blob: 91cb1d5aa2fd9065718079f4d32af46e57d0eac6 [file] [log] [blame]
/*
* Copyright (C) 2006 Apple Computer, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/platform/image-decoders/gif/GIFImageDecoder.h"
#include <limits>
#include "core/platform/PlatformInstrumentation.h"
#include "core/platform/image-decoders/gif/GIFImageReader.h"
#include "wtf/NotFound.h"
#include "wtf/PassOwnPtr.h"
namespace WebCore {
GIFImageDecoder::GIFImageDecoder(ImageSource::AlphaOption alphaOption,
ImageSource::GammaAndColorProfileOption gammaAndColorProfileOption,
size_t maxDecodedBytes)
: ImageDecoder(alphaOption, gammaAndColorProfileOption, maxDecodedBytes)
, m_repetitionCount(cAnimationLoopOnce)
{
}
GIFImageDecoder::~GIFImageDecoder()
{
}
void GIFImageDecoder::setData(SharedBuffer* data, bool allDataReceived)
{
if (failed())
return;
ImageDecoder::setData(data, allDataReceived);
if (m_reader)
m_reader->setData(data);
}
bool GIFImageDecoder::isSizeAvailable()
{
if (!ImageDecoder::isSizeAvailable())
parse(GIFSizeQuery);
return ImageDecoder::isSizeAvailable();
}
size_t GIFImageDecoder::frameCount()
{
parse(GIFFrameCountQuery);
return m_frameBufferCache.size();
}
int GIFImageDecoder::repetitionCount() const
{
// This value can arrive at any point in the image data stream. Most GIFs
// in the wild declare it near the beginning of the file, so it usually is
// set by the time we've decoded the size, but (depending on the GIF and the
// packets sent back by the webserver) not always. If the reader hasn't
// seen a loop count yet, it will return cLoopCountNotSeen, in which case we
// should default to looping once (the initial value for
// |m_repetitionCount|).
//
// There are some additional wrinkles here. First, ImageSource::clear()
// may destroy the reader, making the result from the reader _less_
// authoritative on future calls if the recreated reader hasn't seen the
// loop count. We don't need to special-case this because in this case the
// new reader will once again return cLoopCountNotSeen, and we won't
// overwrite the cached correct value.
//
// Second, a GIF might never set a loop count at all, in which case we
// should continue to treat it as a "loop once" animation. We don't need
// special code here either, because in this case we'll never change
// |m_repetitionCount| from its default value.
//
// Third, we use the same GIFImageReader for counting frames and we might
// see the loop count and then encounter a decoding error which happens
// later in the stream. It is also possible that no frames are in the
// stream. In these cases we should just loop once.
if (failed() || (m_reader && (!m_reader->imagesCount())))
m_repetitionCount = cAnimationLoopOnce;
else if (m_reader && m_reader->loopCount() != cLoopCountNotSeen)
m_repetitionCount = m_reader->loopCount();
return m_repetitionCount;
}
ImageFrame* GIFImageDecoder::frameBufferAtIndex(size_t index)
{
if (index >= frameCount())
return 0;
ImageFrame& frame = m_frameBufferCache[index];
if (frame.status() != ImageFrame::FrameComplete) {
PlatformInstrumentation::willDecodeImage("GIF");
decode(index);
PlatformInstrumentation::didDecodeImage();
}
return &frame;
}
bool GIFImageDecoder::frameIsCompleteAtIndex(size_t index) const
{
return m_reader && (index < m_reader->imagesCount()) && m_reader->frameContext(index)->isComplete();
}
float GIFImageDecoder::frameDurationAtIndex(size_t index) const
{
return (m_reader && (index < m_reader->imagesCount()) &&
m_reader->frameContext(index)->isHeaderDefined()) ?
m_reader->frameContext(index)->delayTime() : 0;
}
bool GIFImageDecoder::setFailed()
{
m_reader.clear();
return ImageDecoder::setFailed();
}
bool GIFImageDecoder::haveDecodedRow(size_t frameIndex, GIFRow::const_iterator rowBegin, size_t width, size_t rowNumber, unsigned repeatCount, bool writeTransparentPixels)
{
const GIFFrameContext* frameContext = m_reader->frameContext(frameIndex);
// The pixel data and coordinates supplied to us are relative to the frame's
// origin within the entire image size, i.e.
