blob: 4fb5a07a914bef8c907a8ee6e5913edc46c77570 [file] [log] [blame]
/*
* Copyright (C) 1997 Martin Jones (mjones@kde.org)
* (C) 1997 Torben Weis (weis@kde.org)
* (C) 1998 Waldo Bastian (bastian@kde.org)
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009, 2010 Apple Inc. All rights reserved.
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "core/rendering/RenderTableSection.h"
// FIXME: Remove 'RuntimeEnabledFeatures.h' when http://crbug.com/78724 is closed.
#include "RuntimeEnabledFeatures.h"
#include <limits>
#include "core/rendering/HitTestResult.h"
#include "core/rendering/PaintInfo.h"
#include "core/rendering/RenderTableCell.h"
#include "core/rendering/RenderTableCol.h"
#include "core/rendering/RenderTableRow.h"
#include "core/rendering/RenderView.h"
#include "core/rendering/SubtreeLayoutScope.h"
#include "wtf/HashSet.h"
#include "wtf/Vector.h"
using namespace std;
namespace WebCore {
using namespace HTMLNames;
// Those 2 variables are used to balance the memory consumption vs the repaint time on big tables.
static unsigned gMinTableSizeToUseFastPaintPathWithOverflowingCell = 75 * 75;
static float gMaxAllowedOverflowingCellRatioForFastPaintPath = 0.1f;
static inline void setRowLogicalHeightToRowStyleLogicalHeight(RenderTableSection::RowStruct& row)
{
ASSERT(row.rowRenderer);
row.logicalHeight = row.rowRenderer->style()->logicalHeight();
}
static inline void updateLogicalHeightForCell(RenderTableSection::RowStruct& row, const RenderTableCell* cell)
{
// We ignore height settings on rowspan cells.
if (cell->rowSpan() != 1)
return;
Length logicalHeight = cell->style()->logicalHeight();
if (logicalHeight.isPositive()) {
Length cRowLogicalHeight = row.logicalHeight;
switch (logicalHeight.type()) {
case Percent:
if (!(cRowLogicalHeight.isPercent())
|| (cRowLogicalHeight.isPercent() && cRowLogicalHeight.percent() < logicalHeight.percent()))
row.logicalHeight = logicalHeight;
break;
case Fixed:
if (cRowLogicalHeight.type() < Percent
|| (cRowLogicalHeight.isFixed() && cRowLogicalHeight.value() < logicalHeight.value()))
row.logicalHeight = logicalHeight;
break;
default:
break;
}
}
}
RenderTableSection::RenderTableSection(Element* element)
: RenderBox(element)
, m_cCol(0)
, m_cRow(0)
, m_outerBorderStart(0)
, m_outerBorderEnd(0)
, m_outerBorderBefore(0)
, m_outerBorderAfter(0)
, m_needsCellRecalc(false)
, m_hasMultipleCellLevels(false)
{
// init RenderObject attributes
setInline(false); // our object is not Inline
}
RenderTableSection::~RenderTableSection()
{
}
void RenderTableSection::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBox::styleDidChange(diff, oldStyle);
propagateStyleToAnonymousChildren();
// If border was changed, notify table.
RenderTable* table = this->table();
if (table && !table->selfNeedsLayout() && !table->normalChildNeedsLayout() && oldStyle && oldStyle->border() != style()->border())
table->invalidateCollapsedBorders();
}
void RenderTableSection::willBeRemovedFromTree()
{
RenderBox::willBeRemovedFromTree();
// Preventively invalidate our cells as we may be re-inserted into
// a new table which would require us to rebuild our structure.
setNeedsCellRecalc();
}
void RenderTableSection::addChild(RenderObject* child, RenderObject* beforeChild)
{
if (!child->isTableRow()) {
RenderObject* last = beforeChild;
if (!last)
last = lastChild();
if (last && last->isAnonymous() && !last->isBeforeOrAfterContent()) {
if (beforeChild == last)
beforeChild = last->firstChild();
last->addChild(child, beforeChild);
return;
}
if (beforeChild && !beforeChild->isAnonymous() && beforeChild->parent() == this) {
RenderObject* row = beforeChild->previousSibling();
if (row && row->isTableRow() && row->isAnonymous()) {
row->addChild(child);
return;
}
}
// If beforeChild is inside an anonymous cell/row, insert into the cell or into
// the anonymous row containing it, if there is one.
RenderObject* lastBox = last;
while (lastBox && lastBox->parent()->isAnonymous() && !lastBox->isTableRow())
lastBox = lastBox->parent();
if (lastBox && lastBox->isAnonymous() && !lastBox->isBeforeOrAfterContent()) {
lastBox->addChild(child, beforeChild);
return;
}
RenderObject* row = RenderTableRow::createAnonymousWithParentRenderer(this);
addChild(row, beforeChild);
row->addChild(child);
return;
}
if (beforeChild)
setNeedsCellRecalc();
unsigned insertionRow = m_cRow;
++m_cRow;
m_cCol = 0;
ensureRows(m_cRow);
RenderTableRow* row = toRenderTableRow(child);
m_grid[insertionRow].rowRenderer = row;
row->setRowIndex(insertionRow);
if (!beforeChild)
setRowLogicalHeightToRowStyleLogicalHeight(m_grid[insertionRow]);
if (beforeChild && beforeChild->parent() != this)
beforeChild = splitAnonymousBoxesAroundChild(beforeChild);
ASSERT(!beforeChild || beforeChild->isTableRow());
RenderBox::addChild(child, beforeChild);
}
void RenderTableSection::ensureRows(unsigned numRows)
{
if (numRows <= m_grid.size())
return;
unsigned oldSize = m_grid.size();
m_grid.grow(numRows);
unsigned effectiveColumnCount = max(1u, table()->numEffCols());
for (unsigned row = oldSize; row < m_grid.size(); ++row)
m_grid[row].row.grow(effectiveColumnCount);
}
void RenderTableSection::addCell(RenderTableCell* cell, RenderTableRow* row)
{
// We don't insert the cell if we need cell recalc as our internal columns' representation
// will have drifted from the table's representation. Also recalcCells will call addCell
// at a later time after sync'ing our columns' with the table's.
