blob: 41d4eef5afd2d76d2688a26092ac9c63207eb197 [file] [log] [blame]
/*
* Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "core/page/TouchAdjustment.h"
#include "core/dom/ContainerNode.h"
#include "core/dom/Node.h"
#include "core/dom/NodeRenderStyle.h"
#include "core/dom/Text.h"
#include "core/editing/Editor.h"
#include "core/html/HTMLFrameOwnerElement.h"
#include "core/frame/Frame.h"
#include "core/frame/FrameView.h"
#include "core/rendering/RenderBox.h"
#include "core/rendering/RenderObject.h"
#include "core/rendering/RenderText.h"
#include "core/rendering/style/RenderStyle.h"
#include "platform/geometry/FloatPoint.h"
#include "platform/geometry/FloatQuad.h"
#include "platform/geometry/IntSize.h"
#include "platform/text/TextBreakIterator.h"
namespace WebCore {
namespace TouchAdjustment {
const float zeroTolerance = 1e-6f;
// Class for remembering absolute quads of a target node and what node they represent.
class SubtargetGeometry {
public:
SubtargetGeometry(Node* node, const FloatQuad& quad)
: m_node(node)
, m_quad(quad)
{ }
Node* node() const { return m_node; }
FloatQuad quad() const { return m_quad; }
IntRect boundingBox() const { return m_quad.enclosingBoundingBox(); }
private:
Node* m_node;
FloatQuad m_quad;
};
typedef Vector<SubtargetGeometry> SubtargetGeometryList;
typedef bool (*NodeFilter)(Node*);
typedef void (*AppendSubtargetsForNode)(Node*, SubtargetGeometryList&);
typedef float (*DistanceFunction)(const IntPoint&, const IntRect&, const SubtargetGeometry&);
// Takes non-const Node* because isContentEditable is a non-const function.
bool nodeRespondsToTapGesture(Node* node)
{
if (node->willRespondToMouseClickEvents() || node->willRespondToMouseMoveEvents())
return true;
if (node->isElementNode()) {
Element* element = toElement(node);
if (element->isMouseFocusable())
return true;
// Accept nodes that has a CSS effect when touched.
if (element->childrenAffectedByActive() || element->childrenAffectedByHover())
return true;
}
if (RenderStyle* renderStyle = node->renderStyle()) {
if (renderStyle->affectedByActive() || renderStyle->affectedByHover())
return true;
}
return false;
}
bool nodeIsZoomTarget(Node* node)
{
if (node->isTextNode() || node->isShadowRoot())
return false;
ASSERT(node->renderer());
return node->renderer()->isBox();
}
bool providesContextMenuItems(Node* node)
{
// This function tries to match the nodes that receive special context-menu items in
// ContextMenuController::populate(), and should be kept uptodate with those.
ASSERT(node->renderer() || node->isShadowRoot());
if (!node->renderer())
return false;
if (node->isContentEditable())
return true;
if (node->isLink())
return true;
if (node->renderer()->isImage())
return true;
if (node->renderer()->isMedia())
return true;
if (node->renderer()->canBeSelectionLeaf()) {
// If the context menu gesture will trigger a selection all selectable nodes are valid targets.
if (node->renderer()->frame()->editor().behavior().shouldSelectOnContextualMenuClick())
return true;
// Only the selected part of the renderer is a valid target, but this will be corrected in
// appendContextSubtargetsForNode.
if (node->renderer()->selectionState() != RenderObject::SelectionNone)
return true;
}
return false;
}
static inline void appendQuadsToSubtargetList(Vector<FloatQuad>& quads, Node* node, SubtargetGeometryList& subtargets)
{
Vector<FloatQuad>::const_iterator it = quads.begin();
const Vector<FloatQuad>::const_iterator end = quads.end();
for (; it != end; ++it)
subtargets.append(SubtargetGeometry(node, *it));
}
static inline void appendBasicSubtargetsForNode(Node* node, SubtargetGeometryList& subtargets)
{
// Node guaranteed to have renderer due to check in node filter.
ASSERT(node->renderer());
Vector<FloatQuad> quads;
node->renderer()->absoluteQuads(quads);
appendQuadsToSubtargetList(quads, node, subtargets);
}
static inline void appendContextSubtargetsForNode(Node* node, SubtargetGeometryList& subtargets)
{
// This is a variant of appendBasicSubtargetsForNode that adds special subtargets for
// selected or auto-selectable parts of text nodes.
ASSERT(node->renderer());
if (!node->isTextNode())
return appendBasicSubtargetsForNode(node, subtargets);
Text* textNode = static_cast<WebCore::Text*>(node);
RenderText* textRenderer = static_cast<RenderText*>(textNode->renderer());
if (textRenderer->frame()->editor().behavior().shouldSelectOnContextualMenuClick()) {
// Make subtargets out of every word.
