blob: c4eebe403f9b94f8cd4f7082fd31f4e9cd64c70b [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller (mueller@kde.org)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved.
* Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "core/dom/Node.h"
#include "HTMLNames.h"
#include "XMLNames.h"
#include "bindings/v8/ExceptionState.h"
#include "bindings/v8/ExceptionStatePlaceholder.h"
#include "core/accessibility/AXObjectCache.h"
#include "core/dom/Attr.h"
#include "core/dom/Attribute.h"
#include "core/dom/BeforeLoadEvent.h"
#include "core/dom/ChildListMutationScope.h"
#include "core/dom/ChildNodeList.h"
#include "core/dom/ClassNodeList.h"
#include "core/dom/DOMImplementation.h"
#include "core/dom/Document.h"
#include "core/dom/DocumentFragment.h"
#include "core/dom/DocumentType.h"
#include "core/dom/Element.h"
#include "core/dom/ElementRareData.h"
#include "core/dom/Event.h"
#include "core/dom/EventDispatchMediator.h"
#include "core/dom/EventDispatcher.h"
#include "core/dom/EventListener.h"
#include "core/dom/EventNames.h"
#include "core/dom/ExceptionCode.h"
#include "core/dom/GestureEvent.h"
#include "core/dom/KeyboardEvent.h"
#include "core/dom/LiveNodeList.h"
#include "core/dom/MouseEvent.h"
#include "core/dom/MutationEvent.h"
#include "core/dom/NameNodeList.h"
#include "core/dom/NodeRareData.h"
#include "core/dom/NodeTraversal.h"
#include "core/dom/ProcessingInstruction.h"
#include "core/dom/SelectorQuery.h"
#include "core/dom/TagNodeList.h"
#include "core/dom/TemplateContentDocumentFragment.h"
#include "core/dom/Text.h"
#include "core/dom/TextEvent.h"
#include "core/dom/TouchEvent.h"
#include "core/dom/TreeScopeAdopter.h"
#include "core/dom/UIEvent.h"
#include "core/dom/UserActionElementSet.h"
#include "core/dom/WheelEvent.h"
#include "core/dom/shadow/ElementShadow.h"
#include "core/dom/shadow/InsertionPoint.h"
#include "core/dom/shadow/ShadowRoot.h"
#include "core/editing/htmlediting.h"
#include "core/html/HTMLAnchorElement.h"
#include "core/html/HTMLFrameOwnerElement.h"
#include "core/html/HTMLStyleElement.h"
#include "core/html/RadioNodeList.h"
#include "core/inspector/InspectorCounters.h"
#include "core/page/ContextMenuController.h"
#include "core/page/EventHandler.h"
#include "core/page/Frame.h"
#include "core/page/Page.h"
#include "core/page/Settings.h"
#include "core/platform/Partitions.h"
#include "core/rendering/FlowThreadController.h"
#include "core/rendering/RenderBox.h"
#include "core/svg/graphics/SVGImage.h"
#include "wtf/HashSet.h"
#include "wtf/PassOwnPtr.h"
#include "wtf/RefCountedLeakCounter.h"
#include "wtf/UnusedParam.h"
#include "wtf/Vector.h"
#include "wtf/text/CString.h"
#include "wtf/text/StringBuilder.h"
using namespace std;
namespace WebCore {
using namespace HTMLNames;
void* Node::operator new(size_t size)
{
ASSERT(isMainThread());
return partitionAlloc(Partitions::getObjectModelPartition(), size);
}
void Node::operator delete(void* ptr)
{
ASSERT(isMainThread());
partitionFree(ptr);
}
bool Node::isSupported(const String& feature, const String& version)
{
return DOMImplementation::hasFeature(feature, version);
}
#if DUMP_NODE_STATISTICS
static HashSet<Node*> liveNodeSet;
#endif
void Node::dumpStatistics()
{
#if DUMP_NODE_STATISTICS
size_t nodesWithRareData = 0;
size_t elementNodes = 0;
size_t attrNodes = 0;
size_t textNodes = 0;
size_t cdataNodes = 0;
size_t commentNodes = 0;
size_t entityNodes = 0;
size_t piNodes = 0;
size_t documentNodes = 0;
size_t docTypeNodes = 0;
size_t fragmentNodes = 0;
size_t notationNodes = 0;
size_t xpathNSNodes = 0;
size_t shadowRootNodes = 0;
HashMap<String, size_t> perTagCount;
size_t attributes = 0;
size_t attributesWithAttr = 0;
size_t elementsWithAttributeStorage = 0;
size_t elementsWithRareData = 0;
size_t elementsWithNamedNodeMap = 0;
for (HashSet<Node*>::iterator it = liveNodeSet.begin(); it != liveNodeSet.end(); ++it) {
Node* node = *it;
if (node->hasRareData()) {
++nodesWithRareData;
if (node->isElementNode()) {
++elementsWithRareData;
if (toElement(node)->hasNamedNodeMap())
++elementsWithNamedNodeMap;
}
}
switch (node->nodeType()) {
case ELEMENT_NODE: {
++elementNodes;
// Tag stats
Element* element = toElement(node);
HashMap<String, size_t>::AddResult result = perTagCount.add(element->tagName(), 1);
if (!result.isNewEntry)
result.iterator->value++;
if (ElementData* elementData = element->elementData()) {
attributes += elementData->length();
++elementsWithAttributeStorage;
for (unsigned i = 0; i < elementData->length(); ++i) {
Attribute* attr = elementData->attributeItem(i);
if (attr->attr())
++attributesWithAttr;
}
}
break;
}
case ATTRIBUTE_NODE: {
++attrNodes;
break;
}
case TEXT_NODE: {
++textNodes;
break;
}
case CDATA_SECTION_NODE: {
++cdataNodes;
break;
}
case COMMENT_NODE: {
++commentNodes;
break;
}
case ENTITY_NODE: {
++entityNodes;
break;
}
case PROCESSING_INSTRUCTION_NODE: {
++piNodes;
break;
}
case DOCUMENT_NODE: {
++documentNodes;
break;
}
case DOCUMENT_TYPE_NODE: {
++docTypeNodes;
break;
}
case DOCUMENT_FRAGMENT_NODE: {
if (node->isShadowRoot())
++shadowRootNodes;
else
++fragmentNodes;
break;
}
case NOTATION_NODE: {
++notationNodes;
break;
}
case XPATH_NAMESPACE_NODE: {
++xpathNSNodes;
break;
}
}
}
printf("Number of Nodes: %d\n\n", liveNodeSet.size());
printf("Number of Nodes with RareData: %zu\n\n", nodesWithRareData);
printf("NodeType distribution:\n");
printf(" Number of Element nodes: %zu\n", elementNodes);
printf(" Number of Attribute nodes: %zu\n", attrNodes);
printf(" Number of Text nodes: %zu\n", textNodes);
printf(" Number of CDATASection nodes: %zu\n", cdataNodes);
printf(" Number of Comment nodes: %zu\n", commentNodes);
printf(" Number of Entity nodes: %zu\n", entityNodes);
printf(" Number of ProcessingInstruction nodes: %zu\n", piNodes);
printf(" Number of Document nodes: %zu\n", documentNodes);
printf(" Number of DocumentType nodes: %zu\n", docTypeNodes);
printf(" Number of DocumentFragment nodes: %zu\n", fragmentNodes);
printf(" Number of Notation nodes: %zu\n", notationNodes);
printf(" Number of XPathNS nodes: %zu\n", xpathNSNodes);
printf(" Number of ShadowRoot nodes: %zu\n", shadowRootNodes);
printf("Element tag name distibution:\n");
for (HashMap<String, size_t>::iterator it = perTagCount.begin(); it != perTagCount.end(); ++it)
printf(" Number of <%s> tags: %zu\n", it->key.utf8().data(), it->value);
printf("Attributes:\n");
printf(" Number of Attributes (non-Node and Node): %zu [%zu]\n", attributes, sizeof(Attribute));
printf(" Number of Attributes with an Attr: %zu\n", attributesWithAttr);
printf(" Number of Elements with attribute storage: %zu [%zu]\n", elementsWithAttributeStorage, sizeof(ElementData));
printf(" Number of Elements with RareData: %zu\n", elementsWithRareData);
printf(" Number of Elements with NamedNodeMap: %zu [%zu]\n", elementsWithNamedNodeMap, sizeof(NamedNodeMap));
#endif
}
DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, nodeCounter, ("WebCoreNode"));
Node::StyleChange Node::diff(const RenderStyle* s1, const RenderStyle* s2, Document* doc)
{
StyleChange ch = NoInherit;
EDisplay display1 = s1 ? s1->display() : NONE;
bool fl1 = s1 && s1->hasPseudoStyle(FIRST_LETTER);
EDisplay display2 = s2 ? s2->display() : NONE;
bool fl2 = s2 && s2->hasPseudoStyle(FIRST_LETTER);
// We just detach if a renderer acquires or loses a column-span, since spanning elements
// typically won't contain much content.
bool colSpan1 = s1 && s1->columnSpan();
bool colSpan2 = s2 && s2->columnSpan();
bool specifiesColumns1 = s1 && (!s1->hasAutoColumnCount() || !s1->hasAutoColumnWidth());
bool specifiesColumns2 = s2 && (!s2->hasAutoColumnCount() || !s2->hasAutoColumnWidth());
if (display1 != display2 || fl1 != fl2 || colSpan1 != colSpan2
|| (specifiesColumns1 != specifiesColumns2 && doc->settings()->regionBasedColumnsEnabled())
|| (s1 && s2 && !s1->contentDataEquivalent(s2)))
ch = Detach;
else if (!s1 || !s2)
ch = Inherit;
else if (*s1 == *s2)
ch = NoChange;
else if (s1->inheritedNotEqual(s2))
ch = Inherit;
else if (s1->hasExplicitlyInheritedProperties() || s2->hasExplicitlyInheritedProperties())
ch = Inherit;
// If the pseudoStyles have changed, we want any StyleChange that is not NoChange
// because setStyle will do the right thing with anything else.
if (ch == NoChange && s1->hasAnyPublicPseudoStyles()) {
for (PseudoId pseudoId = FIRST_PUBLIC_PSEUDOID; ch == NoChange && pseudoId < FIRST_INTERNAL_PSEUDOID; pseudoId = static_cast<PseudoId>(pseudoId + 1)) {
if (s1->hasPseudoStyle(pseudoId)) {
RenderStyle* ps2 = s2->getCachedPseudoStyle(pseudoId);
if (!ps2)
ch = NoInherit;
else {
RenderStyle* ps1 = s1->getCachedPseudoStyle(pseudoId);
ch = ps1 && *ps1 == *ps2 ? NoChange : NoInherit;
}
}
}
}
// When text-combine property has been changed, we need to prepare a separate renderer object.
// When text-combine is on, we use RenderCombineText, otherwise RenderText.