if (needsCellRecalc())
return;
unsigned rSpan = cell->rowSpan();
unsigned cSpan = cell->colSpan();
const Vector<RenderTable::ColumnStruct>& columns = table()->columns();
unsigned nCols = columns.size();
unsigned insertionRow = row->rowIndex();
// ### mozilla still seems to do the old HTML way, even for strict DTD
// (see the annotation on table cell layouting in the CSS specs and the testcase below:
// <TABLE border>
// <TR><TD>1 <TD rowspan="2">2 <TD>3 <TD>4
// <TR><TD colspan="2">5
// </TABLE>
while (m_cCol < nCols && (cellAt(insertionRow, m_cCol).hasCells() || cellAt(insertionRow, m_cCol).inColSpan))
m_cCol++;
updateLogicalHeightForCell(m_grid[insertionRow], cell);
ensureRows(insertionRow + rSpan);
m_grid[insertionRow].rowRenderer = row;
unsigned col = m_cCol;
// tell the cell where it is
bool inColSpan = false;
while (cSpan) {
unsigned currentSpan;
if (m_cCol >= nCols) {
table()->appendColumn(cSpan);
currentSpan = cSpan;
} else {
if (cSpan < columns[m_cCol].span)
table()->splitColumn(m_cCol, cSpan);
currentSpan = columns[m_cCol].span;
}
for (unsigned r = 0; r < rSpan; r++) {
CellStruct& c = cellAt(insertionRow + r, m_cCol);
ASSERT(cell);
c.cells.append(cell);
// If cells overlap then we take the slow path for painting.
if (c.cells.size() > 1)
m_hasMultipleCellLevels = true;
if (inColSpan)
c.inColSpan = true;
}
m_cCol++;
cSpan -= currentSpan;
inColSpan = true;
}
cell->setCol(table()->effColToCol(col));
}
void RenderTableSection::populateSpanningRowsHeightFromCell(RenderTableCell* cell, struct SpanningRowsHeight& spanningRowsHeight)
{
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing = cell->logicalHeightForRowSizing();
spanningRowsHeight.rowHeight.resize(rowSpan);
spanningRowsHeight.totalRowsHeight = 0;
for (unsigned row = 0; row < rowSpan; row++) {
unsigned actualRow = row + rowIndex;
spanningRowsHeight.rowHeight[row] = m_rowPos[actualRow + 1] - m_rowPos[actualRow] - borderSpacingForRow(actualRow);
spanningRowsHeight.totalRowsHeight += spanningRowsHeight.rowHeight[row];
spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing -= borderSpacingForRow(actualRow);
}
// We don't span the following row so its border-spacing (if any) should be included.
spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing += borderSpacingForRow(rowIndex + rowSpan - 1);
}
void RenderTableSection::distributeExtraRowSpanHeightToPercentRows(RenderTableCell* cell, int totalPercent, int& extraRowSpanningHeight, Vector<int>& rowsHeight)
{
if (!extraRowSpanningHeight || !totalPercent)
return;
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
int percent = min(totalPercent, 100);
const int tableHeight = m_rowPos[m_grid.size()] + extraRowSpanningHeight;
// Our algorithm matches Firefox. Extra spanning height would be distributed Only in first percent height rows
// those total percent is 100. Other percent rows would be uneffected even extra spanning height is remain.
int accumulatedPositionIncrease = 0;
for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
if (percent > 0 && extraRowSpanningHeight > 0) {
if (m_grid[row].logicalHeight.isPercent()) {
int toAdd = (tableHeight * m_grid[row].logicalHeight.percent() / 100) - rowsHeight[row - rowIndex];
// FIXME: Note that this is wrong if we have a percentage above 100% and may make us grow
// above the available space.
toAdd = min(toAdd, extraRowSpanningHeight);
accumulatedPositionIncrease += toAdd;
extraRowSpanningHeight -= toAdd;
percent -= m_grid[row].logicalHeight.percent();
}
}
m_rowPos[row + 1] += accumulatedPositionIncrease;
}
}
void RenderTableSection::distributeExtraRowSpanHeightToAutoRows(RenderTableCell* cell, int totalAutoRowsHeight, int& extraRowSpanningHeight, Vector<int>& rowsHeight)
{
if (!extraRowSpanningHeight || !totalAutoRowsHeight)
return;
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
int accumulatedPositionIncrease = 0;
int remainder = 0;
// Aspect ratios of auto rows should not change otherwise table may look different than user expected.
// So extra height distributed in auto spanning rows based on their weight in spanning cell.
for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
if (m_grid[row].logicalHeight.isAuto()) {
accumulatedPositionIncrease += (extraRowSpanningHeight * rowsHeight[row - rowIndex]) / totalAutoRowsHeight;
remainder += (extraRowSpanningHeight * rowsHeight[row - rowIndex]) % totalAutoRowsHeight;
// While whole extra spanning height is distributing in auto spanning rows, rational parts remains
// in every integer division. So accumulating all remainder part in integer division and when total remainder
// is equvalent to divisor then 1 unit increased in row position.
// Note that this algorithm is biased towards adding more space towards the lower rows.
if (remainder >= totalAutoRowsHeight) {
remainder -= totalAutoRowsHeight;
accumulatedPositionIncrease++;
}
}
m_rowPos[row + 1] += accumulatedPositionIncrease;
}
ASSERT(!remainder);
extraRowSpanningHeight -= accumulatedPositionIncrease;
}
void RenderTableSection::distributeExtraRowSpanHeightToRemainingRows(RenderTableCell* cell, int totalRemainingRowsHeight, int& extraRowSpanningHeight, Vector<int>& rowsHeight)
{
if (!extraRowSpanningHeight || !totalRemainingRowsHeight)
return;
const unsigned rowSpan = cell->rowSpan();
const unsigned rowIndex = cell->rowIndex();
int accumulatedPositionIncrease = 0;
int remainder = 0;
// Aspect ratios of the rows should not change otherwise table may look different than user expected.
// So extra height distribution in remaining spanning rows based on their weight in spanning cell.
for (unsigned row = rowIndex; row < (rowIndex + rowSpan); row++) {
if (!m_grid[row].logicalHeight.isPercent()) {
accumulatedPositionIncrease += (extraRowSpanningHeight * rowsHeight[row - rowIndex]) / totalRemainingRowsHeight;
remainder += (extraRowSpanningHeight * rowsHeight[row - rowIndex]) % totalRemainingRowsHeight;
// While whole extra spanning height is distributing in remaining spanning rows, rational parts remains
// in every integer division. So accumulating all remainder part in integer division and when total remainder
// is equvalent to divisor then 1 unit increased in row position.