String textValue = textNode->data();
TextBreakIterator* wordIterator = wordBreakIterator(textValue, 0, textValue.length());
int lastOffset = wordIterator->first();
if (lastOffset == -1)
return;
int offset;
while ((offset = wordIterator->next()) != -1) {
if (isWordTextBreak(wordIterator)) {
Vector<FloatQuad> quads;
textRenderer->absoluteQuadsForRange(quads, lastOffset, offset);
appendQuadsToSubtargetList(quads, textNode, subtargets);
}
lastOffset = offset;
}
} else {
if (textRenderer->selectionState() == RenderObject::SelectionNone)
return appendBasicSubtargetsForNode(node, subtargets);
// If selected, make subtargets out of only the selected part of the text.
int startPos, endPos;
switch (textRenderer->selectionState()) {
case RenderObject::SelectionInside:
startPos = 0;
endPos = textRenderer->textLength();
break;
case RenderObject::SelectionStart:
textRenderer->selectionStartEnd(startPos, endPos);
endPos = textRenderer->textLength();
break;
case RenderObject::SelectionEnd:
textRenderer->selectionStartEnd(startPos, endPos);
startPos = 0;
break;
case RenderObject::SelectionBoth:
textRenderer->selectionStartEnd(startPos, endPos);
break;
default:
ASSERT_NOT_REACHED();
return;
}
Vector<FloatQuad> quads;
textRenderer->absoluteQuadsForRange(quads, startPos, endPos);
appendQuadsToSubtargetList(quads, textNode, subtargets);
}
}
static inline void appendZoomableSubtargets(Node* node, SubtargetGeometryList& subtargets)
{
RenderBox* renderer = toRenderBox(node->renderer());
ASSERT(renderer);
Vector<FloatQuad> quads;
FloatRect borderBoxRect = renderer->borderBoxRect();
FloatRect contentBoxRect = renderer->contentBoxRect();
quads.append(renderer->localToAbsoluteQuad(borderBoxRect));
if (borderBoxRect != contentBoxRect)
quads.append(renderer->localToAbsoluteQuad(contentBoxRect));
// FIXME: For RenderBlocks, add column boxes and content boxes cleared for floats.
Vector<FloatQuad>::const_iterator it = quads.begin();
const Vector<FloatQuad>::const_iterator end = quads.end();
for (; it != end; ++it)
subtargets.append(SubtargetGeometry(node, *it));
}
static inline Node* parentShadowHostOrOwner(const Node* node)
{
if (Node* ancestor = node->parentOrShadowHostNode())
return ancestor;
if (node->isDocumentNode())
return toDocument(node)->ownerElement();
return 0;
}
// Compiles a list of subtargets of all the relevant target nodes.
void compileSubtargetList(const Vector<RefPtr<Node> >& intersectedNodes, SubtargetGeometryList& subtargets, NodeFilter nodeFilter, AppendSubtargetsForNode appendSubtargetsForNode)
{
// Find candidates responding to tap gesture events in O(n) time.
HashMap<Node*, Node*> responderMap;
HashSet<Node*> ancestorsToRespondersSet;
Vector<Node*> candidates;
HashSet<Node*> editableAncestors;
// A node matching the NodeFilter is called a responder. Candidate nodes must either be a
// responder or have an ancestor that is a responder.
// This iteration tests all ancestors at most once by caching earlier results.
for (unsigned i = 0; i < intersectedNodes.size(); ++i) {
Node* node = intersectedNodes[i].get();
Vector<Node*> visitedNodes;
Node* respondingNode = 0;
for (Node* visitedNode = node; visitedNode; visitedNode = visitedNode->parentOrShadowHostNode()) {
// Check if we already have a result for a common ancestor from another candidate.
respondingNode = responderMap.get(visitedNode);
if (respondingNode)
break;
visitedNodes.append(visitedNode);
// Check if the node filter applies, which would mean we have found a responding node.
if (nodeFilter(visitedNode)) {
respondingNode = visitedNode;
// Continue the iteration to collect the ancestors of the responder, which we will need later.
for (visitedNode = parentShadowHostOrOwner(visitedNode); visitedNode; visitedNode = parentShadowHostOrOwner(visitedNode)) {
HashSet<Node*>::AddResult addResult = ancestorsToRespondersSet.add(visitedNode);
if (!addResult.isNewEntry)
break;
}
break;
}
}
// Insert the detected responder for all the visited nodes.
for (unsigned j = 0; j < visitedNodes.size(); j++)
responderMap.add(visitedNodes[j], respondingNode);
if (respondingNode)
candidates.append(node);
}
// We compile the list of component absolute quads instead of using the bounding rect
// to be able to perform better hit-testing on inline links on line-breaks.
for (unsigned i = 0; i < candidates.size(); i++) {
Node* candidate = candidates[i];
// Skip nodes who's responders are ancestors of other responders. This gives preference to
// the inner-most event-handlers. So that a link is always preferred even when contained
// in an element that monitors all click-events.