// https://bugs.webkit.org/show_bug.cgi?id=55069
if ((s1 && s2) && (s1->hasTextCombine() != s2->hasTextCombine()))
ch = Detach;
// We need to reattach the node, so that it is moved to the correct RenderFlowThread.
if ((s1 && s2) && (s1->flowThread() != s2->flowThread()))
ch = Detach;
// When the region thread has changed, we need to prepare a separate render region object.
if ((s1 && s2) && (s1->regionThread() != s2->regionThread()))
ch = Detach;
return ch;
}
void Node::trackForDebugging()
{
#ifndef NDEBUG
nodeCounter.increment();
#endif
#if DUMP_NODE_STATISTICS
liveNodeSet.add(this);
#endif
}
Node::~Node()
{
#ifndef NDEBUG
nodeCounter.decrement();
#endif
#if DUMP_NODE_STATISTICS
liveNodeSet.remove(this);
#endif
if (hasRareData())
clearRareData();
if (renderer())
detach();
if (!isContainerNode()) {
if (Document* document = documentInternal())
willBeDeletedFrom(document);
}
if (m_previous)
m_previous->setNextSibling(0);
if (m_next)
m_next->setPreviousSibling(0);
m_treeScope->guardDeref();
InspectorCounters::decrementCounter(InspectorCounters::NodeCounter);
}
void Node::willBeDeletedFrom(Document* document)
{
if (hasEventTargetData()) {
if (document)
document->didRemoveEventTargetNode(this);
clearEventTargetData();
}
if (document) {
if (AXObjectCache* cache = document->existingAXObjectCache())
cache->remove(this);
}
}
NodeRareData* Node::rareData() const
{
ASSERT(hasRareData());
return static_cast<NodeRareData*>(m_data.m_rareData);
}
NodeRareData* Node::ensureRareData()
{
if (hasRareData())
return rareData();
NodeRareData* data;
if (isElementNode())
data = ElementRareData::create(m_data.m_renderer).leakPtr();
else
data = NodeRareData::create(m_data.m_renderer).leakPtr();
ASSERT(data);
m_data.m_rareData = data;
setFlag(HasRareDataFlag);
return data;
}
void Node::clearRareData()
{
ASSERT(hasRareData());
ASSERT(!transientMutationObserverRegistry() || transientMutationObserverRegistry()->isEmpty());
RenderObject* renderer = m_data.m_rareData->renderer();
if (isElementNode())
delete static_cast<ElementRareData*>(m_data.m_rareData);
else
delete static_cast<NodeRareData*>(m_data.m_rareData);
m_data.m_renderer = renderer;
clearFlag(HasRareDataFlag);
}
Node* Node::toNode()
{
return this;
}
short Node::tabIndex() const
{
return 0;
}
String Node::nodeValue() const
{
return String();
}
void Node::setNodeValue(const String&)
{
// By default, setting nodeValue has no effect.
}
PassRefPtr<NodeList> Node::childNodes()
{
return ensureRareData()->ensureNodeLists()->ensureChildNodeList(this);
}
Node *Node::lastDescendant() const
{
Node *n = const_cast<Node *>(this);
while (n && n->lastChild())
n = n->lastChild();
return n;
}
Node* Node::firstDescendant() const
{
Node *n = const_cast<Node *>(this);
while (n && n->firstChild())
n = n->firstChild();
return n;
}
Node* Node::pseudoAwarePreviousSibling() const
{
if (parentElement() && !previousSibling()) {
Element* parent = parentElement();
if (isAfterPseudoElement() && parent->lastChild())
return parent->lastChild();
if (!isBeforePseudoElement())
return parent->pseudoElement(BEFORE);
}
return previousSibling();
}
Node* Node::pseudoAwareNextSibling() const
{
if (parentElement() && !nextSibling()) {
Element* parent = parentElement();
if (isBeforePseudoElement() && parent->firstChild())
return parent->firstChild();
if (!isAfterPseudoElement())
return parent->pseudoElement(AFTER);
}
return nextSibling();
}
Node* Node::pseudoAwareFirstChild() const
{
if (isElementNode()) {
const Element* currentElement = toElement(this);
Node* first = currentElement->pseudoElement(BEFORE);
if (first)
return first;
first = currentElement->firstChild();
if (!first)
first = currentElement->pseudoElement(AFTER);
return first;
}
return firstChild();
}
Node* Node::pseudoAwareLastChild() const
{
if (isElementNode()) {
const Element* currentElement = toElement(this);
Node* last = currentElement->pseudoElement(AFTER);
if (last)
return last;
last = currentElement->lastChild();
if (!last)
last = currentElement->pseudoElement(BEFORE);
return last;
}
return lastChild();
}
void Node::insertBefore(PassRefPtr<Node> newChild, Node* refChild, ExceptionState& es, AttachBehavior attachBehavior)
{
if (isContainerNode())
toContainerNode(this)->insertBefore(newChild, refChild, es, attachBehavior);
else
es.throwDOMException(HierarchyRequestError);
}
void Node::replaceChild(PassRefPtr<Node> newChild, Node* oldChild, ExceptionState& es, AttachBehavior attachBehavior)
{
if (isContainerNode())
toContainerNode(this)->replaceChild(newChild, oldChild, es, attachBehavior);
else
es.throwDOMException(HierarchyRequestError);
}
void Node::removeChild(Node* oldChild, ExceptionState& es)
{
if (isContainerNode())
toContainerNode(this)->removeChild(oldChild, es);
else
es.throwDOMException(NotFoundError);
}
void Node::appendChild(PassRefPtr<Node> newChild, ExceptionState& es, AttachBehavior attachBehavior)
{
if (isContainerNode())
toContainerNode(this)->appendChild(newChild, es, attachBehavior);
else
es.throwDOMException(HierarchyRequestError);
}
void Node::remove(ExceptionState& es)
{
if (ContainerNode* parent = parentNode())
parent->removeChild(this, es);
}
void Node::normalize()
{
// Go through the subtree beneath us, normalizing all nodes. This means that
// any two adjacent text nodes are merged and any empty text nodes are removed.
RefPtr<Node> node = this;
while (Node* firstChild = node->firstChild())
node = firstChild;
while (node) {
NodeType type = node->nodeType();
if (type == ELEMENT_NODE)
toElement(node.get())->normalizeAttributes();
if (node == this)
break;
if (type != TEXT_NODE) {
node = NodeTraversal::nextPostOrder(node.get());
continue;
}
RefPtr<Text> text = toText(node.get());
// Remove empty text nodes.
if (!text->length()) {
// Care must be taken to get the next node before removing the current node.
node = NodeTraversal::nextPostOrder(node.get());
text->remove(IGNORE_EXCEPTION);
continue;
}
// Merge text nodes.
while (Node* nextSibling = node->nextSibling()) {
if (nextSibling->nodeType() != TEXT_NODE)
break;
RefPtr<Text> nextText = toText(nextSibling);
// Remove empty text nodes.
if (!nextText->length()) {
nextText->remove(IGNORE_EXCEPTION);
continue;
}
// Both non-empty text nodes. Merge them.
unsigned offset = text->length();
text->appendData(nextText->data());
document()->textNodesMerged(nextText.get(), offset);
nextText->remove(IGNORE_EXCEPTION);
}
node = NodeTraversal::nextPostOrder(node.get());
}
}
const AtomicString& Node::prefix() const
{
// For nodes other than elements and attributes, the prefix is always null
return nullAtom;
}
void Node::setPrefix(const AtomicString& /*prefix*/, ExceptionState& es)
{
// The spec says that for nodes other than elements and attributes, prefix is always null.
// It does not say what to do when the user tries to set the prefix on another type of
// node, however Mozilla throws a NamespaceError exception.
es.throwDOMException(NamespaceError);
}
const AtomicString& Node::localName() const
{
return nullAtom;
}
const AtomicString& Node::namespaceURI() const
{
return nullAtom;
}
bool Node::isContentEditable(UserSelectAllTreatment treatment)
{
document()->updateStyleIfNeeded();
return rendererIsEditable(Editable, treatment);
}
bool Node::isContentRichlyEditable()
{
document()->updateStyleIfNeeded();
return rendererIsEditable(RichlyEditable, UserSelectAllIsAlwaysNonEditable);
}
bool Node::rendererIsEditable(EditableLevel editableLevel, UserSelectAllTreatment treatment) const
{
if (isPseudoElement())
return false;
// Ideally we'd call ASSERT(!needsStyleRecalc()) here, but
// ContainerNode::setFocus() calls setNeedsStyleRecalc(), so the assertion
// would fire in the middle of Document::setFocusedNode().
for (const Node* node = this; node; node = node->parentNode()) {
if ((node->isHTMLElement() || node->isDocumentNode()) && node->renderer()) {
// Elements with user-select: all style are considered atomic
// therefore non editable.
if (Position::nodeIsUserSelectAll(node) && treatment == UserSelectAllIsAlwaysNonEditable)
return false;
switch (node->renderer()->style()->userModify()) {
case READ_ONLY:
return false;
case READ_WRITE:
return true;
case READ_WRITE_PLAINTEXT_ONLY:
return editableLevel != RichlyEditable;
}
ASSERT_NOT_REACHED();
return false;
}
}
return false;
}
bool Node::isEditableToAccessibility(EditableLevel editableLevel) const
{
if (rendererIsEditable(editableLevel))
return true;
// FIXME: Respect editableLevel for ARIA editable elements.
if (editableLevel == RichlyEditable)
return false;
ASSERT(document());
ASSERT(AXObjectCache::accessibilityEnabled());
ASSERT(document()->existingAXObjectCache());
if (document()) {
if (AXObjectCache* cache = document()->existingAXObjectCache())
return cache->rootAXEditableElement(this);
}
return false;
}
bool Node::shouldUseInputMethod()
{
return isContentEditable(UserSelectAllIsAlwaysNonEditable);
}
RenderBox* Node::renderBox() const
{
RenderObject* renderer = this->renderer();
return renderer && renderer->isBox() ? toRenderBox(renderer) : 0;
}
RenderBoxModelObject* Node::renderBoxModelObject() const
{
RenderObject* renderer = this->renderer();
return renderer && renderer->isBoxModelObject() ? toRenderBoxModelObject(renderer) : 0;
}
LayoutRect Node::boundingBox() const
{
if (renderer())
return renderer()->absoluteBoundingBoxRect();
return LayoutRect();
}
LayoutRect Node::renderRect(bool* isReplaced)
{
RenderObject* hitRenderer = this->renderer();
ASSERT(hitRenderer);
RenderObject* renderer = hitRenderer;
while (renderer && !renderer->isBody() && !renderer->isRoot()) {
if (renderer->isRenderBlock() || renderer->isInlineBlockOrInlineTable() || renderer->isReplaced()) {
*isReplaced = renderer->isReplaced();
return renderer->absoluteBoundingBoxRect();
}
renderer = renderer->parent();
}
return LayoutRect();
}
bool Node::hasNonEmptyBoundingBox() const
{
// Before calling absoluteRects, check for the common case where the renderer
// is non-empty, since this is a faster check and almost always returns true.