// Note that this algorithm is biased towards adding more space towards the lower rows.
if (remainder >= totalRemainingRowsHeight) {
remainder -= totalRemainingRowsHeight;
accumulatedPositionIncrease++;
}
}
m_rowPos[row + 1] += accumulatedPositionIncrease;
}
ASSERT(!remainder);
extraRowSpanningHeight -= accumulatedPositionIncrease;
}
static bool cellIsFullyIncludedInOtherCell(const RenderTableCell* cell1, const RenderTableCell* cell2)
{
return (cell1->rowIndex() >= cell2->rowIndex() && (cell1->rowIndex() + cell1->rowSpan()) <= (cell2->rowIndex() + cell2->rowSpan()));
}
// To avoid unneeded extra height distributions, we apply the following sorting algorithm:
static bool compareRowSpanCellsInHeightDistributionOrder(const RenderTableCell* cell1, const RenderTableCell* cell2)
{
// Sorting bigger height cell first if cells are at same index with same span because we will skip smaller
// height cell to distribute it's extra height.
if (cell1->rowIndex() == cell2->rowIndex() && cell1->rowSpan() == cell2->rowSpan())
return (cell1->logicalHeightForRowSizing() > cell2->logicalHeightForRowSizing());
// Sorting inner most cell first because if inner spanning cell'e extra height is distributed then outer
// spanning cell's extra height will adjust accordingly. In reverse order, there is more chances that outer
// spanning cell's height will exceed than defined by user.
if (cellIsFullyIncludedInOtherCell(cell1, cell2))
return true;
// Sorting lower row index first because first we need to apply the extra height of spanning cell which
// comes first in the table so lower rows's position would increment in sequence.
if (cellIsFullyIncludedInOtherCell(cell2, cell1))
return (cell1->rowIndex() < cell2->rowIndex());
return false;
}
// Distribute rowSpan cell height in rows those comes in rowSpan cell based on the ratio of row's height if
// 1. RowSpan cell height is greater then the total height of rows in rowSpan cell
void RenderTableSection::distributeRowSpanHeightToRows(SpanningRenderTableCells& rowSpanCells)
{
ASSERT(rowSpanCells.size());
// 'rowSpanCells' list is already sorted based on the cells rowIndex in ascending order
// Arrange row spanning cell in the order in which we need to process first.
std::sort(rowSpanCells.begin(), rowSpanCells.end(), compareRowSpanCellsInHeightDistributionOrder);
unsigned extraHeightToPropagate = 0;
unsigned lastRowIndex = 0;
unsigned lastRowSpan = 0;
for (unsigned i = 0; i < rowSpanCells.size(); i++) {
RenderTableCell* cell = rowSpanCells[i];
unsigned rowIndex = cell->rowIndex();
unsigned rowSpan = cell->rowSpan();
unsigned spanningCellEndIndex = rowIndex + rowSpan;
unsigned lastSpanningCellEndIndex = lastRowIndex + lastRowSpan;
// Only heightest spanning cell will distribute it's extra height in row if more then one spanning cells
// present at same level.
if (rowIndex == lastRowIndex && rowSpan == lastRowSpan)
continue;
int originalBeforePosition = m_rowPos[spanningCellEndIndex];
// When 2 spanning cells are ending at same row index then while extra height distribution of first spanning
// cell updates position of the last row so getting the original position of the last row in second spanning
// cell need to reduce the height changed by first spanning cell.
if (spanningCellEndIndex == lastSpanningCellEndIndex)
originalBeforePosition -= extraHeightToPropagate;
if (extraHeightToPropagate) {
for (unsigned row = lastSpanningCellEndIndex + 1; row <= spanningCellEndIndex; row++)
m_rowPos[row] += extraHeightToPropagate;
}
lastRowIndex = rowIndex;
lastRowSpan = rowSpan;
struct SpanningRowsHeight spanningRowsHeight;
populateSpanningRowsHeightFromCell(cell, spanningRowsHeight);
if (!spanningRowsHeight.totalRowsHeight || spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing <= spanningRowsHeight.totalRowsHeight)
continue;
int totalPercent = 0;
int totalAutoRowsHeight = 0;
int totalRemainingRowsHeight = spanningRowsHeight.totalRowsHeight;
// FIXME: Inner spanning cell height should not change if it have fixed height when it's parent spanning cell
// is distributing it's extra height in rows.
// Calculate total percentage, total auto rows height and total rows height except percent rows.
for (unsigned row = rowIndex; row < spanningCellEndIndex; row++) {
if (m_grid[row].logicalHeight.isPercent()) {
totalPercent += m_grid[row].logicalHeight.percent();
totalRemainingRowsHeight -= spanningRowsHeight.rowHeight[row - rowIndex];
} else if (m_grid[row].logicalHeight.isAuto()) {
totalAutoRowsHeight += spanningRowsHeight.rowHeight[row - rowIndex];
}
}
int extraRowSpanningHeight = spanningRowsHeight.spanningCellHeightIgnoringBorderSpacing - spanningRowsHeight.totalRowsHeight;
distributeExtraRowSpanHeightToPercentRows(cell, totalPercent, extraRowSpanningHeight, spanningRowsHeight.rowHeight);
distributeExtraRowSpanHeightToAutoRows(cell, totalAutoRowsHeight, extraRowSpanningHeight, spanningRowsHeight.rowHeight);
distributeExtraRowSpanHeightToRemainingRows(cell, totalRemainingRowsHeight, extraRowSpanningHeight, spanningRowsHeight.rowHeight);
ASSERT(!extraRowSpanningHeight);
// Getting total changed height in the table
extraHeightToPropagate = m_rowPos[spanningCellEndIndex] - originalBeforePosition;
}
if (extraHeightToPropagate) {
// Apply changed height by rowSpan cells to rows present at the end of the table
for (unsigned row = lastRowIndex + lastRowSpan + 1; row <= m_grid.size(); row++)
m_rowPos[row] += extraHeightToPropagate;
}
}
// Find out the baseline of the cell
// If the cell's baseline is more then the row's baseline then the cell's baseline become the row's baseline
// and if the row's baseline goes out of the row's boundries then adjust row height accordingly.
void RenderTableSection::updateBaselineForCell(RenderTableCell* cell, unsigned row, LayoutUnit& baselineDescent)
{
if (!cell->isBaselineAligned())
return;
// Ignoring the intrinsic padding as it depends on knowing the row's baseline, which won't be accurate
// until the end of this function.
LayoutUnit baselinePosition = cell->cellBaselinePosition() - cell->intrinsicPaddingBefore();
if (baselinePosition > cell->borderBefore() + (cell->paddingBefore() - cell->intrinsicPaddingBefore())) {
m_grid[row].baseline = max(m_grid[row].baseline, baselinePosition);
int cellStartRowBaselineDescent = 0;
if (cell->rowSpan() == 1) {
baselineDescent = max(baselineDescent, cell->logicalHeightForRowSizing() - baselinePosition);
cellStartRowBaselineDescent = baselineDescent;
}
m_rowPos[row + 1] = max<int>(m_rowPos[row + 1], m_rowPos[row] + m_grid[row].baseline + cellStartRowBaselineDescent);
}
}
int RenderTableSection::calcRowLogicalHeight()
{
#ifndef NDEBUG
SetLayoutNeededForbiddenScope layoutForbiddenScope(this);
#endif
ASSERT(!needsLayout());
RenderTableCell* cell;
RenderView* viewRenderer = view();
LayoutStateMaintainer statePusher(viewRenderer);
m_rowPos.resize(m_grid.size() + 1);
// We ignore the border-spacing on any non-top section as it is already included in the previous section's last row position.