Node* respondingNode = responderMap.get(candidate);
ASSERT(respondingNode);
if (ancestorsToRespondersSet.contains(respondingNode))
continue;
// Consolidate bounds for editable content.
if (editableAncestors.contains(candidate))
continue;
if (candidate->isContentEditable()) {
Node* replacement = candidate;
Node* parent = candidate->parentOrShadowHostNode();
while (parent && parent->isContentEditable()) {
replacement = parent;
if (editableAncestors.contains(replacement)) {
replacement = 0;
break;
}
editableAncestors.add(replacement);
parent = parent->parentOrShadowHostNode();
}
candidate = replacement;
}
if (candidate)
appendSubtargetsForNode(candidate, subtargets);
}
}
// Compiles a list of zoomable subtargets.
void compileZoomableSubtargets(const Vector<RefPtr<Node> >& intersectedNodes, SubtargetGeometryList& subtargets)
{
for (unsigned i = 0; i < intersectedNodes.size(); ++i) {
Node* candidate = intersectedNodes[i].get();
if (nodeIsZoomTarget(candidate))
appendZoomableSubtargets(candidate, subtargets);
}
}
// This returns quotient of the target area and its intersection with the touch area.
// This will prioritize largest intersection and smallest area, while balancing the two against each other.
float zoomableIntersectionQuotient(const IntPoint& touchHotspot, const IntRect& touchArea, const SubtargetGeometry& subtarget)
{
IntRect rect = subtarget.boundingBox();
// Convert from frame coordinates to window coordinates.
rect = subtarget.node()->document().view()->contentsToWindow(rect);
// Check the rectangle is meaningful zoom target. It should at least contain the hotspot.
if (!rect.contains(touchHotspot))
return std::numeric_limits<float>::infinity();
IntRect intersection = rect;
intersection.intersect(touchArea);
// Return the quotient of the intersection.
return rect.size().area() / (float)intersection.size().area();
}
// Uses a hybrid of distance to adjust and intersect ratio, normalizing each score between 0 and 1
// and combining them. The distance to adjust works best for disambiguating clicks on targets such
// as links, where the width may be significantly larger than the touch width. Using area of overlap
// in such cases can lead to a bias towards shorter links. Conversely, percentage of overlap can
// provide strong confidence in tapping on a small target, where the overlap is often quite high,
// and works well for tightly packed controls.
float hybridDistanceFunction(const IntPoint& touchHotspot, const IntRect& touchRect, const SubtargetGeometry& subtarget)
{
IntRect rect = subtarget.boundingBox();
// Convert from frame coordinates to window coordinates.
rect = subtarget.node()->document().view()->contentsToWindow(rect);
float radiusSquared = 0.25f * (touchRect.size().diagonalLengthSquared());
float distanceToAdjustScore = rect.distanceSquaredToPoint(touchHotspot) / radiusSquared;
int maxOverlapWidth = std::min(touchRect.width(), rect.width());
int maxOverlapHeight = std::min(touchRect.height(), rect.height());
float maxOverlapArea = std::max(maxOverlapWidth * maxOverlapHeight, 1);
rect.intersect(touchRect);
float intersectArea = rect.size().area();
float intersectionScore = 1 - intersectArea / maxOverlapArea;
float hybridScore = intersectionScore + distanceToAdjustScore;
return hybridScore;
}
FloatPoint contentsToWindow(FrameView *view, FloatPoint pt)
{
int x = static_cast<int>(pt.x() + 0.5f);
int y = static_cast<int>(pt.y() + 0.5f);
IntPoint adjusted = view->contentsToWindow(IntPoint(x, y));
return FloatPoint(adjusted.x(), adjusted.y());
}
// Adjusts 'point' to the nearest point inside rect, and leaves it unchanged if already inside.
void adjustPointToRect(FloatPoint& point, const FloatRect& rect)
{
if (point.x() < rect.x())
point.setX(rect.x());
else if (point.x() > rect.maxX())
point.setX(rect.maxX());
if (point.y() < rect.y())
point.setY(rect.y());
else if (point.y() > rect.maxY())
point.setY(rect.maxY());
}
bool snapTo(const SubtargetGeometry& geom, const IntPoint& touchPoint, const IntRect& touchArea, IntPoint& adjustedPoint)
{
FrameView* view = geom.node()->document().view();
FloatQuad quad = geom.quad();
if (quad.isRectilinear()) {
IntRect contentBounds = geom.boundingBox();
// Convert from frame coordinates to window coordinates.