// (frameContext->xOffset, frameContext->yOffset). There is no guarantee
// that width == (size().width() - frameContext->xOffset), so
// we must ensure we don't run off the end of either the source data or the
// row's X-coordinates.
const int xBegin = frameContext->xOffset();
const int yBegin = frameContext->yOffset() + rowNumber;
const int xEnd = std::min(static_cast<int>(frameContext->xOffset() + width), size().width());
const int yEnd = std::min(static_cast<int>(frameContext->yOffset() + rowNumber + repeatCount), size().height());
if (!width || (xBegin < 0) || (yBegin < 0) || (xEnd <= xBegin) || (yEnd <= yBegin))
return true;
const GIFColorMap::Table& colorTable = frameContext->localColorMap().isDefined() ? frameContext->localColorMap().table() : m_reader->globalColorMap().table();
if (colorTable.isEmpty())
return true;
GIFColorMap::Table::const_iterator colorTableIter = colorTable.begin();
// Initialize the frame if necessary.
ImageFrame& buffer = m_frameBufferCache[frameIndex];
if ((buffer.status() == ImageFrame::FrameEmpty) && !initFrameBuffer(frameIndex))
return false;
const size_t transparentPixel = frameContext->transparentPixel();
GIFRow::const_iterator rowEnd = rowBegin + (xEnd - xBegin);
ImageFrame::PixelData* currentAddress = buffer.getAddr(xBegin, yBegin);
// We may or may not need to write transparent pixels to the buffer.
// If we're compositing against a previous image, it's wrong, and if
// we're writing atop a cleared, fully transparent buffer, it's
// unnecessary; but if we're decoding an interlaced gif and
// displaying it "Haeberli"-style, we must write these for passes
// beyond the first, or the initial passes will "show through" the
// later ones.
//
// The loops below are almost identical. One writes a transparent pixel
// and one doesn't based on the value of |writeTransparentPixels|.
// The condition check is taken out of the loop to enhance performance.
// This optimization reduces decoding time by about 15% for a 3MB image.
if (writeTransparentPixels) {
for (; rowBegin != rowEnd; ++rowBegin, ++currentAddress) {
const size_t sourceValue = *rowBegin;
if ((sourceValue != transparentPixel) && (sourceValue < colorTable.size())) {
*currentAddress = colorTableIter[sourceValue];
} else {
*currentAddress = 0;
m_currentBufferSawAlpha = true;
}
}
} else {
for (; rowBegin != rowEnd; ++rowBegin, ++currentAddress) {
const size_t sourceValue = *rowBegin;
if ((sourceValue != transparentPixel) && (sourceValue < colorTable.size()))
*currentAddress = colorTableIter[sourceValue];
else
m_currentBufferSawAlpha = true;
}
}
// Tell the frame to copy the row data if need be.
if (repeatCount > 1)
buffer.copyRowNTimes(xBegin, xEnd, yBegin, yEnd);
return true;
}
bool GIFImageDecoder::parseCompleted() const
{
return m_reader && m_reader->parseCompleted();
}
bool GIFImageDecoder::frameComplete(size_t frameIndex)
{
// Initialize the frame if necessary. Some GIFs insert do-nothing frames,
// in which case we never reach haveDecodedRow() before getting here.
ImageFrame& buffer = m_frameBufferCache[frameIndex];
if ((buffer.status() == ImageFrame::FrameEmpty) && !initFrameBuffer(frameIndex))
return false; // initFrameBuffer() has already called setFailed().
buffer.setStatus(ImageFrame::FrameComplete);
if (!m_currentBufferSawAlpha) {
// The whole frame was non-transparent, so it's possible that the entire
// resulting buffer was non-transparent, and we can setHasAlpha(false).
if (buffer.originalFrameRect().contains(IntRect(IntPoint(), size()))) {
buffer.setHasAlpha(false);
buffer.setRequiredPreviousFrameIndex(kNotFound);
} else if (buffer.requiredPreviousFrameIndex() != kNotFound) {
// Tricky case. This frame does not have alpha only if everywhere
// outside its rect doesn't have alpha. To know whether this is
// true, we check the start state of the frame -- if it doesn't have
// alpha, we're safe.
const ImageFrame* prevBuffer = &m_frameBufferCache[buffer.requiredPreviousFrameIndex()];
ASSERT(prevBuffer->disposalMethod() != ImageFrame::DisposeOverwritePrevious);
// Now, if we're at a DisposeNotSpecified or DisposeKeep frame, then
// we can say we have no alpha if that frame had no alpha. But
// since in initFrameBuffer() we already copied that frame's alpha
// state into the current frame's, we need do nothing at all here.
//
// The only remaining case is a DisposeOverwriteBgcolor frame. If
// it had no alpha, and its rect is contained in the current frame's
// rect, we know the current frame has no alpha.
if ((prevBuffer->disposalMethod() == ImageFrame::DisposeOverwriteBgcolor) && !prevBuffer->hasAlpha() && buffer.originalFrameRect().contains(prevBuffer->originalFrameRect()))
buffer.setHasAlpha(false);
}
}
return true;
}
size_t GIFImageDecoder::clearCacheExceptFrame(size_t clearExceptFrame)
{
// We need to preserve frames such that:
// 1. We don't clear |clearExceptFrame|;
// 2. We don't clear any frame from which a future initFrameBuffer() call
// will copy bitmap data.