if (this == table()->topSection())
m_rowPos[0] = table()->vBorderSpacing();
else
m_rowPos[0] = 0;
SpanningRenderTableCells rowSpanCells;
for (unsigned r = 0; r < m_grid.size(); r++) {
m_grid[r].baseline = 0;
LayoutUnit baselineDescent = 0;
// Our base size is the biggest logical height from our cells' styles (excluding row spanning cells).
m_rowPos[r + 1] = max(m_rowPos[r] + minimumValueForLength(m_grid[r].logicalHeight, 0, viewRenderer).round(), 0);
Row& row = m_grid[r].row;
unsigned totalCols = row.size();
for (unsigned c = 0; c < totalCols; c++) {
CellStruct& current = cellAt(r, c);
for (unsigned i = 0; i < current.cells.size(); i++) {
cell = current.cells[i];
if (current.inColSpan && cell->rowSpan() == 1)
continue;
if (RuntimeEnabledFeatures::rowSpanLogicalHeightSpreadingEnabled()) {
if (cell->rowSpan() > 1) {
// For row spanning cells, we only handle them for the first row they span. This ensures we take their baseline into account.
if (cell->rowIndex() == r) {
rowSpanCells.append(cell);
// Find out the baseline. The baseline is set on the first row in a rowSpan.
updateBaselineForCell(cell, r, baselineDescent);
}
continue;
}
ASSERT(cell->rowSpan() == 1);
} else {
// FIXME: We add all the logical row of a rowspan to the last rows
// until crbug.com/78724 is fixed and the runtime flag removed.
// This avoids propagating temporary regressions while we fix the bug.
if ((cell->rowIndex() + cell->rowSpan() - 1) != r)
continue;
}
if (cell->hasOverrideHeight()) {
if (!statePusher.didPush()) {
// Technically, we should also push state for the row, but since
// rows don't push a coordinate transform, that's not necessary.
statePusher.push(this, locationOffset());
}
cell->clearIntrinsicPadding();
cell->clearOverrideSize();
cell->forceChildLayout();
}
if (RuntimeEnabledFeatures::rowSpanLogicalHeightSpreadingEnabled()) {
m_rowPos[r + 1] = max(m_rowPos[r + 1], m_rowPos[r] + cell->logicalHeightForRowSizing());
// Find out the baseline.
updateBaselineForCell(cell, r, baselineDescent);
} else {
// For row spanning cells, |r| is the last row in the span.
unsigned cellStartRow = cell->rowIndex();
m_rowPos[r + 1] = max(m_rowPos[r + 1], m_rowPos[cellStartRow] + cell->logicalHeightForRowSizing());
// Find out the baseline.
updateBaselineForCell(cell, cellStartRow, baselineDescent);
}
}
}
// Add the border-spacing to our final position.
m_rowPos[r + 1] += borderSpacingForRow(r);
m_rowPos[r + 1] = max(m_rowPos[r + 1], m_rowPos[r]);
}
if (!rowSpanCells.isEmpty()) {
ASSERT(RuntimeEnabledFeatures::rowSpanLogicalHeightSpreadingEnabled());
distributeRowSpanHeightToRows(rowSpanCells);
}
ASSERT(!needsLayout());
statePusher.pop();
return m_rowPos[m_grid.size()];
}
void RenderTableSection::layout()
{
ASSERT(needsLayout());
ASSERT(!needsCellRecalc());
ASSERT(!table()->needsSectionRecalc());
// addChild may over-grow m_grid but we don't want to throw away the memory too early as addChild
// can be called in a loop (e.g during parsing). Doing it now ensures we have a stable-enough structure.
m_grid.shrinkToFit();
LayoutStateMaintainer statePusher(view(), this, locationOffset(), style()->isFlippedBlocksWritingMode());
const Vector<int>& columnPos = table()->columnPositions();
SubtreeLayoutScope layouter(this);
for (unsigned r = 0; r < m_grid.size(); ++r) {
Row& row = m_grid[r].row;
unsigned cols = row.size();
// First, propagate our table layout's information to the cells. This will mark the row as needing layout
// if there was a column logical width change.
for (unsigned startColumn = 0; startColumn < cols; ++startColumn) {
CellStruct& current = row[startColumn];
RenderTableCell* cell = current.primaryCell();
if (!cell || current.inColSpan)
continue;
unsigned endCol = startColumn;
unsigned cspan = cell->colSpan();
while (cspan && endCol < cols) {
ASSERT(endCol < table()->columns().size());
cspan -= table()->columns()[endCol].span;
endCol++;
}
int tableLayoutLogicalWidth = columnPos[endCol] - columnPos[startColumn] - table()->hBorderSpacing();
cell->setCellLogicalWidth(tableLayoutLogicalWidth, layouter);
}
if (RenderTableRow* rowRenderer = m_grid[r].rowRenderer)
rowRenderer->layoutIfNeeded();
}
statePusher.pop();
clearNeedsLayout();
}
void RenderTableSection::distributeExtraLogicalHeightToPercentRows(int& extraLogicalHeight, int totalPercent)
{
if (!totalPercent)
return;
unsigned totalRows = m_grid.size();
int totalHeight = m_rowPos[totalRows] + extraLogicalHeight;
int totalLogicalHeightAdded = 0;
totalPercent = min(totalPercent, 100);
int rowHeight = m_rowPos[1] - m_rowPos[0];
for (unsigned r = 0; r < totalRows; ++r) {
if (totalPercent > 0 && m_grid[r].logicalHeight.isPercent()) {
int toAdd = min<int>(extraLogicalHeight, (totalHeight * m_grid[r].logicalHeight.percent() / 100) - rowHeight);
// If toAdd is negative, then we don't want to shrink the row (this bug
// affected Outlook Web Access).
toAdd = max(0, toAdd);
totalLogicalHeightAdded += toAdd;
extraLogicalHeight -= toAdd;
totalPercent -= m_grid[r].logicalHeight.percent();
}
ASSERT(totalRows >= 1);
if (r < totalRows - 1)
rowHeight = m_rowPos[r + 2] - m_rowPos[r + 1];
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
}
void RenderTableSection::distributeExtraLogicalHeightToAutoRows(int& extraLogicalHeight, unsigned autoRowsCount)
{
if (!autoRowsCount)
return;
int totalLogicalHeightAdded = 0;
for (unsigned r = 0; r < m_grid.size(); ++r) {
if (autoRowsCount > 0 && m_grid[r].logicalHeight.isAuto()) {
// Recomputing |extraLogicalHeightForRow| guarantees that we properly ditribute round |extraLogicalHeight|.
int extraLogicalHeightForRow = extraLogicalHeight / autoRowsCount;
totalLogicalHeightAdded += extraLogicalHeightForRow;
extraLogicalHeight -= extraLogicalHeightForRow;
--autoRowsCount;
}
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
}
void RenderTableSection::distributeRemainingExtraLogicalHeight(int& extraLogicalHeight)
{
unsigned totalRows = m_grid.size();
if (extraLogicalHeight <= 0 || !m_rowPos[totalRows])
return;
// FIXME: m_rowPos[totalRows] - m_rowPos[0] is the total rows' size.