RenderBoxModelObject* box = renderBoxModelObject();
if (!box)
return false;
if (!box->borderBoundingBox().isEmpty())
return true;
Vector<IntRect> rects;
FloatPoint absPos = renderer()->localToAbsolute();
renderer()->absoluteRects(rects, flooredLayoutPoint(absPos));
size_t n = rects.size();
for (size_t i = 0; i < n; ++i)
if (!rects[i].isEmpty())
return true;
return false;
}
inline static ShadowRoot* oldestShadowRootFor(const Node* node)
{
if (!node->isElementNode())
return 0;
if (ElementShadow* shadow = toElement(node)->shadow())
return shadow->oldestShadowRoot();
return 0;
}
void Node::recalcDistribution()
{
if (isElementNode()) {
if (ElementShadow* shadow = toElement(this)->shadow())
shadow->distributeIfNeeded();
}
for (Node* child = firstChild(); child; child = child->nextSibling()) {
if (child->childNeedsDistributionRecalc())
child->recalcDistribution();
}
for (ShadowRoot* root = youngestShadowRoot(); root; root = root->olderShadowRoot()) {
if (root->childNeedsDistributionRecalc())
root->recalcDistribution();
}
clearChildNeedsDistributionRecalc();
}
void Node::setIsLink(bool isLink)
{
setFlag(isLink && !SVGImage::isInSVGImage(toElement(this)), IsLinkFlag);
}
void Node::markAncestorsWithChildNeedsDistributionRecalc()
{
for (Node* node = this; node && !node->childNeedsDistributionRecalc(); node = node->parentOrShadowHostNode())
node->setChildNeedsDistributionRecalc();
if (document()->childNeedsDistributionRecalc())
document()->scheduleStyleRecalc();
}
inline void Node::setStyleChange(StyleChangeType changeType)
{
m_nodeFlags = (m_nodeFlags & ~StyleChangeMask) | changeType;
}
inline void Node::markAncestorsWithChildNeedsStyleRecalc()
{
for (ContainerNode* p = parentOrShadowHostNode(); p && !p->childNeedsStyleRecalc(); p = p->parentOrShadowHostNode())
p->setChildNeedsStyleRecalc();
if (document()->needsStyleRecalc() || document()->childNeedsStyleRecalc())
document()->scheduleStyleRecalc();
}
void Node::refEventTarget()
{
ref();
}
void Node::derefEventTarget()
{
deref();
}
void Node::setNeedsStyleRecalc(StyleChangeType changeType, StyleChangeSource source)
{
ASSERT(changeType != NoStyleChange);
if (!attached()) // changed compared to what?
return;
if (source == StyleChangeFromRenderer)
setFlag(NotifyRendererWithIdenticalStyles);
StyleChangeType existingChangeType = styleChangeType();
if (changeType > existingChangeType)
setStyleChange(changeType);
if (existingChangeType == NoStyleChange)
markAncestorsWithChildNeedsStyleRecalc();
}
void Node::lazyAttach(ShouldSetAttached shouldSetAttached)
{
markAncestorsWithChildNeedsStyleRecalc();
for (Node* node = this; node; node = NodeTraversal::next(node, this)) {
node->setStyleChange(LazyAttachStyleChange);
if (node->isContainerNode())
node->setChildNeedsStyleRecalc();
// FIXME: This flag is only used by HTMLFrameElementBase and doesn't look needed.
if (shouldSetAttached == SetAttached)
node->setAttached();
for (ShadowRoot* root = node->youngestShadowRoot(); root; root = root->olderShadowRoot())
root->lazyAttach(shouldSetAttached);
}
}
Node* Node::focusDelegate()
{
return this;
}
bool Node::shouldHaveFocusAppearance() const
{
ASSERT(focused());
return true;
}
bool Node::isInert() const
{
const Element* dialog = document()->activeModalDialog();
if (dialog && !containsIncludingShadowDOM(dialog) && !dialog->containsIncludingShadowDOM(this))
return true;
return document()->ownerElement() && document()->ownerElement()->isInert();
}
unsigned Node::nodeIndex() const
{
Node *_tempNode = previousSibling();
unsigned count=0;
for ( count=0; _tempNode; count++ )
_tempNode = _tempNode->previousSibling();
return count;
}
template<unsigned type>
bool shouldInvalidateNodeListCachesForAttr(const unsigned nodeListCounts[], const QualifiedName& attrName)
{
if (nodeListCounts[type] && LiveNodeListBase::shouldInvalidateTypeOnAttributeChange(static_cast<NodeListInvalidationType>(type), attrName))
return true;
return shouldInvalidateNodeListCachesForAttr<type + 1>(nodeListCounts, attrName);
}
template<>
bool shouldInvalidateNodeListCachesForAttr<numNodeListInvalidationTypes>(const unsigned[], const QualifiedName&)
{
return false;
}
bool Document::shouldInvalidateNodeListCaches(const QualifiedName* attrName) const
{
if (attrName)
return shouldInvalidateNodeListCachesForAttr<DoNotInvalidateOnAttributeChanges + 1>(m_nodeListCounts, *attrName);
for (int type = 0; type < numNodeListInvalidationTypes; type++) {
if (m_nodeListCounts[type])
return true;
}
return false;
}
void Document::invalidateNodeListCaches(const QualifiedName* attrName)
{
HashSet<LiveNodeListBase*>::iterator end = m_listsInvalidatedAtDocument.end();
for (HashSet<LiveNodeListBase*>::iterator it = m_listsInvalidatedAtDocument.begin(); it != end; ++it)
(*it)->invalidateCache(attrName);
}
void Node::invalidateNodeListCachesInAncestors(const QualifiedName* attrName, Element* attributeOwnerElement)
{
if (hasRareData() && (!attrName || isAttributeNode())) {
if (NodeListsNodeData* lists = rareData()->nodeLists())
lists->clearChildNodeListCache();
}
// Modifications to attributes that are not associated with an Element can't invalidate NodeList caches.
if (attrName && !attributeOwnerElement)
return;
if (!document()->shouldInvalidateNodeListCaches(attrName))
return;
document()->invalidateNodeListCaches(attrName);
for (Node* node = this; node; node = node->parentNode()) {
if (!node->hasRareData())
continue;
NodeRareData* data = node->rareData();
if (data->nodeLists())
data->nodeLists()->invalidateCaches(attrName);
}
}
NodeListsNodeData* Node::nodeLists()
{
return hasRareData() ? rareData()->nodeLists() : 0;
}
void Node::clearNodeLists()
{
rareData()->clearNodeLists();
}
void Node::checkSetPrefix(const AtomicString& prefix, ExceptionState& es)
{
// Perform error checking as required by spec for setting Node.prefix. Used by
// Element::setPrefix() and Attr::setPrefix()
if (!prefix.isEmpty() && !Document::isValidName(prefix)) {
es.throwDOMException(InvalidCharacterError);
return;
}
// FIXME: Raise NamespaceError if prefix is malformed per the Namespaces in XML specification.
const AtomicString& nodeNamespaceURI = namespaceURI();
if ((nodeNamespaceURI.isEmpty() && !prefix.isEmpty())
|| (prefix == xmlAtom && nodeNamespaceURI != XMLNames::xmlNamespaceURI)) {
es.throwDOMException(NamespaceError);
return;
}
// Attribute-specific checks are in Attr::setPrefix().
}
bool Node::isDescendantOf(const Node *other) const
{
// Return true if other is an ancestor of this, otherwise false
if (!other || !other->hasChildNodes() || inDocument() != other->inDocument())
return false;
if (other->treeScope() != treeScope())
return false;
if (other->isTreeScope())
return !isTreeScope();
for (const ContainerNode* n = parentNode(); n; n = n->parentNode()) {
if (n == other)
return true;
}
return false;
}
bool Node::contains(const Node* node) const
{
if (!node)
return false;
return this == node || node->isDescendantOf(this);
}
bool Node::containsIncludingShadowDOM(const Node* node) const
{
if (!node)
return false;
if (this == node)
return true;
if (document() != node->document())
return false;
if (inDocument() != node->inDocument())
return false;
bool hasChildren = isContainerNode() && toContainerNode(this)->hasChildNodes();
bool hasShadow = isElementNode() && toElement(this)->shadow();
if (!hasChildren && !hasShadow)
return false;
for (; node; node = node->shadowHost()) {
if (treeScope() == node->treeScope())
return contains(node);
}
return false;
}
bool Node::containsIncludingHostElements(const Node* node) const
{
while (node) {
if (node == this)
return true;
if (node->isDocumentFragment() && static_cast<const DocumentFragment*>(node)->isTemplateContent())
node = static_cast<const TemplateContentDocumentFragment*>(node)->host();
else
node = node->parentOrShadowHostNode();
}
return false;
}
inline void Node::detachNode(Node* root, const AttachContext& context)
{
Node* node = root;
while (node) {
if (node->styleChangeType() == LazyAttachStyleChange) {
// FIXME: This is needed because Node::lazyAttach marks nodes as being attached even
// though they've never been through attach(). This allows us to avoid doing all the
// virtual calls to detach() and other associated work.
node->clearAttached();
node->clearChildNeedsStyleRecalc();
for (ShadowRoot* shadowRoot = node->youngestShadowRoot(); shadowRoot; shadowRoot = shadowRoot->olderShadowRoot())
detachNode(shadowRoot, context);
node = NodeTraversal::next(node, root);
continue;
}
// Handle normal reattaches from style recalc (ex. display type changes)
// or descendants of lazy attached nodes that got actually attached, for example,
// by innerHTML or editing.
// FIXME: innerHTML and editing should also lazyAttach.
if (node->attached())
node->detach(context);
node = NodeTraversal::nextSkippingChildren(node, root);
}
}
void Node::reattach(const AttachContext& context)
{
// FIXME: Text::updateTextRenderer calls reattach outside a style recalc.
ASSERT(document()->inStyleRecalc() || isTextNode());
AttachContext reattachContext(context);
reattachContext.performingReattach = true;
detachNode(this, reattachContext);
attach(reattachContext);
}
void Node::attach(const AttachContext&)
{
ASSERT(!attached());
ASSERT(!renderer() || (renderer()->style() && (renderer()->parent() || renderer()->isRenderView())));
// If this node got a renderer it may be the previousRenderer() of sibling text nodes and thus affect the
// result of Text::textRendererIsNeeded() for those nodes.
