);
if (!objectABBRect.height())
objectABBRect.setHeight(1);
if (objectABBRect.intersects(region->absoluteBoundingBoxRect(true)))
return true;
if (region == lastRegion()) {
// If the object does not intersect any of the enclosing box regions
// then the object is in last region.
for (RenderRegionList::const_iterator it = m_regionList.find(enclosingBoxStartRegion); it != m_regionList.end(); ++it) {
const RenderRegion* currRegion = *it;
if (currRegion == region)
break;
if (objectABBRect.intersects(currRegion->absoluteBoundingBoxRect(true)))
return false;
}
return true;
}
return false;
}
#ifndef NDEBUG
bool RenderFlowThread::isAutoLogicalHeightRegionsCountConsistent() const
{
unsigned autoLogicalHeightRegions = 0;
for (RenderRegionList::const_iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
const RenderRegion* region = *iter;
if (region->hasAutoLogicalHeight())
autoLogicalHeightRegions++;
}
return autoLogicalHeightRegions == m_autoLogicalHeightRegionsCount;
}
#endif
// During the normal layout phase of the named flow the regions are initialized with a height equal to their max-height.
// This way unforced breaks are automatically placed when a region is full and the content height/position correctly estimated.
// Also, the region where a forced break falls is exactly the region found at the forced break offset inside the flow content.
void RenderFlowThread::initializeRegionsComputedAutoHeight(RenderRegion* startRegion)
{
ASSERT(!inConstrainedLayoutPhase());
if (!hasAutoLogicalHeightRegions())
return;
RenderRegionList::iterator regionIter = startRegion ? m_regionList.find(startRegion) : m_regionList.begin();
for (; regionIter != m_regionList.end(); ++regionIter) {
RenderRegion* region = *regionIter;
if (region->hasAutoLogicalHeight())
region->setComputedAutoHeight(region->maxPageLogicalHeight());
}
}
void RenderFlowThread::markAutoLogicalHeightRegionsForLayout()
{
ASSERT(hasAutoLogicalHeightRegions());
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
if (!region->hasAutoLogicalHeight())
continue;
// FIXME: We need to find a way to avoid marking all the regions ancestors for layout
// as we are already inside layout.
region->setNeedsLayout();
}
}
void RenderFlowThread::updateRegionsFlowThreadPortionRect(const RenderRegion* lastRegionWithContent)
{
ASSERT(!lastRegionWithContent || (!inConstrainedLayoutPhase() && hasAutoLogicalHeightRegions()));
LayoutUnit logicalHeight = 0;
bool emptyRegionsSegment = false;
// FIXME: Optimize not to clear the interval all the time. This implies manually managing the tree nodes lifecycle.
m_regionIntervalTree.clear();
m_regionIntervalTree.initIfNeeded();
for (RenderRegionList::iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
// If we find an empty auto-height region, clear the computedAutoHeight value.
if (emptyRegionsSegment && region->hasAutoLogicalHeight())
region->clearComputedAutoHeight();
LayoutUnit regionLogicalWidth = region->pageLogicalWidth();
LayoutUnit regionLogicalHeight = std::min<LayoutUnit>(LayoutUnit::max() / 2 - logicalHeight, region->logicalHeightOfAllFlowThreadContent());
LayoutRect regionRect(style()->direction() == LTR ? LayoutUnit() : logicalWidth() - regionLogicalWidth, logicalHeight, regionLogicalWidth, regionLogicalHeight);
region->setFlowThreadPortionRect(isHorizontalWritingMode() ? regionRect : regionRect.transposedRect());
m_regionIntervalTree.add(RegionIntervalTree::createInterval(logicalHeight, logicalHeight + regionLogicalHeight, region));
logicalHeight += regionLogicalHeight;
// Once we find the last region with content the next regions are considered empty.
if (lastRegionWithContent == region)
emptyRegionsSegment = true;
}
ASSERT(!lastRegionWithContent || emptyRegionsSegment);
}
// Even if we require the break to occur at offsetBreakInFlowThread, because regions may have min/max-height values,
// it is possible that the break will occur at a different offset than the original one required.
// offsetBreakAdjustment measures the different between the requested break offset and the current break offset.
bool RenderFlowThread::addForcedRegionBreak(LayoutUnit offsetBreakInFlowThread, RenderObject* breakChild, bool isBefore, LayoutUnit* offsetBreakAdjustment)
{
// We take breaks into account for height computation for auto logical height regions
// only in the layout phase in which we lay out the flows threads unconstrained
// and we use the content breaks to determine the computedAutoHeight for
// auto logical height regions.
if (inConstrainedLayoutPhase())
return false;
// Breaks can come before or after some objects. We need to track these objects, so that if we get
// multiple breaks for the same object (for example because of multiple layouts on the same object),
// we need to invalidate every other region after the old one and start computing from fresh.