int totalRowSize = m_rowPos[totalRows];
int totalLogicalHeightAdded = 0;
int previousRowPosition = m_rowPos[0];
for (unsigned r = 0; r < totalRows; r++) {
// weight with the original height
totalLogicalHeightAdded += extraLogicalHeight * (m_rowPos[r + 1] - previousRowPosition) / totalRowSize;
previousRowPosition = m_rowPos[r + 1];
m_rowPos[r + 1] += totalLogicalHeightAdded;
}
extraLogicalHeight -= totalLogicalHeightAdded;
}
int RenderTableSection::distributeExtraLogicalHeightToRows(int extraLogicalHeight)
{
if (!extraLogicalHeight)
return extraLogicalHeight;
unsigned totalRows = m_grid.size();
if (!totalRows)
return extraLogicalHeight;
if (!m_rowPos[totalRows] && nextSibling())
return extraLogicalHeight;
unsigned autoRowsCount = 0;
int totalPercent = 0;
for (unsigned r = 0; r < totalRows; r++) {
if (m_grid[r].logicalHeight.isAuto())
++autoRowsCount;
else if (m_grid[r].logicalHeight.isPercent())
totalPercent += m_grid[r].logicalHeight.percent();
}
int remainingExtraLogicalHeight = extraLogicalHeight;
distributeExtraLogicalHeightToPercentRows(remainingExtraLogicalHeight, totalPercent);
distributeExtraLogicalHeightToAutoRows(remainingExtraLogicalHeight, autoRowsCount);
distributeRemainingExtraLogicalHeight(remainingExtraLogicalHeight);
return extraLogicalHeight - remainingExtraLogicalHeight;
}
static bool shouldFlexCellChild(RenderObject* cellDescendant)
{
return cellDescendant->isReplaced() || (cellDescendant->isBox() && toRenderBox(cellDescendant)->scrollsOverflow());
}
void RenderTableSection::layoutRows()
{
#ifndef NDEBUG
SetLayoutNeededForbiddenScope layoutForbiddenScope(this);
#endif
ASSERT(!needsLayout());
unsigned totalRows = m_grid.size();
// Set the width of our section now. The rows will also be this width.
setLogicalWidth(table()->contentLogicalWidth());
m_overflow.clear();
m_overflowingCells.clear();
m_forceSlowPaintPathWithOverflowingCell = false;
int vspacing = table()->vBorderSpacing();
unsigned nEffCols = table()->numEffCols();
LayoutStateMaintainer statePusher(view(), this, locationOffset(), style()->isFlippedBlocksWritingMode());
for (unsigned r = 0; r < totalRows; r++) {
// Set the row's x/y position and width/height.
if (RenderTableRow* rowRenderer = m_grid[r].rowRenderer) {
rowRenderer->setLocation(LayoutPoint(0, m_rowPos[r]));
rowRenderer->setLogicalWidth(logicalWidth());
rowRenderer->setLogicalHeight(m_rowPos[r + 1] - m_rowPos[r] - vspacing);
rowRenderer->updateLayerTransform();
}
int rowHeightIncreaseForPagination = 0;
for (unsigned c = 0; c < nEffCols; c++) {
CellStruct& cs = cellAt(r, c);
RenderTableCell* cell = cs.primaryCell();
if (!cell || cs.inColSpan)
continue;
int rowIndex = cell->rowIndex();
int rHeight = m_rowPos[rowIndex + cell->rowSpan()] - m_rowPos[rowIndex] - vspacing;
// Force percent height children to lay themselves out again.
// This will cause these children to grow to fill the cell.
// FIXME: There is still more work to do here to fully match WinIE (should
// it become necessary to do so). In quirks mode, WinIE behaves like we
// do, but it will clip the cells that spill out of the table section. In
// strict mode, Mozilla and WinIE both regrow the table to accommodate the
// new height of the cell (thus letting the percentages cause growth one
// time only). We may also not be handling row-spanning cells correctly.
//
// Note also the oddity where replaced elements always flex, and yet blocks/tables do
// not necessarily flex. WinIE is crazy and inconsistent, and we can't hope to
// match the behavior perfectly, but we'll continue to refine it as we discover new
// bugs. :)
bool cellChildrenFlex = false;
bool flexAllChildren = cell->style()->logicalHeight().isFixed()
|| (!table()->style()->logicalHeight().isAuto() && rHeight != cell->logicalHeight());
for (RenderObject* child = cell->firstChild(); child; child = child->nextSibling()) {
if (!child->isText() && child->style()->logicalHeight().isPercent()
&& (flexAllChildren || shouldFlexCellChild(child))
&& (!child->isTable() || toRenderTable(child)->hasSections())) {
cellChildrenFlex = true;
break;
}
}
if (!cellChildrenFlex) {
if (TrackedRendererListHashSet* percentHeightDescendants = cell->percentHeightDescendants()) {
TrackedRendererListHashSet::iterator end = percentHeightDescendants->end();
for (TrackedRendererListHashSet::iterator it = percentHeightDescendants->begin(); it != end; ++it) {
if (flexAllChildren || shouldFlexCellChild(*it)) {
cellChildrenFlex = true;
break;
}
}
}
}
if (cellChildrenFlex) {
// Alignment within a cell is based off the calculated
// height, which becomes irrelevant once the cell has
// been resized based off its percentage.
cell->setOverrideLogicalContentHeightFromRowHeight(rHeight);
cell->forceChildLayout();
// If the baseline moved, we may have to update the data for our row. Find out the new baseline.
if (cell->isBaselineAligned()) {
LayoutUnit baseline = cell->cellBaselinePosition();
if (baseline > cell->borderBefore() + cell->paddingBefore())
m_grid[r].baseline = max(m_grid[r].baseline, baseline);
}
}
SubtreeLayoutScope layouter(cell);
cell->computeIntrinsicPadding(rHeight, layouter);
LayoutRect oldCellRect = cell->frameRect();
setLogicalPositionForCell(cell, c);
if (!cell->needsLayout() && view()->layoutState()->pageLogicalHeight() && view()->layoutState()->pageLogicalOffset(cell, cell->logicalTop()) != cell->pageLogicalOffset())
layouter.setChildNeedsLayout(cell);
cell->layoutIfNeeded();
// FIXME: Make pagination work with vertical tables.
if (view()->layoutState()->pageLogicalHeight() && cell->logicalHeight() != rHeight) {
// FIXME: Pagination might have made us change size. For now just shrink or grow the cell to fit without doing a relayout.