// All other frames can be cleared.
while ((clearExceptFrame < m_frameBufferCache.size()) && (m_frameBufferCache[clearExceptFrame].status() == ImageFrame::FrameEmpty))
clearExceptFrame = m_frameBufferCache[clearExceptFrame].requiredPreviousFrameIndex();
return ImageDecoder::clearCacheExceptFrame(clearExceptFrame);
}
void GIFImageDecoder::clearFrameBuffer(size_t frameIndex)
{
if (m_reader && m_frameBufferCache[frameIndex].status() == ImageFrame::FramePartial) {
// Reset the state of the partial frame in the reader so that the frame
// can be decoded again when requested.
m_reader->clearDecodeState(frameIndex);
}
ImageDecoder::clearFrameBuffer(frameIndex);
}
void GIFImageDecoder::parse(GIFParseQuery query)
{
if (failed())
return;
if (!m_reader) {
m_reader = adoptPtr(new GIFImageReader(this));
m_reader->setData(m_data);
}
if (!m_reader->parse(query)) {
setFailed();
return;
}
const size_t oldSize = m_frameBufferCache.size();
m_frameBufferCache.resize(m_reader->imagesCount());
for (size_t i = oldSize; i < m_reader->imagesCount(); ++i) {
ImageFrame& buffer = m_frameBufferCache[i];
const GIFFrameContext* frameContext = m_reader->frameContext(i);
buffer.setPremultiplyAlpha(m_premultiplyAlpha);
buffer.setRequiredPreviousFrameIndex(findRequiredPreviousFrame(i, false));
buffer.setDuration(frameContext->delayTime());
buffer.setDisposalMethod(frameContext->disposalMethod());
// Initialize the frame rect in our buffer.
IntRect frameRect = frameContext->frameRect();
// Make sure the frameRect doesn't extend outside the buffer.
if (frameRect.maxX() > size().width())
frameRect.setWidth(size().width() - frameRect.x());
if (frameRect.maxY() > size().height())
frameRect.setHeight(size().height() - frameRect.y());
buffer.setOriginalFrameRect(frameRect);
}
}
void GIFImageDecoder::decode(size_t frameIndex)
{
parse(GIFFrameCountQuery);
if (failed())
return;
Vector<size_t> framesToDecode;
size_t frameToDecode = frameIndex;
do {
framesToDecode.append(frameToDecode);
frameToDecode = m_frameBufferCache[frameToDecode].requiredPreviousFrameIndex();
} while (frameToDecode != kNotFound && m_frameBufferCache[frameToDecode].status() != ImageFrame::FrameComplete);
for (size_t i = framesToDecode.size(); i > 0; --i) {
size_t frameIndex = framesToDecode[i - 1];
if (!m_reader->decode(frameIndex)) {
setFailed();
return;
}
// We need more data to continue decoding.
if (m_frameBufferCache[frameIndex].status() != ImageFrame::FrameComplete)
break;
}
// It is also a fatal error if all data is received and we have decoded all
// frames available but the file is truncated.
if (frameIndex >= m_frameBufferCache.size() - 1 && isAllDataReceived() && m_reader && !m_reader->parseCompleted())
setFailed();
}
bool GIFImageDecoder::initFrameBuffer(size_t frameIndex)
{
// Initialize the frame rect in our buffer.
ImageFrame* const buffer = &m_frameBufferCache[frameIndex];
size_t requiredPreviousFrameIndex = buffer->requiredPreviousFrameIndex();
if (requiredPreviousFrameIndex == kNotFound) {
// This frame doesn't rely on any previous data.
if (!buffer->setSize(size().width(), size().height()))
return setFailed();
} else {
const ImageFrame* prevBuffer = &m_frameBufferCache[requiredPreviousFrameIndex];
ASSERT(prevBuffer->status() == ImageFrame::FrameComplete);
// Preserve the last frame as the starting state for this frame.
if (!buffer->copyBitmapData(*prevBuffer))
return setFailed();
if (prevBuffer->disposalMethod() == ImageFrame::DisposeOverwriteBgcolor) {
// We want to clear the previous frame to transparent, without
// affecting pixels in the image outside of the frame.
const IntRect& prevRect = prevBuffer->originalFrameRect();
ASSERT(!prevRect.contains(IntRect(IntPoint(), size())));
buffer->zeroFillFrameRect(prevRect);
}
}
// Update our status to be partially complete.
buffer->setStatus(ImageFrame::FramePartial);
// Reset the alpha pixel tracker for this frame.
m_currentBufferSawAlpha = false;
return true;
}
} // namespace WebCore