// FIXME: This loop is no longer required once we lazy attach all the time.
if (renderer() && !document()->inStyleRecalc()) {
for (Node* next = nextSibling(); next; next = next->nextSibling()) {
if (next->renderer())
break;
if (!next->attached())
break; // Assume this means none of the following siblings are attached.
if (!next->isTextNode())
continue;
ASSERT(!next->renderer());
toText(next)->reattach();
// If we again decided not to create a renderer for next, we can bail out the loop,
// because it won't affect the result of Text::textRendererIsNeeded() for the rest
// of sibling nodes.
if (!next->renderer())
break;
}
}
setAttached();
clearNeedsStyleRecalc();
if (Document* doc = documentInternal()) {
if (AXObjectCache* cache = doc->axObjectCache())
cache->updateCacheAfterNodeIsAttached(this);
}
}
#ifndef NDEBUG
static Node* detachingNode;
bool Node::inDetach() const
{
return detachingNode == this;
}
#endif
void Node::detach(const AttachContext& context)
{
#ifndef NDEBUG
ASSERT(!detachingNode);
detachingNode = this;
#endif
if (renderer())
renderer()->destroyAndCleanupAnonymousWrappers();
setRenderer(0);
// Do not remove the element's hovered and active status
// if performing a reattach.
if (!context.performingReattach) {
Document* doc = document();
if (isUserActionElement()) {
if (hovered())
doc->hoveredNodeDetached(this);
if (inActiveChain())
doc->activeChainNodeDetached(this);
doc->userActionElements().didDetach(this);
}
}
clearAttached();
#ifndef NDEBUG
detachingNode = 0;
#endif
}
// FIXME: This code is used by editing. Seems like it could move over there and not pollute Node.
Node *Node::previousNodeConsideringAtomicNodes() const
{
if (previousSibling()) {
Node *n = previousSibling();
while (!isAtomicNode(n) && n->lastChild())
n = n->lastChild();
return n;
}
else if (parentNode()) {
return parentNode();
}
else {
return 0;
}
}
Node *Node::nextNodeConsideringAtomicNodes() const
{
if (!isAtomicNode(this) && firstChild())
return firstChild();
if (nextSibling())
return nextSibling();
const Node *n = this;
while (n && !n->nextSibling())
n = n->parentNode();
if (n)
return n->nextSibling();
return 0;
}
Node *Node::previousLeafNode() const
{
Node *node = previousNodeConsideringAtomicNodes();
while (node) {
if (isAtomicNode(node))
return node;
node = node->previousNodeConsideringAtomicNodes();
}
return 0;
}
Node *Node::nextLeafNode() const
{
Node *node = nextNodeConsideringAtomicNodes();
while (node) {
if (isAtomicNode(node))
return node;
node = node->nextNodeConsideringAtomicNodes();
}
return 0;
}
RenderStyle* Node::virtualComputedStyle(PseudoId pseudoElementSpecifier)
{
return parentOrShadowHostNode() ? parentOrShadowHostNode()->computedStyle(pseudoElementSpecifier) : 0;
}
int Node::maxCharacterOffset() const
{
ASSERT_NOT_REACHED();
return 0;
}
// FIXME: Shouldn't these functions be in the editing code? Code that asks questions about HTML in the core DOM class
// is obviously misplaced.
bool Node::canStartSelection() const
{
if (rendererIsEditable())
return true;
if (renderer()) {
RenderStyle* style = renderer()->style();
// We allow selections to begin within an element that has -webkit-user-select: none set,
// but if the element is draggable then dragging should take priority over selection.
if (style->userDrag() == DRAG_ELEMENT && style->userSelect() == SELECT_NONE)
return false;
}
return parentOrShadowHostNode() ? parentOrShadowHostNode()->canStartSelection() : true;
}
bool Node::isRegisteredWithNamedFlow() const
{
return document()->renderView()->flowThreadController()->isContentNodeRegisteredWithAnyNamedFlow(this);
}
Element* Node::shadowHost() const
{
if (ShadowRoot* root = containingShadowRoot())
return root->host();
return 0;
}
Node* Node::deprecatedShadowAncestorNode() const
{
if (ShadowRoot* root = containingShadowRoot())
return root->host();
return const_cast<Node*>(this);
}
ShadowRoot* Node::containingShadowRoot() const
{
Node* root = treeScope()->rootNode();
return root && root->isShadowRoot() ? toShadowRoot(root) : 0;
}
Node* Node::nonBoundaryShadowTreeRootNode()
{
ASSERT(!isShadowRoot());
Node* root = this;
while (root) {
if (root->isShadowRoot())
return root;
Node* parent = root->parentNodeGuaranteedHostFree();
if (parent && parent->isShadowRoot())
return root;
root = parent;
}
return 0;
}
ContainerNode* Node::nonShadowBoundaryParentNode() const
{
ContainerNode* parent = parentNode();
return parent && !parent->isShadowRoot() ? parent : 0;
}
Element* Node::parentOrShadowHostElement() const
{
ContainerNode* parent = parentOrShadowHostNode();
if (!parent)
return 0;
if (parent->isShadowRoot())
return toShadowRoot(parent)->host();
if (!parent->isElementNode())
return 0;
return toElement(parent);
}
bool Node::isBlockFlowElement() const
{
return isElementNode() && renderer() && renderer()->isBlockFlow();
}
Element *Node::enclosingBlockFlowElement() const
{
Node *n = const_cast<Node *>(this);
if (isBlockFlowElement())
return toElement(n);
while (1) {
n = n->parentNode();
if (!n)
break;
if (n->isBlockFlowElement() || n->hasTagName(bodyTag))
return toElement(n);
}
return 0;
}
bool Node::isRootEditableElement() const
{
return rendererIsEditable() && isElementNode() && (!parentNode() || !parentNode()->rendererIsEditable()
|| !parentNode()->isElementNode() || hasTagName(bodyTag));
}
Element* Node::rootEditableElement(EditableType editableType) const
{
if (editableType == HasEditableAXRole) {
if (AXObjectCache* cache = document()->existingAXObjectCache())
return const_cast<Element*>(cache->rootAXEditableElement(this));
}
return rootEditableElement();
}
Element* Node::rootEditableElement() const
{
Element* result = 0;
for (Node* n = const_cast<Node*>(this); n && n->rendererIsEditable(); n = n->parentNode()) {
if (n->isElementNode())
result = toElement(n);
if (n->hasTagName(bodyTag))
break;
}
return result;
}
bool Node::inSameContainingBlockFlowElement(Node *n)
{
return n ? enclosingBlockFlowElement() == n->enclosingBlockFlowElement() : false;
}
// FIXME: End of obviously misplaced HTML editing functions. Try to move these out of Node.
PassRefPtr<NodeList> Node::getElementsByTagName(const AtomicString& localName)
{
if (localName.isNull())
return 0;
if (document()->isHTMLDocument())
return ensureRareData()->ensureNodeLists()->addCacheWithAtomicName<HTMLTagNodeList>(this, HTMLTagNodeListType, localName);
return ensureRareData()->ensureNodeLists()->addCacheWithAtomicName<TagNodeList>(this, TagNodeListType, localName);
}
PassRefPtr<NodeList> Node::getElementsByTagNameNS(const AtomicString& namespaceURI, const AtomicString& localName)
{
if (localName.isNull())
return 0;
if (namespaceURI == starAtom)
return getElementsByTagName(localName);
return ensureRareData()->ensureNodeLists()->addCacheWithQualifiedName(this, namespaceURI.isEmpty() ? nullAtom : namespaceURI, localName);
}
PassRefPtr<NodeList> Node::getElementsByName(const String& elementName)
{
return ensureRareData()->ensureNodeLists()->addCacheWithAtomicName<NameNodeList>(this, NameNodeListType, elementName);
}
PassRefPtr<NodeList> Node::getElementsByClassName(const String& classNames)
{
return ensureRareData()->ensureNodeLists()->addCacheWithName<ClassNodeList>(this, ClassNodeListType, classNames);
}
PassRefPtr<RadioNodeList> Node::radioNodeList(const AtomicString& name)
{
ASSERT(hasTagName(formTag) || hasTagName(fieldsetTag));
return ensureRareData()->ensureNodeLists()->addCacheWithAtomicName<RadioNodeList>(this, RadioNodeListType, name);
}
PassRefPtr<Element> Node::querySelector(const AtomicString& selectors, ExceptionState& es)
{
if (selectors.isEmpty()) {
es.throwDOMException(SyntaxError);
return 0;
}
SelectorQuery* selectorQuery = document()->selectorQueryCache()->add(selectors, document(), es);
if (!selectorQuery)
return 0;
return selectorQuery->queryFirst(this);
}
PassRefPtr<NodeList> Node::querySelectorAll(const AtomicString& selectors, ExceptionState& es)
{
if (selectors.isEmpty()) {
es.throwDOMException(SyntaxError);
return 0;
}
SelectorQuery* selectorQuery = document()->selectorQueryCache()->add(selectors, document(), es);
if (!selectorQuery)
return 0;
return selectorQuery->queryAll(this);
}
Document *Node::ownerDocument() const
{
Document *doc = document();
return doc == this ? 0 : doc;
}
KURL Node::baseURI() const
{
return parentNode() ? parentNode()->baseURI() : KURL();
}
bool Node::isEqualNode(Node* other) const
{
if (!other)
return false;
NodeType nodeType = this->nodeType();
if (nodeType != other->nodeType())
return false;
if (nodeName() != other->nodeName())
return false;
if (localName() != other->localName())
return false;
if (namespaceURI() != other->namespaceURI())
return false;
if (prefix() != other->prefix())
return false;
if (nodeValue() != other->nodeValue())
return false;
if (isElementNode() && !toElement(this)->hasEquivalentAttributes(toElement(other)))
return false;
Node* child = firstChild();
Node* otherChild = other->firstChild();
while (child) {
if (!child->isEqualNode(otherChild))
return false;
child = child->nextSibling();
otherChild = otherChild->nextSibling();
}
if (otherChild)
return false;
if (nodeType == DOCUMENT_TYPE_NODE) {
const DocumentType* documentTypeThis = static_cast<const DocumentType*>(this);
const DocumentType* documentTypeOther = static_cast<const DocumentType*>(other);
if (documentTypeThis->publicId() != documentTypeOther->publicId())
return false;
if (documentTypeThis->systemId() != documentTypeOther->systemId())
return false;
if (documentTypeThis->internalSubset() != documentTypeOther->internalSubset())
return false;
// FIXME: We don't compare entities or notations because currently both are always empty.