// We'll also do a basic increase of the row height to accommodate the cell if it's bigger, but this isn't quite right
// either. It's at least stable though and won't result in an infinite # of relayouts that may never stabilize.
if (cell->logicalHeight() > rHeight)
rowHeightIncreaseForPagination = max<int>(rowHeightIncreaseForPagination, cell->logicalHeight() - rHeight);
cell->setLogicalHeight(rHeight);
}
LayoutSize childOffset(cell->location() - oldCellRect.location());
if (childOffset.width() || childOffset.height()) {
view()->addLayoutDelta(childOffset);
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!table()->selfNeedsLayout() && cell->checkForRepaintDuringLayout())
cell->repaintDuringLayoutIfMoved(oldCellRect);
}
}
if (rowHeightIncreaseForPagination) {
for (unsigned rowIndex = r + 1; rowIndex <= totalRows; rowIndex++)
m_rowPos[rowIndex] += rowHeightIncreaseForPagination;
for (unsigned c = 0; c < nEffCols; ++c) {
Vector<RenderTableCell*, 1>& cells = cellAt(r, c).cells;
for (size_t i = 0; i < cells.size(); ++i)
cells[i]->setLogicalHeight(cells[i]->logicalHeight() + rowHeightIncreaseForPagination);
}
}
}
ASSERT(!needsLayout());
setLogicalHeight(m_rowPos[totalRows]);
computeOverflowFromCells(totalRows, nEffCols);
statePusher.pop();
}
void RenderTableSection::computeOverflowFromCells()
{
unsigned totalRows = m_grid.size();
unsigned nEffCols = table()->numEffCols();
computeOverflowFromCells(totalRows, nEffCols);
}
void RenderTableSection::computeOverflowFromCells(unsigned totalRows, unsigned nEffCols)
{
unsigned totalCellsCount = nEffCols * totalRows;
int maxAllowedOverflowingCellsCount = totalCellsCount < gMinTableSizeToUseFastPaintPathWithOverflowingCell ? 0 : gMaxAllowedOverflowingCellRatioForFastPaintPath * totalCellsCount;
#ifndef NDEBUG
bool hasOverflowingCell = false;
#endif
// Now that our height has been determined, add in overflow from cells.
for (unsigned r = 0; r < totalRows; r++) {
for (unsigned c = 0; c < nEffCols; c++) {
CellStruct& cs = cellAt(r, c);
RenderTableCell* cell = cs.primaryCell();
if (!cell || cs.inColSpan)
continue;
if (r < totalRows - 1 && cell == primaryCellAt(r + 1, c))
continue;
addOverflowFromChild(cell);
#ifndef NDEBUG
hasOverflowingCell |= cell->hasVisualOverflow();
#endif
if (cell->hasVisualOverflow() && !m_forceSlowPaintPathWithOverflowingCell) {
m_overflowingCells.add(cell);
if (m_overflowingCells.size() > maxAllowedOverflowingCellsCount) {
// We need to set m_forcesSlowPaintPath only if there is a least one overflowing cells as the hit testing code rely on this information.
m_forceSlowPaintPathWithOverflowingCell = true;
// The slow path does not make any use of the overflowing cells info, don't hold on to the memory.
m_overflowingCells.clear();
}
}
}
}
ASSERT(hasOverflowingCell == this->hasOverflowingCell());
}
int RenderTableSection::calcOuterBorderBefore() const
{
unsigned totalCols = table()->numEffCols();
if (!m_grid.size() || !totalCols)
return 0;
unsigned borderWidth = 0;
const BorderValue& sb = style()->borderBefore();
if (sb.style() == BHIDDEN)
return -1;
if (sb.style() > BHIDDEN)
borderWidth = sb.width();
const BorderValue& rb = firstChild()->style()->borderBefore();
if (rb.style() == BHIDDEN)
return -1;
if (rb.style() > BHIDDEN && rb.width() > borderWidth)
borderWidth = rb.width();
bool allHidden = true;
for (unsigned c = 0; c < totalCols; c++) {
const CellStruct& current = cellAt(0, c);
if (current.inColSpan || !current.hasCells())
continue;
const BorderValue& cb = current.primaryCell()->style()->borderBefore(); // FIXME: Make this work with perpendicular and flipped cells.
// FIXME: Don't repeat for the same col group
RenderTableCol* colGroup = table()->colElement(c);
if (colGroup) {
const BorderValue& gb = colGroup->style()->borderBefore();
if (gb.style() == BHIDDEN || cb.style() == BHIDDEN)
continue;
allHidden = false;
if (gb.style() > BHIDDEN && gb.width() > borderWidth)
borderWidth = gb.width();
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
} else {
if (cb.style() == BHIDDEN)
continue;
allHidden = false;
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
}
}
if (allHidden)
return -1;
return borderWidth / 2;
}
int RenderTableSection::calcOuterBorderAfter() const
{
unsigned totalCols = table()->numEffCols();
if (!m_grid.size() || !totalCols)
return 0;
unsigned borderWidth = 0;
const BorderValue& sb = style()->borderAfter();
if (sb.style() == BHIDDEN)
return -1;
if (sb.style() > BHIDDEN)
borderWidth = sb.width();
const BorderValue& rb = lastChild()->style()->borderAfter();
if (rb.style() == BHIDDEN)
return -1;
if (rb.style() > BHIDDEN && rb.width() > borderWidth)
borderWidth = rb.width();
bool allHidden = true;
for (unsigned c = 0; c < totalCols; c++) {
const CellStruct& current = cellAt(m_grid.size() - 1, c);
if (current.inColSpan || !current.hasCells())
continue;
const BorderValue& cb = current.primaryCell()->style()->borderAfter(); // FIXME: Make this work with perpendicular and flipped cells.