RenderObjectToRegionMap& mapToUse = isBefore ? m_breakBeforeToRegionMap : m_breakAfterToRegionMap;
RenderObjectToRegionMap::iterator iter = mapToUse.find(breakChild);
if (iter != mapToUse.end()) {
RenderRegionList::iterator regionIter = m_regionList.find(iter->value);
ASSERT(regionIter != m_regionList.end());
ASSERT((*regionIter)->hasAutoLogicalHeight());
initializeRegionsComputedAutoHeight(*regionIter);
// We need to update the regions flow thread portion rect because we are going to process
// a break on these regions.
updateRegionsFlowThreadPortionRect();
}
// Simulate a region break at offsetBreakInFlowThread. If it points inside an auto logical height region,
// then it determines the region computed auto height.
RenderRegion* region = regionAtBlockOffset(offsetBreakInFlowThread);
if (!region)
return false;
bool lastBreakAfterContent = breakChild == this;
bool hasComputedAutoHeight = false;
LayoutUnit currentRegionOffsetInFlowThread = isHorizontalWritingMode() ? region->flowThreadPortionRect().y() : region->flowThreadPortionRect().x();
LayoutUnit offsetBreakInCurrentRegion = offsetBreakInFlowThread - currentRegionOffsetInFlowThread;
if (region->hasAutoLogicalHeight()) {
// A forced break can appear only in an auto-height region that didn't have a forced break before.
// This ASSERT is a good-enough heuristic to verify the above condition.
ASSERT(region->maxPageLogicalHeight() == region->computedAutoHeight());
mapToUse.set(breakChild, region);
hasComputedAutoHeight = true;
// Compute the region height pretending that the offsetBreakInCurrentRegion is the logicalHeight for the auto-height region.
LayoutUnit regionComputedAutoHeight = region->constrainContentBoxLogicalHeightByMinMax(offsetBreakInCurrentRegion, -1);
// The new height of this region needs to be smaller than the initial value, the max height. A forced break is the only way to change the initial
// height of an auto-height region besides content ending.
ASSERT(regionComputedAutoHeight <= region->maxPageLogicalHeight());
region->setComputedAutoHeight(regionComputedAutoHeight);
currentRegionOffsetInFlowThread += regionComputedAutoHeight;
} else {
currentRegionOffsetInFlowThread += isHorizontalWritingMode() ? region->flowThreadPortionRect().height() : region->flowThreadPortionRect().width();
}
// If the break was found inside an auto-height region its size changed so we need to recompute the flow thread portion rectangles.
// Also, if this is the last break after the content we need to clear the computedAutoHeight value on the last empty regions.
if (hasAutoLogicalHeightRegions() && lastBreakAfterContent)
updateRegionsFlowThreadPortionRect(region);
else if (hasComputedAutoHeight)
updateRegionsFlowThreadPortionRect();
if (offsetBreakAdjustment)
*offsetBreakAdjustment = max<LayoutUnit>(0, currentRegionOffsetInFlowThread - offsetBreakInFlowThread);
return hasComputedAutoHeight;
}
void RenderFlowThread::incrementAutoLogicalHeightRegions()
{
if (!m_autoLogicalHeightRegionsCount)
view()->flowThreadController()->incrementFlowThreadsWithAutoLogicalHeightRegions();
++m_autoLogicalHeightRegionsCount;
}
void RenderFlowThread::decrementAutoLogicalHeightRegions()
{
ASSERT(m_autoLogicalHeightRegionsCount > 0);
--m_autoLogicalHeightRegionsCount;
if (!m_autoLogicalHeightRegionsCount)
view()->flowThreadController()->decrementFlowThreadsWithAutoLogicalHeightRegions();
}
void RenderFlowThread::collectLayerFragments(LayerFragments& layerFragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect)
{
ASSERT(!m_regionsInvalidated);
for (RenderRegionList::const_iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
region->collectLayerFragments(layerFragments, layerBoundingBox, dirtyRect);
}
}
LayoutRect RenderFlowThread::fragmentsBoundingBox(const LayoutRect& layerBoundingBox)
{
ASSERT(!m_regionsInvalidated);
LayoutRect result;
for (RenderRegionList::const_iterator iter = m_regionList.begin(); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
LayerFragments fragments;
region->collectLayerFragments(fragments, layerBoundingBox, PaintInfo::infiniteRect());
for (size_t i = 0; i < fragments.size(); ++i) {
const LayerFragment& fragment = fragments.at(i);
LayoutRect fragmentRect(layerBoundingBox);
fragmentRect.intersect(fragment.paginationClip);
fragmentRect.moveBy(fragment.paginationOffset);
result.unite(fragmentRect);
}
}
return result;
}
bool RenderFlowThread::cachedOffsetFromLogicalTopOfFirstRegion(const RenderBox* box, LayoutUnit& result) const
{
RenderBoxToOffsetMap::const_iterator offsetIterator = m_boxesToOffsetMap.find(box);
if (offsetIterator == m_boxesToOffsetMap.end())
return false;
result = offsetIterator->value;
return true;
}
void RenderFlowThread::setOffsetFromLogicalTopOfFirstRegion(const RenderBox* box, LayoutUnit offset)
{
m_boxesToOffsetMap.set(box, offset);