}
return true;
}
bool Node::isDefaultNamespace(const AtomicString& namespaceURIMaybeEmpty) const
{
const AtomicString& namespaceURI = namespaceURIMaybeEmpty.isEmpty() ? nullAtom : namespaceURIMaybeEmpty;
switch (nodeType()) {
case ELEMENT_NODE: {
const Element* elem = toElement(this);
if (elem->prefix().isNull())
return elem->namespaceURI() == namespaceURI;
if (elem->hasAttributes()) {
for (unsigned i = 0; i < elem->attributeCount(); i++) {
const Attribute* attr = elem->attributeItem(i);
if (attr->localName() == xmlnsAtom)
return attr->value() == namespaceURI;
}
}
if (Element* ancestor = ancestorElement())
return ancestor->isDefaultNamespace(namespaceURI);
return false;
}
case DOCUMENT_NODE:
if (Element* de = toDocument(this)->documentElement())
return de->isDefaultNamespace(namespaceURI);
return false;
case ENTITY_NODE:
case NOTATION_NODE:
case DOCUMENT_TYPE_NODE:
case DOCUMENT_FRAGMENT_NODE:
return false;
case ATTRIBUTE_NODE: {
const Attr* attr = toAttr(this);
if (attr->ownerElement())
return attr->ownerElement()->isDefaultNamespace(namespaceURI);
return false;
}
default:
if (Element* ancestor = ancestorElement())
return ancestor->isDefaultNamespace(namespaceURI);
return false;
}
}
String Node::lookupPrefix(const AtomicString &namespaceURI) const
{
// Implemented according to
// http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespacePrefixAlgo
if (namespaceURI.isEmpty())
return String();
switch (nodeType()) {
case ELEMENT_NODE:
return lookupNamespacePrefix(namespaceURI, toElement(this));
case DOCUMENT_NODE:
if (Element* de = toDocument(this)->documentElement())
return de->lookupPrefix(namespaceURI);
return String();
case ENTITY_NODE:
case NOTATION_NODE:
case DOCUMENT_FRAGMENT_NODE:
case DOCUMENT_TYPE_NODE:
return String();
case ATTRIBUTE_NODE: {
const Attr *attr = static_cast<const Attr *>(this);
if (attr->ownerElement())
return attr->ownerElement()->lookupPrefix(namespaceURI);
return String();
}
default:
if (Element* ancestor = ancestorElement())
return ancestor->lookupPrefix(namespaceURI);
return String();
}
}
String Node::lookupNamespaceURI(const String &prefix) const
{
// Implemented according to
// http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/namespaces-algorithms.html#lookupNamespaceURIAlgo
if (!prefix.isNull() && prefix.isEmpty())
return String();
switch (nodeType()) {
case ELEMENT_NODE: {
const Element *elem = toElement(this);
if (!elem->namespaceURI().isNull() && elem->prefix() == prefix)
return elem->namespaceURI();
if (elem->hasAttributes()) {
for (unsigned i = 0; i < elem->attributeCount(); i++) {
const Attribute* attr = elem->attributeItem(i);
if (attr->prefix() == xmlnsAtom && attr->localName() == prefix) {
if (!attr->value().isEmpty())
return attr->value();
return String();
} else if (attr->localName() == xmlnsAtom && prefix.isNull()) {
if (!attr->value().isEmpty())
return attr->value();
return String();
}
}
}
if (Element* ancestor = ancestorElement())
return ancestor->lookupNamespaceURI(prefix);
return String();
}
case DOCUMENT_NODE:
if (Element* de = toDocument(this)->documentElement())
return de->lookupNamespaceURI(prefix);
return String();
case ENTITY_NODE:
case NOTATION_NODE:
case DOCUMENT_TYPE_NODE:
case DOCUMENT_FRAGMENT_NODE:
return String();
case ATTRIBUTE_NODE: {
const Attr *attr = static_cast<const Attr *>(this);
if (attr->ownerElement())
return attr->ownerElement()->lookupNamespaceURI(prefix);
else
return String();
}
default:
if (Element* ancestor = ancestorElement())
return ancestor->lookupNamespaceURI(prefix);
return String();
}
}
String Node::lookupNamespacePrefix(const AtomicString &_namespaceURI, const Element *originalElement) const
{
if (_namespaceURI.isNull())
return String();
if (originalElement->lookupNamespaceURI(prefix()) == _namespaceURI)
return prefix();
ASSERT(isElementNode());
const Element* thisElement = toElement(this);
if (thisElement->hasAttributes()) {
for (unsigned i = 0; i < thisElement->attributeCount(); i++) {
const Attribute* attr = thisElement->attributeItem(i);
if (attr->prefix() == xmlnsAtom && attr->value() == _namespaceURI
&& originalElement->lookupNamespaceURI(attr->localName()) == _namespaceURI)
return attr->localName();
}
}
if (Element* ancestor = ancestorElement())
return ancestor->lookupNamespacePrefix(_namespaceURI, originalElement);
return String();
}
static void appendTextContent(const Node* node, bool convertBRsToNewlines, bool& isNullString, StringBuilder& content)
{
switch (node->nodeType()) {
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
isNullString = false;
content.append(static_cast<const CharacterData*>(node)->data());
break;
case Node::PROCESSING_INSTRUCTION_NODE:
isNullString = false;
content.append(static_cast<const ProcessingInstruction*>(node)->data());
break;
case Node::ELEMENT_NODE:
if (node->hasTagName(brTag) && convertBRsToNewlines) {
isNullString = false;
content.append('\n');
break;
}
// Fall through.
case Node::ATTRIBUTE_NODE:
case Node::ENTITY_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
isNullString = false;
for (Node* child = node->firstChild(); child; child = child->nextSibling()) {
if (child->nodeType() == Node::COMMENT_NODE || child->nodeType() == Node::PROCESSING_INSTRUCTION_NODE)
continue;
appendTextContent(child, convertBRsToNewlines, isNullString, content);
}
break;
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::NOTATION_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
}
}
String Node::textContent(bool convertBRsToNewlines) const
{
StringBuilder content;
bool isNullString = true;
appendTextContent(this, convertBRsToNewlines, isNullString, content);
return isNullString ? String() : content.toString();
}
void Node::setTextContent(const String& text, ExceptionState& es)
{
switch (nodeType()) {
case TEXT_NODE:
case CDATA_SECTION_NODE:
case COMMENT_NODE:
case PROCESSING_INSTRUCTION_NODE:
setNodeValue(text);
return;
case ELEMENT_NODE:
case ATTRIBUTE_NODE:
case ENTITY_NODE:
case DOCUMENT_FRAGMENT_NODE: {
RefPtr<ContainerNode> container = toContainerNode(this);
ChildListMutationScope mutation(this);
container->removeChildren();
if (!text.isEmpty())
container->appendChild(document()->createTextNode(text), es);
return;
}
case DOCUMENT_NODE:
case DOCUMENT_TYPE_NODE:
case NOTATION_NODE:
case XPATH_NAMESPACE_NODE:
// Do nothing.
return;
}
ASSERT_NOT_REACHED();
}
Element* Node::ancestorElement() const
{
// In theory, there can be EntityReference nodes between elements, but this is currently not supported.
for (ContainerNode* n = parentNode(); n; n = n->parentNode()) {
if (n->isElementNode())
return toElement(n);
}
return 0;
}
bool Node::offsetInCharacters() const
{
return false;
}
unsigned short Node::compareDocumentPosition(const Node* otherNode) const
{
return compareDocumentPositionInternal(otherNode, TreatShadowTreesAsDisconnected);
}
unsigned short Node::compareDocumentPositionInternal(const Node* otherNode, ShadowTreesTreatment treatment) const
{
// It is not clear what should be done if |otherNode| is 0.
if (!otherNode)
return DOCUMENT_POSITION_DISCONNECTED;
if (otherNode == this)
return DOCUMENT_POSITION_EQUIVALENT;
const Attr* attr1 = nodeType() == ATTRIBUTE_NODE ? toAttr(this) : 0;
const Attr* attr2 = otherNode->nodeType() == ATTRIBUTE_NODE ? toAttr(otherNode) : 0;
const Node* start1 = attr1 ? attr1->ownerElement() : this;
const Node* start2 = attr2 ? attr2->ownerElement() : otherNode;
// If either of start1 or start2 is null, then we are disconnected, since one of the nodes is
// an orphaned attribute node.
if (!start1 || !start2) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
Vector<const Node*, 16> chain1;
Vector<const Node*, 16> chain2;
if (attr1)
chain1.append(attr1);
if (attr2)
chain2.append(attr2);
if (attr1 && attr2 && start1 == start2 && start1) {
// We are comparing two attributes on the same node. Crawl our attribute map and see which one we hit first.
const Element* owner1 = attr1->ownerElement();
owner1->synchronizeAllAttributes();
unsigned length = owner1->attributeCount();
for (unsigned i = 0; i < length; ++i) {
// If neither of the two determining nodes is a child node and nodeType is the same for both determining nodes, then an
// implementation-dependent order between the determining nodes is returned. This order is stable as long as no nodes of
// the same nodeType are inserted into or removed from the direct container. This would be the case, for example,
// when comparing two attributes of the same element, and inserting or removing additional attributes might change
// the order between existing attributes.
const Attribute* attribute = owner1->attributeItem(i);
if (attr1->qualifiedName() == attribute->name())
return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_FOLLOWING;
if (attr2->qualifiedName() == attribute->name())
return DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | DOCUMENT_POSITION_PRECEDING;
}
ASSERT_NOT_REACHED();
return DOCUMENT_POSITION_DISCONNECTED;
}
// If one node is in the document and the other is not, we must be disconnected.
// If the nodes have different owning documents, they must be disconnected. Note that we avoid
// comparing Attr nodes here, since they return false from inDocument() all the time (which seems like a bug).
if (start1->inDocument() != start2->inDocument() || (treatment == TreatShadowTreesAsDisconnected && start1->treeScope() != start2->treeScope())) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
// We need to find a common ancestor container, and then compare the indices of the two immediate children.
const Node* current;
for (current = start1; current; current = current->parentOrShadowHostNode())
chain1.append(current);
for (current = start2; current; current = current->parentOrShadowHostNode())
chain2.append(current);
unsigned index1 = chain1.size();
unsigned index2 = chain2.size();
// If the two elements don't have a common root, they're not in the same tree.
if (chain1[index1 - 1] != chain2[index2 - 1]) {
unsigned short direction = (this > otherNode) ? DOCUMENT_POSITION_PRECEDING : DOCUMENT_POSITION_FOLLOWING;
return DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC | direction;
}
unsigned connection = start1->treeScope() != start2->treeScope() ? DOCUMENT_POSITION_DISCONNECTED | DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC : 0;
// Walk the two chains backwards and look for the first difference.
for (unsigned i = min(index1, index2); i; --i) {
const Node* child1 = chain1[--index1];
const Node* child2 = chain2[--index2];
if (child1 != child2) {
// If one of the children is an attribute, it wins.
if (child1->nodeType() == ATTRIBUTE_NODE)
return DOCUMENT_POSITION_FOLLOWING | connection;
if (child2->nodeType() == ATTRIBUTE_NODE)
return DOCUMENT_POSITION_PRECEDING | connection;
// If one of the children is a shadow root,
if (child1->isShadowRoot() || child2->isShadowRoot()) {
if (!child2->isShadowRoot())
return Node::DOCUMENT_POSITION_FOLLOWING | connection;
if (!child1->isShadowRoot())
return Node::DOCUMENT_POSITION_PRECEDING | connection;
for (ShadowRoot* child = toShadowRoot(child2)->olderShadowRoot(); child; child = child->olderShadowRoot())
if (child == child1)
return Node::DOCUMENT_POSITION_FOLLOWING | connection;
return Node::DOCUMENT_POSITION_PRECEDING | connection;
}
if (!child2->nextSibling())
return DOCUMENT_POSITION_FOLLOWING | connection;
if (!child1->nextSibling())
return DOCUMENT_POSITION_PRECEDING | connection;
// Otherwise we need to see which node occurs first. Crawl backwards from child2 looking for child1.
for (Node* child = child2->previousSibling(); child; child = child->previousSibling()) {
if (child == child1)
return DOCUMENT_POSITION_FOLLOWING | connection;
}
return DOCUMENT_POSITION_PRECEDING | connection;
}
}
// There was no difference between the two parent chains, i.e., one was a subset of the other. The shorter
// chain is the ancestor.
return index1 < index2 ?