// FIXME: Don't repeat for the same col group
RenderTableCol* colGroup = table()->colElement(c);
if (colGroup) {
const BorderValue& gb = colGroup->style()->borderAfter();
if (gb.style() == BHIDDEN || cb.style() == BHIDDEN)
continue;
allHidden = false;
if (gb.style() > BHIDDEN && gb.width() > borderWidth)
borderWidth = gb.width();
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
} else {
if (cb.style() == BHIDDEN)
continue;
allHidden = false;
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
}
}
if (allHidden)
return -1;
return (borderWidth + 1) / 2;
}
int RenderTableSection::calcOuterBorderStart() const
{
unsigned totalCols = table()->numEffCols();
if (!m_grid.size() || !totalCols)
return 0;
unsigned borderWidth = 0;
const BorderValue& sb = style()->borderStart();
if (sb.style() == BHIDDEN)
return -1;
if (sb.style() > BHIDDEN)
borderWidth = sb.width();
if (RenderTableCol* colGroup = table()->colElement(0)) {
const BorderValue& gb = colGroup->style()->borderStart();
if (gb.style() == BHIDDEN)
return -1;
if (gb.style() > BHIDDEN && gb.width() > borderWidth)
borderWidth = gb.width();
}
bool allHidden = true;
for (unsigned r = 0; r < m_grid.size(); r++) {
const CellStruct& current = cellAt(r, 0);
if (!current.hasCells())
continue;
// FIXME: Don't repeat for the same cell
const BorderValue& cb = current.primaryCell()->style()->borderStart(); // FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& rb = current.primaryCell()->parent()->style()->borderStart();
if (cb.style() == BHIDDEN || rb.style() == BHIDDEN)
continue;
allHidden = false;
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
if (rb.style() > BHIDDEN && rb.width() > borderWidth)
borderWidth = rb.width();
}
if (allHidden)
return -1;
return (borderWidth + (table()->style()->isLeftToRightDirection() ? 0 : 1)) / 2;
}
int RenderTableSection::calcOuterBorderEnd() const
{
unsigned totalCols = table()->numEffCols();
if (!m_grid.size() || !totalCols)
return 0;
unsigned borderWidth = 0;
const BorderValue& sb = style()->borderEnd();
if (sb.style() == BHIDDEN)
return -1;
if (sb.style() > BHIDDEN)
borderWidth = sb.width();
if (RenderTableCol* colGroup = table()->colElement(totalCols - 1)) {
const BorderValue& gb = colGroup->style()->borderEnd();
if (gb.style() == BHIDDEN)
return -1;
if (gb.style() > BHIDDEN && gb.width() > borderWidth)
borderWidth = gb.width();
}
bool allHidden = true;
for (unsigned r = 0; r < m_grid.size(); r++) {
const CellStruct& current = cellAt(r, totalCols - 1);
if (!current.hasCells())
continue;
// FIXME: Don't repeat for the same cell
const BorderValue& cb = current.primaryCell()->style()->borderEnd(); // FIXME: Make this work with perpendicular and flipped cells.
const BorderValue& rb = current.primaryCell()->parent()->style()->borderEnd();
if (cb.style() == BHIDDEN || rb.style() == BHIDDEN)
continue;
allHidden = false;
if (cb.style() > BHIDDEN && cb.width() > borderWidth)
borderWidth = cb.width();
if (rb.style() > BHIDDEN && rb.width() > borderWidth)
borderWidth = rb.width();
}
if (allHidden)
return -1;
return (borderWidth + (table()->style()->isLeftToRightDirection() ? 1 : 0)) / 2;
}
void RenderTableSection::recalcOuterBorder()
{
m_outerBorderBefore = calcOuterBorderBefore();
m_outerBorderAfter = calcOuterBorderAfter();
m_outerBorderStart = calcOuterBorderStart();
m_outerBorderEnd = calcOuterBorderEnd();
}
int RenderTableSection::firstLineBoxBaseline() const
{
if (!m_grid.size())
return -1;
int firstLineBaseline = m_grid[0].baseline;
if (firstLineBaseline)
return firstLineBaseline + m_rowPos[0];
firstLineBaseline = -1;
const Row& firstRow = m_grid[0].row;
for (size_t i = 0; i < firstRow.size(); ++i) {
const CellStruct& cs = firstRow.at(i);
const RenderTableCell* cell = cs.primaryCell();
// Only cells with content have a baseline
if (cell && cell->contentLogicalHeight())
firstLineBaseline = max<int>(firstLineBaseline, cell->logicalTop() + cell->paddingBefore() + cell->borderBefore() + cell->contentLogicalHeight());
}
return firstLineBaseline;
}
void RenderTableSection::paint(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
ANNOTATE_GRAPHICS_CONTEXT(paintInfo, this);
ASSERT_WITH_SECURITY_IMPLICATION(!needsLayout());
unsigned totalRows = m_grid.size();
unsigned totalCols = table()->columns().size();
if (!totalRows || !totalCols)
return;
LayoutPoint adjustedPaintOffset = paintOffset + location();
PaintPhase phase = paintInfo.phase;
bool pushedClip = pushContentsClip(paintInfo, adjustedPaintOffset, ForceContentsClip);
paintObject(paintInfo, adjustedPaintOffset);
if (pushedClip)
popContentsClip(paintInfo, phase, adjustedPaintOffset);
if ((phase == PaintPhaseOutline || phase == PaintPhaseSelfOutline) && style()->visibility() == VISIBLE)
paintOutline(paintInfo, LayoutRect(adjustedPaintOffset, size()));
}
static inline bool compareCellPositions(RenderTableCell* elem1, RenderTableCell* elem2)
{
return elem1->rowIndex() < elem2->rowIndex();
}
// This comparison is used only when we have overflowing cells as we have an unsorted array to sort. We thus need
// to sort both on rows and columns to properly repaint.
static inline bool compareCellPositionsWithOverflowingCells(RenderTableCell* elem1, RenderTableCell* elem2)
{
if (elem1->rowIndex() != elem2->rowIndex())
return elem1->rowIndex() < elem2->rowIndex();
return elem1->col() < elem2->col();
}
void RenderTableSection::paintCell(RenderTableCell* cell, PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
LayoutPoint cellPoint = flipForWritingModeForChild(cell, paintOffset);
PaintPhase paintPhase = paintInfo.phase;
RenderTableRow* row = toRenderTableRow(cell->parent());
if (paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) {
// We need to handle painting a stack of backgrounds. This stack (from bottom to top) consists of
// the column group, column, row group, row, and then the cell.
RenderTableCol* column = table()->colElement(cell->col());
RenderTableCol* columnGroup = column ? column->enclosingColumnGroup() : 0;
// Column groups and columns first.
// FIXME: Columns and column groups do not currently support opacity, and they are being painted "too late" in
// the stack, since we have already opened a transparency layer (potentially) for the table row group.
// Note that we deliberately ignore whether or not the cell has a layer, since these backgrounds paint "behind" the
// cell.
cell->paintBackgroundsBehindCell(paintInfo, cellPoint, columnGroup);
cell->paintBackgroundsBehindCell(paintInfo, cellPoint, column);
// Paint the row group next.
cell->paintBackgroundsBehindCell(paintInfo, cellPoint, this);
// Paint the row next, but only if it doesn't have a layer. If a row has a layer, it will be responsible for
// painting the row background for the cell.
if (!row->hasSelfPaintingLayer())
cell->paintBackgroundsBehindCell(paintInfo, cellPoint, row);
}
if ((!cell->hasSelfPaintingLayer() && !row->hasSelfPaintingLayer()))
cell->paint(paintInfo, cellPoint);
}
LayoutRect RenderTableSection::logicalRectForWritingModeAndDirection(const LayoutRect& rect) const
{
LayoutRect tableAlignedRect(rect);
flipForWritingMode(tableAlignedRect);
if (!style()->isHorizontalWritingMode())
tableAlignedRect = tableAlignedRect.transposedRect();
const Vector<int>& columnPos = table()->columnPositions();
// FIXME: The table's direction should determine our row's direction, not the section's (see bug 96691).