IntRect bounds = view->contentsToWindow(contentBounds);
if (bounds.contains(touchPoint)) {
adjustedPoint = touchPoint;
return true;
}
if (bounds.intersects(touchArea)) {
bounds.intersect(touchArea);
adjustedPoint = bounds.center();
return true;
}
return false;
}
// The following code tries to adjust the point to place inside a both the touchArea and the non-rectilinear quad.
// FIXME: This will return the point inside the touch area that is the closest to the quad center, but does not
// guarantee that the point will be inside the quad. Corner-cases exist where the quad will intersect but this
// will fail to adjust the point to somewhere in the intersection.
// Convert quad from content to window coordinates.
FloatPoint p1 = contentsToWindow(view, quad.p1());
FloatPoint p2 = contentsToWindow(view, quad.p2());
FloatPoint p3 = contentsToWindow(view, quad.p3());
FloatPoint p4 = contentsToWindow(view, quad.p4());
quad = FloatQuad(p1, p2, p3, p4);
if (quad.containsPoint(touchPoint)) {
adjustedPoint = touchPoint;
return true;
}
// Pull point towards the center of the element.
FloatPoint center = quad.center();
adjustPointToRect(center, touchArea);
adjustedPoint = roundedIntPoint(center);
return quad.containsPoint(adjustedPoint);
}
// A generic function for finding the target node with the lowest distance metric. A distance metric here is the result
// of a distance-like function, that computes how well the touch hits the node.
// Distance functions could for instance be distance squared or area of intersection.
bool findNodeWithLowestDistanceMetric(Node*& targetNode, IntPoint& targetPoint, IntRect& targetArea, const IntPoint& touchHotspot, const IntRect& touchArea, SubtargetGeometryList& subtargets, DistanceFunction distanceFunction)
{
targetNode = 0;
float bestDistanceMetric = std::numeric_limits<float>::infinity();
SubtargetGeometryList::const_iterator it = subtargets.begin();
const SubtargetGeometryList::const_iterator end = subtargets.end();
IntPoint adjustedPoint;
for (; it != end; ++it) {
Node* node = it->node();
float distanceMetric = distanceFunction(touchHotspot, touchArea, *it);
if (distanceMetric < bestDistanceMetric) {
if (snapTo(*it, touchHotspot, touchArea, adjustedPoint)) {
targetPoint = adjustedPoint;
targetArea = it->boundingBox();
targetNode = node;
bestDistanceMetric = distanceMetric;
}
} else if (distanceMetric - bestDistanceMetric < zeroTolerance) {
if (snapTo(*it, touchHotspot, touchArea, adjustedPoint)) {
if (node->isDescendantOf(targetNode)) {
// Try to always return the inner-most element.
targetPoint = adjustedPoint;
targetNode = node;
targetArea = it->boundingBox();
}
}
}
}
if (targetNode) {
targetArea = targetNode->document().view()->contentsToWindow(targetArea);
}
return (targetNode);
}
} // namespace TouchAdjustment
bool findBestClickableCandidate(Node*& targetNode, IntPoint &targetPoint, const IntPoint &touchHotspot, const IntRect &touchArea, const Vector<RefPtr<Node> >& nodes)
{
IntRect targetArea;
TouchAdjustment::SubtargetGeometryList subtargets;
TouchAdjustment::compileSubtargetList(nodes, subtargets, TouchAdjustment::nodeRespondsToTapGesture, TouchAdjustment::appendBasicSubtargetsForNode);
return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::hybridDistanceFunction);
}
bool findBestContextMenuCandidate(Node*& targetNode, IntPoint &targetPoint, const IntPoint &touchHotspot, const IntRect &touchArea, const Vector<RefPtr<Node> >& nodes)
{
IntRect targetArea;
TouchAdjustment::SubtargetGeometryList subtargets;
TouchAdjustment::compileSubtargetList(nodes, subtargets, TouchAdjustment::providesContextMenuItems, TouchAdjustment::appendContextSubtargetsForNode);
return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::hybridDistanceFunction);
}
bool findBestZoomableArea(Node*& targetNode, IntRect& targetArea, const IntPoint& touchHotspot, const IntRect& touchArea, const Vector<RefPtr<Node> >& nodes)
{
IntPoint targetPoint;
TouchAdjustment::SubtargetGeometryList subtargets;
TouchAdjustment::compileZoomableSubtargets(nodes, subtargets);
return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::zoomableIntersectionQuotient);
}
} // namespace WebCore