}
void RenderFlowThread::clearOffsetFromLogicalTopOfFirstRegion(const RenderBox* box)
{
ASSERT(m_boxesToOffsetMap.contains(box));
m_boxesToOffsetMap.remove(box);
}
const RenderBox* RenderFlowThread::currentStatePusherRenderBox() const
{
const RenderObject* currentObject = m_statePusherObjectsStack.isEmpty() ? 0 : m_statePusherObjectsStack.last();
if (currentObject && currentObject->isBox())
return toRenderBox(currentObject);
return 0;
}
void RenderFlowThread::pushFlowThreadLayoutState(const RenderObject* object)
{
if (const RenderBox* currentBoxDescendant = currentStatePusherRenderBox()) {
LayoutState* layoutState = currentBoxDescendant->view()->layoutState();
if (layoutState && layoutState->isPaginated()) {
ASSERT(layoutState->renderer() == currentBoxDescendant);
LayoutSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset;
setOffsetFromLogicalTopOfFirstRegion(currentBoxDescendant, currentBoxDescendant->isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width());
}
}
m_statePusherObjectsStack.add(object);
}
void RenderFlowThread::popFlowThreadLayoutState()
{
m_statePusherObjectsStack.removeLast();
if (const RenderBox* currentBoxDescendant = currentStatePusherRenderBox()) {
LayoutState* layoutState = currentBoxDescendant->view()->layoutState();
if (layoutState && layoutState->isPaginated())
clearOffsetFromLogicalTopOfFirstRegion(currentBoxDescendant);
}
}
LayoutUnit RenderFlowThread::offsetFromLogicalTopOfFirstRegion(const RenderBlock* currentBlock) const
{
// First check if we cached the offset for the block if it's an ancestor containing block of the box
// being currently laid out.
LayoutUnit offset;
if (cachedOffsetFromLogicalTopOfFirstRegion(currentBlock, offset))
return offset;
// If it's the current box being laid out, use the layout state.
const RenderBox* currentBoxDescendant = currentStatePusherRenderBox();
if (currentBlock == currentBoxDescendant) {
LayoutState* layoutState = view()->layoutState();
ASSERT(layoutState->renderer() == currentBlock);
ASSERT(layoutState && layoutState->isPaginated());
LayoutSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset;
return currentBoxDescendant->isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width();
}
// As a last resort, take the slow path.
LayoutRect blockRect(0, 0, currentBlock->width(), currentBlock->height());
while (currentBlock && !currentBlock->isRenderFlowThread()) {
RenderBlock* containerBlock = currentBlock->containingBlock();
ASSERT(containerBlock);
if (!containerBlock)
return 0;
LayoutPoint currentBlockLocation = currentBlock->location();
if (containerBlock->style()->writingMode() != currentBlock->style()->writingMode()) {
// We have to put the block rect in container coordinates
// and we have to take into account both the container and current block flipping modes
if (containerBlock->style()->isFlippedBlocksWritingMode()) {
if (containerBlock->isHorizontalWritingMode())
blockRect.setY(currentBlock->height() - blockRect.maxY());
else
blockRect.setX(currentBlock->width() - blockRect.maxX());
}
currentBlock->flipForWritingMode(blockRect);
}
blockRect.moveBy(currentBlockLocation);
currentBlock = containerBlock;
}
return currentBlock->isHorizontalWritingMode() ? blockRect.y() : blockRect.x();
}
void RenderFlowThread::RegionSearchAdapter::collectIfNeeded(const RegionInterval& interval)
{
if (m_result)
return;
if (interval.low() <= m_offset && interval.high() > m_offset)
m_result = interval.data();
}
void RenderFlowThread::mapLocalToContainer(const RenderLayerModelObject* repaintContainer, TransformState& transformState, MapCoordinatesFlags mode, bool* wasFixed) const
{
if (this == repaintContainer)
return;
if (RenderRegion* region = mapFromFlowToRegion(transformState)) {
// FIXME: The cast below is probably not the best solution, we may need to find a better way.
static_cast<const RenderObject*>(region)->mapLocalToContainer(region->containerForRepaint(), transformState, mode, wasFixed);
}
}
CurrentRenderFlowThreadMaintainer::CurrentRenderFlowThreadMaintainer(RenderFlowThread* renderFlowThread)
: m_renderFlowThread(renderFlowThread)
, m_previousRenderFlowThread(0)
{
if (!m_renderFlowThread)
return;
RenderView* view = m_renderFlowThread->view();
m_previousRenderFlowThread = view->flowThreadController()->currentRenderFlowThread();
ASSERT(!m_previousRenderFlowThread || !renderFlowThread->isRenderNamedFlowThread());
view->flowThreadController()->setCurrentRenderFlowThread(m_renderFlowThread);
}
CurrentRenderFlowThreadMaintainer::~CurrentRenderFlowThreadMaintainer()
{
if (!m_renderFlowThread)
return;
RenderView* view = m_renderFlowThread->view();
ASSERT(view->flowThreadController()->currentRenderFlowThread() == m_renderFlowThread);
view->flowThreadController()->setCurrentRenderFlowThread(m_previousRenderFlowThread);
}
} // namespace WebCore