DOCUMENT_POSITION_FOLLOWING | DOCUMENT_POSITION_CONTAINED_BY | connection :
DOCUMENT_POSITION_PRECEDING | DOCUMENT_POSITION_CONTAINS | connection;
}
FloatPoint Node::convertToPage(const FloatPoint& p) const
{
// If there is a renderer, just ask it to do the conversion
if (renderer())
return renderer()->localToAbsolute(p, UseTransforms);
// Otherwise go up the tree looking for a renderer
Element *parent = ancestorElement();
if (parent)
return parent->convertToPage(p);
// No parent - no conversion needed
return p;
}
FloatPoint Node::convertFromPage(const FloatPoint& p) const
{
// If there is a renderer, just ask it to do the conversion
if (renderer())
return renderer()->absoluteToLocal(p, UseTransforms);
// Otherwise go up the tree looking for a renderer
Element *parent = ancestorElement();
if (parent)
return parent->convertFromPage(p);
// No parent - no conversion needed
return p;
}
String Node::debugName() const
{
StringBuilder name;
name.append(nodeName());
if (hasID()) {
name.appendLiteral(" id=\'");
name.append(toElement(this)->getIdAttribute());
name.append('\'');
}
if (hasClass()) {
name.appendLiteral(" class=\'");
for (size_t i = 0; i < toElement(this)->classNames().size(); ++i) {
if (i > 0)
name.append(' ');
name.append(toElement(this)->classNames()[i]);
}
name.append('\'');
}
return name.toString();
}
#ifndef NDEBUG
static void appendAttributeDesc(const Node* node, StringBuilder& stringBuilder, const QualifiedName& name, const char* attrDesc)
{
if (!node->isElementNode())
return;
String attr = toElement(node)->getAttribute(name);
if (attr.isEmpty())
return;
stringBuilder.append(attrDesc);
stringBuilder.append(attr);
}
void Node::showNode(const char* prefix) const
{
if (!prefix)
prefix = "";
if (isTextNode()) {
String value = nodeValue();
value.replaceWithLiteral('\\', "\\\\");
value.replaceWithLiteral('\n', "\\n");
fprintf(stderr, "%s%s\t%p \"%s\"\n", prefix, nodeName().utf8().data(), this, value.utf8().data());
} else {
StringBuilder attrs;
appendAttributeDesc(this, attrs, classAttr, " CLASS=");
appendAttributeDesc(this, attrs, styleAttr, " STYLE=");
fprintf(stderr, "%s%s\t%p%s\n", prefix, nodeName().utf8().data(), this, attrs.toString().utf8().data());
}
}
void Node::showTreeForThis() const
{
showTreeAndMark(this, "*");
}
void Node::showNodePathForThis() const
{
Vector<const Node*, 16> chain;
const Node* node = this;
while (node->parentOrShadowHostNode()) {
chain.append(node);
node = node->parentOrShadowHostNode();
}
for (unsigned index = chain.size(); index > 0; --index) {
const Node* node = chain[index - 1];
if (node->isShadowRoot()) {
int count = 0;
for (ShadowRoot* shadowRoot = toShadowRoot(node)->olderShadowRoot(); shadowRoot; shadowRoot = shadowRoot->olderShadowRoot())
++count;
fprintf(stderr, "/#shadow-root[%d]", count);
continue;
}
switch (node->nodeType()) {
case ELEMENT_NODE: {
fprintf(stderr, "/%s", node->nodeName().utf8().data());
const Element* element = toElement(node);
const AtomicString& idattr = element->getIdAttribute();
bool hasIdAttr = !idattr.isNull() && !idattr.isEmpty();
if (node->previousSibling() || node->nextSibling()) {
int count = 0;
for (Node* previous = node->previousSibling(); previous; previous = previous->previousSibling())
if (previous->nodeName() == node->nodeName())
++count;
if (hasIdAttr)
fprintf(stderr, "[@id=\"%s\" and position()=%d]", idattr.string().utf8().data(), count);
else
fprintf(stderr, "[%d]", count);
} else if (hasIdAttr)
fprintf(stderr, "[@id=\"%s\"]", idattr.string().utf8().data());
break;
}
case TEXT_NODE:
fprintf(stderr, "/text()");
break;
case ATTRIBUTE_NODE:
fprintf(stderr, "/@%s", node->nodeName().utf8().data());
break;
default:
break;
}
}
fprintf(stderr, "\n");
}
static void traverseTreeAndMark(const String& baseIndent, const Node* rootNode, const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2)
{
for (const Node* node = rootNode; node; node = NodeTraversal::next(node)) {
if (node == markedNode1)
fprintf(stderr, "%s", markedLabel1);
if (node == markedNode2)
fprintf(stderr, "%s", markedLabel2);
StringBuilder indent;
indent.append(baseIndent);
for (const Node* tmpNode = node; tmpNode && tmpNode != rootNode; tmpNode = tmpNode->parentOrShadowHostNode())
indent.append('\t');
fprintf(stderr, "%s", indent.toString().utf8().data());
node->showNode();
indent.append('\t');
if (node->isShadowRoot()) {
if (ShadowRoot* youngerShadowRoot = toShadowRoot(node)->youngerShadowRoot())
traverseTreeAndMark(indent.toString(), youngerShadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2);
} else if (ShadowRoot* oldestShadowRoot = oldestShadowRootFor(node))
traverseTreeAndMark(indent.toString(), oldestShadowRoot, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
}
void Node::showTreeAndMark(const Node* markedNode1, const char* markedLabel1, const Node* markedNode2, const char* markedLabel2) const
{
const Node* rootNode;
const Node* node = this;
while (node->parentOrShadowHostNode() && !node->hasTagName(bodyTag))
node = node->parentOrShadowHostNode();
rootNode = node;
String startingIndent;
traverseTreeAndMark(startingIndent, rootNode, markedNode1, markedLabel1, markedNode2, markedLabel2);
}
void Node::formatForDebugger(char* buffer, unsigned length) const
{
String result;
String s;
s = nodeName();
if (s.isEmpty())
result = "<none>";
else
result = s;
strncpy(buffer, result.utf8().data(), length - 1);
}
static ContainerNode* parentOrShadowHostOrFrameOwner(const Node* node)
{
ContainerNode* parent = node->parentOrShadowHostNode();
if (!parent && node->document() && node->document()->frame())
parent = node->document()->frame()->ownerElement();
return parent;
}
static void showSubTreeAcrossFrame(const Node* node, const Node* markedNode, const String& indent)
{
if (node == markedNode)
fputs("*", stderr);
fputs(indent.utf8().data(), stderr);
node->showNode();
if (node->isShadowRoot()) {
if (ShadowRoot* youngerShadowRoot = toShadowRoot(node)->youngerShadowRoot())
showSubTreeAcrossFrame(youngerShadowRoot, markedNode, indent + "\t");
} else {
if (node->isFrameOwnerElement())
showSubTreeAcrossFrame(static_cast<const HTMLFrameOwnerElement*>(node)->contentDocument(), markedNode, indent + "\t");
if (ShadowRoot* oldestShadowRoot = oldestShadowRootFor(node))
showSubTreeAcrossFrame(oldestShadowRoot, markedNode, indent + "\t");
}
for (Node* child = node->firstChild(); child; child = child->nextSibling())
showSubTreeAcrossFrame(child, markedNode, indent + "\t");
}
void Node::showTreeForThisAcrossFrame() const
{
Node* rootNode = const_cast<Node*>(this);
while (parentOrShadowHostOrFrameOwner(rootNode))
rootNode = parentOrShadowHostOrFrameOwner(rootNode);
showSubTreeAcrossFrame(rootNode, this, "");
}
#endif
// --------
void NodeListsNodeData::invalidateCaches(const QualifiedName* attrName)
{
NodeListAtomicNameCacheMap::const_iterator atomicNameCacheEnd = m_atomicNameCaches.end();
for (NodeListAtomicNameCacheMap::const_iterator it = m_atomicNameCaches.begin(); it != atomicNameCacheEnd; ++it)
it->value->invalidateCache(attrName);
NodeListNameCacheMap::const_iterator nameCacheEnd = m_nameCaches.end();
for (NodeListNameCacheMap::const_iterator it = m_nameCaches.begin(); it != nameCacheEnd; ++it)
it->value->invalidateCache(attrName);
if (attrName)
return;
TagNodeListCacheNS::iterator tagCacheEnd = m_tagNodeListCacheNS.end();
for (TagNodeListCacheNS::iterator it = m_tagNodeListCacheNS.begin(); it != tagCacheEnd; ++it)
it->value->invalidateCache();
}
Node* Node::enclosingLinkEventParentOrSelf()
{
for (Node* node = this; node; node = node->parentOrShadowHostNode()) {
// For imagemaps, the enclosing link node is the associated area element not the image itself.
// So we don't let images be the enclosingLinkNode, even though isLink sometimes returns true
// for them.
if (node->isLink() && !node->hasTagName(imgTag))
return node;
}
return 0;
}
const AtomicString& Node::interfaceName() const
{
return eventNames().interfaceForNode;
}
ScriptExecutionContext* Node::scriptExecutionContext() const
{
return document();
}
void Node::didMoveToNewDocument(Document* oldDocument)
{
TreeScopeAdopter::ensureDidMoveToNewDocumentWasCalled(oldDocument);
if (const EventTargetData* eventTargetData = this->eventTargetData()) {
const EventListenerMap& listenerMap = eventTargetData->eventListenerMap;
if (!listenerMap.isEmpty()) {
Vector<AtomicString> types = listenerMap.eventTypes();
for (unsigned i = 0; i < types.size(); ++i)
document()->addListenerTypeIfNeeded(types[i]);
}
}
if (AXObjectCache::accessibilityEnabled() && oldDocument)
if (AXObjectCache* cache = oldDocument->existingAXObjectCache())
cache->remove(this);
const EventListenerVector& mousewheelListeners = getEventListeners(eventNames().mousewheelEvent);
for (size_t i = 0; i < mousewheelListeners.size(); ++i) {
oldDocument->didRemoveWheelEventHandler();
document()->didAddWheelEventHandler();
}
const EventListenerVector& wheelListeners = getEventListeners(eventNames().wheelEvent);
for (size_t i = 0; i < wheelListeners.size(); ++i) {
oldDocument->didRemoveWheelEventHandler();
document()->didAddWheelEventHandler();
}
if (const TouchEventTargetSet* touchHandlers = oldDocument ? oldDocument->touchEventTargets() : 0) {
while (touchHandlers->contains(this)) {
oldDocument->didRemoveTouchEventHandler(this);
document()->didAddTouchEventHandler(this);
}
}
if (Vector<OwnPtr<MutationObserverRegistration> >* registry = mutationObserverRegistry()) {
for (size_t i = 0; i < registry->size(); ++i) {
document()->addMutationObserverTypes(registry->at(i)->mutationTypes());
}
}
if (HashSet<MutationObserverRegistration*>* transientRegistry = transientMutationObserverRegistry()) {
for (HashSet<MutationObserverRegistration*>::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter) {
document()->addMutationObserverTypes((*iter)->mutationTypes());
}
}
}
static inline bool tryAddEventListener(Node* targetNode, const AtomicString& eventType, PassRefPtr<EventListener> listener, bool useCapture)
{
if (!targetNode->EventTarget::addEventListener(eventType, listener, useCapture))
return false;
if (Document* document = targetNode->document()) {
document->addListenerTypeIfNeeded(eventType);
if (eventType == eventNames().wheelEvent || eventType == eventNames().mousewheelEvent)
document->didAddWheelEventHandler();
else if (eventNames().isTouchEventType(eventType))
document->didAddTouchEventHandler(targetNode);
}
return true;
}
bool Node::addEventListener(const AtomicString& eventType, PassRefPtr<EventListener> listener, bool useCapture)
{
return tryAddEventListener(this, eventType, listener, useCapture);
}
static inline bool tryRemoveEventListener(Node* targetNode, const AtomicString& eventType, EventListener* listener, bool useCapture)
{
if (!targetNode->EventTarget::removeEventListener(eventType, listener, useCapture))
return false;
// FIXME: Notify Document that the listener has vanished. We need to keep track of a number of
// listeners for each type, not just a bool - see https://bugs.webkit.org/show_bug.cgi?id=33861
if (Document* document = targetNode->document()) {
if (eventType == eventNames().wheelEvent || eventType == eventNames().mousewheelEvent)
document->didRemoveWheelEventHandler();
else if (eventNames().isTouchEventType(eventType))
document->didRemoveTouchEventHandler(targetNode);
}
return true;
}
bool Node::removeEventListener(const AtomicString& eventType, EventListener* listener, bool useCapture)
{
return tryRemoveEventListener(this, eventType, listener, useCapture);
}
typedef HashMap<Node*, OwnPtr<EventTargetData> > EventTargetDataMap;
static EventTargetDataMap& eventTargetDataMap()
{
DEFINE_STATIC_LOCAL(EventTargetDataMap, map, ());
return map;
}
EventTargetData* Node::eventTargetData()
{
return hasEventTargetData() ? eventTargetDataMap().get(this) : 0;
}
EventTargetData* Node::ensureEventTargetData()
{
if (hasEventTargetData())
return eventTargetDataMap().get(this);
setHasEventTargetData(true);
EventTargetData* data = new EventTargetData;
eventTargetDataMap().set(this, adoptPtr(data));
return data;
}
void Node::clearEventTargetData()
{
eventTargetDataMap().remove(this);
}
Vector<OwnPtr<MutationObserverRegistration> >* Node::mutationObserverRegistry()
{
if (!hasRareData())
return 0;
NodeMutationObserverData* data = rareData()->mutationObserverData();
if (!data)
return 0;
return &data->registry;
}
HashSet<MutationObserverRegistration*>* Node::transientMutationObserverRegistry()
{
if (!hasRareData())
return 0;
NodeMutationObserverData* data = rareData()->mutationObserverData();
if (!data)
return 0;
return &data->transientRegistry;
}
template<typename Registry>
static inline void collectMatchingObserversForMutation(HashMap<MutationObserver*, MutationRecordDeliveryOptions>& observers, Registry* registry, Node* target, MutationObserver::MutationType type, const QualifiedName* attributeName)
{
if (!registry)
return;
for (typename Registry::iterator iter = registry->begin(); iter != registry->end(); ++iter) {
const MutationObserverRegistration& registration = **iter;
if (registration.shouldReceiveMutationFrom(target, type, attributeName)) {
MutationRecordDeliveryOptions deliveryOptions = registration.deliveryOptions();
HashMap<MutationObserver*, MutationRecordDeliveryOptions>::AddResult result = observers.add(registration.observer(), deliveryOptions);
if (!result.isNewEntry)
result.iterator->value |= deliveryOptions;
}
}
}
void Node::getRegisteredMutationObserversOfType(HashMap<MutationObserver*, MutationRecordDeliveryOptions>& observers, MutationObserver::MutationType type, const QualifiedName* attributeName)
{
ASSERT((type == MutationObserver::Attributes && attributeName) || !attributeName);
collectMatchingObserversForMutation(observers, mutationObserverRegistry(), this, type, attributeName);
collectMatchingObserversForMutation(observers, transientMutationObserverRegistry(), this, type, attributeName);
for (Node* node = parentNode(); node; node = node->parentNode()) {
collectMatchingObserversForMutation(observers, node->mutationObserverRegistry(), this, type, attributeName);
collectMatchingObserversForMutation(observers, node->transientMutationObserverRegistry(), this, type, attributeName);
}
}
void Node::registerMutationObserver(MutationObserver* observer, MutationObserverOptions options, const HashSet<AtomicString>& attributeFilter)
{
MutationObserverRegistration* registration = 0;
Vector<OwnPtr<MutationObserverRegistration> >& registry = ensureRareData()->ensureMutationObserverData()->registry;
for (size_t i = 0; i < registry.size(); ++i) {
if (registry[i]->observer() == observer) {
registration = registry[i].get();
registration->resetObservation(options, attributeFilter);
}
}
if (!registration) {
registry.append(MutationObserverRegistration::create(observer, this, options, attributeFilter));
registration = registry.last().get();
}
document()->addMutationObserverTypes(registration->mutationTypes());
}
void Node::unregisterMutationObserver(MutationObserverRegistration* registration)
{
Vector<OwnPtr<MutationObserverRegistration> >* registry = mutationObserverRegistry();
ASSERT(registry);
if (!registry)
return;
size_t index = registry->find(registration);
ASSERT(index != notFound);
if (index == notFound)
return;
// Deleting the registration may cause this node to be derefed, so we must make sure the Vector operation completes
// before that, in case |this| is destroyed (see MutationObserverRegistration::m_registrationNodeKeepAlive).
// FIXME: Simplify the registration/transient registration logic to make this understandable by humans.
RefPtr<Node> protect(this);
registry->remove(index);
}
void Node::registerTransientMutationObserver(MutationObserverRegistration* registration)
{
ensureRareData()->ensureMutationObserverData()->transientRegistry.add(registration);
}
void Node::unregisterTransientMutationObserver(MutationObserverRegistration* registration)
{
HashSet<MutationObserverRegistration*>* transientRegistry = transientMutationObserverRegistry();
ASSERT(transientRegistry);
if (!transientRegistry)
return;
ASSERT(transientRegistry->contains(registration));
transientRegistry->remove(registration);
}
void Node::notifyMutationObserversNodeWillDetach()
{
if (!document()->hasMutationObservers())
return;
for (Node* node = parentNode(); node; node = node->parentNode()) {
if (Vector<OwnPtr<MutationObserverRegistration> >* registry = node->mutationObserverRegistry()) {
const size_t size = registry->size();
for (size_t i = 0; i < size; ++i)
registry->at(i)->observedSubtreeNodeWillDetach(this);
}
if (HashSet<MutationObserverRegistration*>* transientRegistry = node->transientMutationObserverRegistry()) {
for (HashSet<MutationObserverRegistration*>::iterator iter = transientRegistry->begin(); iter != transientRegistry->end(); ++iter)
(*iter)->observedSubtreeNodeWillDetach(this);
}
}
}
void Node::handleLocalEvents(Event* event)
{
if (!hasEventTargetData())
return;
if (isDisabledFormControl(this) && event->isMouseEvent())
return;
fireEventListeners(event);
}
void Node::dispatchScopedEvent(PassRefPtr<Event> event)
{
dispatchScopedEventDispatchMediator(EventDispatchMediator::create(event));
}
void Node::dispatchScopedEventDispatchMediator(PassRefPtr<EventDispatchMediator> eventDispatchMediator)
{
EventDispatcher::dispatchScopedEvent(this, eventDispatchMediator);
}
bool Node::dispatchEvent(PassRefPtr<Event> event)
{
if (event->isMouseEvent())
return EventDispatcher::dispatchEvent(this, MouseEventDispatchMediator::create(adoptRef(toMouseEvent(event.leakRef())), MouseEventDispatchMediator::SyntheticMouseEvent));
if (event->isTouchEvent())
return dispatchTouchEvent(adoptRef(toTouchEvent(event.leakRef())));
return EventDispatcher::dispatchEvent(this, EventDispatchMediator::create(event));
}
void Node::dispatchSubtreeModifiedEvent()
{
if (isInShadowTree())
return;
ASSERT(!NoEventDispatchAssertion::isEventDispatchForbidden());
if (!document()->hasListenerType(Document::DOMSUBTREEMODIFIED_LISTENER))
return;
dispatchScopedEvent(MutationEvent::create(eventNames().DOMSubtreeModifiedEvent, true));
}
bool Node::dispatchDOMActivateEvent(int detail, PassRefPtr<Event> underlyingEvent)
{
ASSERT(!NoEventDispatchAssertion::isEventDispatchForbidden());
RefPtr<UIEvent> event = UIEvent::create(eventNames().DOMActivateEvent, true, true, document()->defaultView(), detail);
event->setUnderlyingEvent(underlyingEvent);
dispatchScopedEvent(event);
return event->defaultHandled();
}
bool Node::dispatchKeyEvent(const PlatformKeyboardEvent& event)
{
return EventDispatcher::dispatchEvent(this, KeyboardEventDispatchMediator::create(KeyboardEvent::create(event, document()->defaultView())));
}
bool Node::dispatchMouseEvent(const PlatformMouseEvent& event, const AtomicString& eventType,
int detail, Node* relatedTarget)
{
return EventDispatcher::dispatchEvent(this, MouseEventDispatchMediator::create(MouseEvent::create(eventType, document()->defaultView(), event, detail, relatedTarget)));
}
bool Node::dispatchGestureEvent(const PlatformGestureEvent& event)
{
RefPtr<GestureEvent> gestureEvent = GestureEvent::create(document()->defaultView(), event);
if (!gestureEvent.get())
return false;
return EventDispatcher::dispatchEvent(this, GestureEventDispatchMediator::create(gestureEvent));
}
bool Node::dispatchTouchEvent(PassRefPtr<TouchEvent> event)
{
return EventDispatcher::dispatchEvent(this, TouchEventDispatchMediator::create(event));
}
void Node::dispatchSimulatedClick(Event* underlyingEvent, SimulatedClickMouseEventOptions eventOptions, SimulatedClickVisualOptions visualOptions)
{
EventDispatcher::dispatchSimulatedClick(this, underlyingEvent, eventOptions, visualOptions);
}
bool Node::dispatchBeforeLoadEvent(const String& sourceURL)
{
if (!document()->hasListenerType(Document::BEFORELOAD_LISTENER))
return true;
RefPtr<Node> protector(this);
RefPtr<BeforeLoadEvent> beforeLoadEvent = BeforeLoadEvent::create(sourceURL);
dispatchEvent(beforeLoadEvent.get());
return !beforeLoadEvent->defaultPrevented();
}
bool Node::dispatchWheelEvent(const PlatformWheelEvent& event)
{
return EventDispatcher::dispatchEvent(this, WheelEventDispatchMediator::create(event, document()->defaultView()));
}
void Node::dispatchChangeEvent()
{
dispatchScopedEvent(Event::create(eventNames().changeEvent, true, false));
}
void Node::dispatchInputEvent()
{
dispatchScopedEvent(Event::create(eventNames().inputEvent, true, false));
}
void Node::defaultEventHandler(Event* event)
{
if (event->target() != this)
return;
const AtomicString& eventType = event->type();
if (eventType == eventNames().keydownEvent || eventType == eventNames().keypressEvent) {
if (event->isKeyboardEvent()) {
if (Frame* frame = document()->frame())
frame->eventHandler()->defaultKeyboardEventHandler(toKeyboardEvent(event));
}
} else if (eventType == eventNames().clickEvent) {
int detail = event->isUIEvent() ? static_cast<UIEvent*>(event)->detail() : 0;
if (dispatchDOMActivateEvent(detail, event))
event->setDefaultHandled();
} else if (eventType == eventNames().contextmenuEvent) {
if (Page* page = document()->page())
page->contextMenuController().handleContextMenuEvent(event);
} else if (eventType == eventNames().textInputEvent) {
if (event->hasInterface(eventNames().interfaceForTextEvent))
if (Frame* frame = document()->frame())
frame->eventHandler()->defaultTextInputEventHandler(static_cast<TextEvent*>(event));
#if OS(WINDOWS)
} else if (eventType == eventNames().mousedownEvent && event->isMouseEvent()) {
MouseEvent* mouseEvent = toMouseEvent(event);
if (mouseEvent->button() == MiddleButton) {
if (enclosingLinkEventParentOrSelf())
return;
RenderObject* renderer = this->renderer();
while (renderer && (!renderer->isBox() || !toRenderBox(renderer)->canBeScrolledAndHasScrollableArea()))
renderer = renderer->parent();
if (renderer) {
if (Frame* frame = document()->frame())
frame->eventHandler()->startPanScrolling(renderer);
}
}
#endif
} else if ((eventType == eventNames().wheelEvent || eventType == eventNames().mousewheelEvent) && event->hasInterface(eventNames().interfaceForWheelEvent)) {
WheelEvent* wheelEvent = static_cast<WheelEvent*>(event);
// If we don't have a renderer, send the wheel event to the first node we find with a renderer.
// This is needed for <option> and <optgroup> elements so that <select>s get a wheel scroll.
Node* startNode = this;
while (startNode && !startNode->renderer())
startNode = startNode->parentOrShadowHostNode();
if (startNode && startNode->renderer())
if (Frame* frame = document()->frame())
frame->eventHandler()->defaultWheelEventHandler(startNode, wheelEvent);
} else if (event->type() == eventNames().webkitEditableContentChangedEvent) {
dispatchInputEvent();
}
}
void Node::willCallDefaultEventHandler(const Event&)
{
}
bool Node::willRespondToMouseMoveEvents()
{
if (isDisabledFormControl(this))
return false;
return hasEventListeners(eventNames().mousemoveEvent) || hasEventListeners(eventNames().mouseoverEvent) || hasEventListeners(eventNames().mouseoutEvent);
}
bool Node::willRespondToMouseClickEvents()
{
if (isDisabledFormControl(this))
return false;
return isContentEditable(UserSelectAllIsAlwaysNonEditable) || hasEventListeners(eventNames().mouseupEvent) || hasEventListeners(eventNames().mousedownEvent) || hasEventListeners(eventNames().clickEvent) || hasEventListeners(eventNames().DOMActivateEvent);
}
bool Node::willRespondToTouchEvents()
{
if (isDisabledFormControl(this))
return false;
return hasEventListeners(eventNames().touchstartEvent) || hasEventListeners(eventNames().touchmoveEvent) || hasEventListeners(eventNames().touchcancelEvent) || hasEventListeners(eventNames().touchendEvent);
}
// This is here for inlining
inline void TreeScope::removedLastRefToScope()
{
ASSERT(!deletionHasBegun());
if (m_guardRefCount) {
// If removing a child removes the last self-only ref, we don't
// want the scope to be destructed until after
// removeDetachedChildren returns, so we guard ourselves with an
// extra self-only ref.
guardRef();
dispose();
#ifndef NDEBUG
// We need to do this right now since guardDeref() can delete this.
rootNode()->m_inRemovedLastRefFunction = false;
#endif
guardDeref();
} else {
#ifndef NDEBUG
rootNode()->m_inRemovedLastRefFunction = false;
beginDeletion();
#endif
delete this;
}
}
// It's important not to inline removedLastRef, because we don't want to inline the code to
// delete a Node at each deref call site.
void Node::removedLastRef()
{
// An explicit check for Document here is better than a virtual function since it is
// faster for non-Document nodes, and because the call to removedLastRef that is inlined
// at all deref call sites is smaller if it's a non-virtual function.
if (isTreeScope()) {
treeScope()->removedLastRefToScope();
return;
}
#ifndef NDEBUG
m_deletionHasBegun = true;
#endif
delete this;
}
void Node::textRects(Vector<IntRect>& rects) const
{
RefPtr<Range> range = Range::create(document());
range->selectNodeContents(const_cast<Node*>(this), IGNORE_EXCEPTION);
range->textRects(rects);
}
unsigned Node::connectedSubframeCount() const
{
return hasRareData() ? rareData()->connectedSubframeCount() : 0;
}
void Node::incrementConnectedSubframeCount(unsigned amount)
{
ASSERT(isContainerNode());
ensureRareData()->incrementConnectedSubframeCount(amount);
}
void Node::decrementConnectedSubframeCount(unsigned amount)
{
rareData()->decrementConnectedSubframeCount(amount);
}
void Node::updateAncestorConnectedSubframeCountForRemoval() const
{
unsigned count = connectedSubframeCount();
if (!count)
return;
for (Node* node = parentOrShadowHostNode(); node; node = node->parentOrShadowHostNode())
node->decrementConnectedSubframeCount(count);
}
void Node::updateAncestorConnectedSubframeCountForInsertion() const
{
unsigned count = connectedSubframeCount();
if (!count)
return;
for (Node* node = parentOrShadowHostNode(); node; node = node->parentOrShadowHostNode())
node->incrementConnectedSubframeCount(count);
}
PassRefPtr<NodeList> Node::getDestinationInsertionPoints()
{
document()->updateDistributionForNodeIfNeeded(this);
Vector<InsertionPoint*, 8> insertionPoints;
collectInsertionPointsWhereNodeIsDistributed(this, insertionPoints);
Vector<RefPtr<Node> > filteredInsertionPoints;
for (size_t i = 0; i < insertionPoints.size(); ++i) {
InsertionPoint* insertionPoint = insertionPoints[i];
ASSERT(insertionPoint->containingShadowRoot());
if (insertionPoint->containingShadowRoot()->type() != ShadowRoot::UserAgentShadowRoot)
filteredInsertionPoints.append(insertionPoint);
}
return StaticNodeList::adopt(filteredInsertionPoints);
}
void Node::registerScopedHTMLStyleChild()
{
setHasScopedHTMLStyleChild(true);
}
void Node::unregisterScopedHTMLStyleChild()
{
ASSERT(hasScopedHTMLStyleChild());
setHasScopedHTMLStyleChild(numberOfScopedHTMLStyleChildren());
}
size_t Node::numberOfScopedHTMLStyleChildren() const
{
size_t count = 0;
for (Node* child = firstChild(); child; child = child->nextSibling()) {
if (child->hasTagName(HTMLNames::styleTag) && toHTMLStyleElement(child)->isRegisteredAsScoped())
count++;
}
return count;
}
void Node::setFocus(bool flag)
{
if (Document* document = this->document())
document->userActionElements().setFocused(this, flag);
}
void Node::setActive(bool flag, bool)
{
if (Document* document = this->document())
document->userActionElements().setActive(this, flag);
}
void Node::setHovered(bool flag)
{
if (Document* document = this->document())
document->userActionElements().setHovered(this, flag);
}
bool Node::isUserActionElementActive() const
{
ASSERT(isUserActionElement());
return document()->userActionElements().isActive(this);
}
bool Node::isUserActionElementInActiveChain() const
{
ASSERT(isUserActionElement());
return document()->userActionElements().isInActiveChain(this);
}
bool Node::isUserActionElementHovered() const
{
ASSERT(isUserActionElement());
return document()->userActionElements().isHovered(this);
}
bool Node::isUserActionElementFocused() const
{
ASSERT(isUserActionElement());
return document()->userActionElements().isFocused(this);
}
void Node::setCustomElementState(CustomElementState newState)
{
CustomElementState oldState = customElementState();
switch (newState) {
case NotCustomElement:
ASSERT_NOT_REACHED(); // Everything starts in this state
return;
case WaitingForParser:
ASSERT(NotCustomElement == oldState);
break;
case WaitingForUpgrade:
ASSERT(NotCustomElement == oldState || WaitingForParser == oldState);
break;
case Upgraded:
ASSERT(WaitingForParser == oldState || WaitingForUpgrade == oldState);
break;
}
ASSERT(isHTMLElement() || isSVGElement());
setFlag(newState & 1, CustomElementWaitingForParserOrIsUpgraded);
setFlag(newState & 2, CustomElementWaitingForUpgradeOrIsUpgraded);
if (oldState == NotCustomElement || newState == Upgraded)
setNeedsStyleRecalc(); // :unresolved has changed
}
} // namespace WebCore
#ifndef NDEBUG
void showTree(const WebCore::Node* node)
{
if (node)
node->showTreeForThis();
}
void showNodePath(const WebCore::Node* node)
{
if (node)
node->showNodePathForThis();
}
#endif