if (!style()->isLeftToRightDirection())
tableAlignedRect.setX(columnPos[columnPos.size() - 1] - tableAlignedRect.maxX());
return tableAlignedRect;
}
CellSpan RenderTableSection::dirtiedRows(const LayoutRect& damageRect) const
{
if (m_forceSlowPaintPathWithOverflowingCell)
return fullTableRowSpan();
CellSpan coveredRows = spannedRows(damageRect);
// To repaint the border we might need to repaint first or last row even if they are not spanned themselves.
if (coveredRows.start() >= m_rowPos.size() - 1 && m_rowPos[m_rowPos.size() - 1] + table()->outerBorderAfter() >= damageRect.y())
--coveredRows.start();
if (!coveredRows.end() && m_rowPos[0] - table()->outerBorderBefore() <= damageRect.maxY())
++coveredRows.end();
return coveredRows;
}
CellSpan RenderTableSection::dirtiedColumns(const LayoutRect& damageRect) const
{
if (m_forceSlowPaintPathWithOverflowingCell)
return fullTableColumnSpan();
CellSpan coveredColumns = spannedColumns(damageRect);
const Vector<int>& columnPos = table()->columnPositions();
// To repaint the border we might need to repaint first or last column even if they are not spanned themselves.
if (coveredColumns.start() >= columnPos.size() - 1 && columnPos[columnPos.size() - 1] + table()->outerBorderEnd() >= damageRect.x())
--coveredColumns.start();
if (!coveredColumns.end() && columnPos[0] - table()->outerBorderStart() <= damageRect.maxX())
++coveredColumns.end();
return coveredColumns;
}
CellSpan RenderTableSection::spannedRows(const LayoutRect& flippedRect) const
{
// Find the first row that starts after rect top.
unsigned nextRow = std::upper_bound(m_rowPos.begin(), m_rowPos.end(), flippedRect.y()) - m_rowPos.begin();
if (nextRow == m_rowPos.size())
return CellSpan(m_rowPos.size() - 1, m_rowPos.size() - 1); // After all rows.
unsigned startRow = nextRow > 0 ? nextRow - 1 : 0;
// Find the first row that starts after rect bottom.
unsigned endRow;
if (m_rowPos[nextRow] >= flippedRect.maxY())
endRow = nextRow;
else {
endRow = std::upper_bound(m_rowPos.begin() + nextRow, m_rowPos.end(), flippedRect.maxY()) - m_rowPos.begin();
if (endRow == m_rowPos.size())
endRow = m_rowPos.size() - 1;
}
return CellSpan(startRow, endRow);
}
CellSpan RenderTableSection::spannedColumns(const LayoutRect& flippedRect) const
{
const Vector<int>& columnPos = table()->columnPositions();
// Find the first column that starts after rect left.
// lower_bound doesn't handle the edge between two cells properly as it would wrongly return the
// cell on the logical top/left.
// upper_bound on the other hand properly returns the cell on the logical bottom/right, which also
// matches the behavior of other browsers.
unsigned nextColumn = std::upper_bound(columnPos.begin(), columnPos.end(), flippedRect.x()) - columnPos.begin();
if (nextColumn == columnPos.size())
return CellSpan(columnPos.size() - 1, columnPos.size() - 1); // After all columns.
unsigned startColumn = nextColumn > 0 ? nextColumn - 1 : 0;
// Find the first column that starts after rect right.
unsigned endColumn;
if (columnPos[nextColumn] >= flippedRect.maxX())
endColumn = nextColumn;
else {
endColumn = std::upper_bound(columnPos.begin() + nextColumn, columnPos.end(), flippedRect.maxX()) - columnPos.begin();
if (endColumn == columnPos.size())
endColumn = columnPos.size() - 1;
}
return CellSpan(startColumn, endColumn);
}
void RenderTableSection::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
PaintPhase paintPhase = paintInfo.phase;
LayoutRect localRepaintRect = paintInfo.rect;
localRepaintRect.moveBy(-paintOffset);
localRepaintRect.inflate(maximalOutlineSize(paintPhase));
LayoutRect tableAlignedRect = logicalRectForWritingModeAndDirection(localRepaintRect);
CellSpan dirtiedRows = this->dirtiedRows(tableAlignedRect);
CellSpan dirtiedColumns = this->dirtiedColumns(tableAlignedRect);
if (dirtiedColumns.start() < dirtiedColumns.end()) {
if (!m_hasMultipleCellLevels && !m_overflowingCells.size()) {
if (paintInfo.phase == PaintPhaseCollapsedTableBorders) {
// Collapsed borders are painted from the bottom right to the top left so that precedence
// due to cell position is respected.
for (unsigned r = dirtiedRows.end(); r > dirtiedRows.start(); r--) {
unsigned row = r - 1;
for (unsigned c = dirtiedColumns.end(); c > dirtiedColumns.start(); c--) {
unsigned col = c - 1;
CellStruct& current = cellAt(row, col);
RenderTableCell* cell = current.primaryCell();
if (!cell || (row > dirtiedRows.start() && primaryCellAt(row - 1, col) == cell) || (col > dirtiedColumns.start() && primaryCellAt(row, col - 1) == cell))
continue;
LayoutPoint cellPoint = flipForWritingModeForChild(cell, paintOffset);
cell->paintCollapsedBorders(paintInfo, cellPoint);
}
}
} else {
// Draw the dirty cells in the order that they appear.
for (unsigned r = dirtiedRows.start(); r < dirtiedRows.end(); r++) {
RenderTableRow* row = m_grid[r].rowRenderer;
if (row && !row->hasSelfPaintingLayer())
row->paintOutlineForRowIfNeeded(paintInfo, paintOffset);
for (unsigned c = dirtiedColumns.start(); c < dirtiedColumns.end(); c++) {
CellStruct& current = cellAt(r, c);
RenderTableCell* cell = current.primaryCell();
if (!cell || (r > dirtiedRows.start() && primaryCellAt(r - 1, c) == cell) || (c > dirtiedColumns.start() && primaryCellAt(r, c - 1) == cell))
continue;
paintCell(cell, paintInfo, paintOffset);
}
}
}
} else {
// The overflowing cells should be scarce to avoid adding a lot of cells to the HashSet.
#ifndef NDEBUG
unsigned totalRows = m_grid.size();
unsigned totalCols = table()->columns().size();
ASSERT(m_overflowingCells.size() < totalRows * totalCols * gMaxAllowedOverflowingCellRatioForFastPaintPath);
#endif
// To make sure we properly repaint the section, we repaint all the overflowing cells that we collected.
Vector<RenderTableCell*> cells;
copyToVector(m_overflowingCells, cells);
HashSet<RenderTableCell*> spanningCells;
for (unsigned r = dirtiedRows.start(); r < dirtiedRows.end(); r++) {
RenderTableRow* row = m_grid[r].rowRenderer;
if (row && !row->hasSelfPaintingLayer())
row->paintOutlineForRowIfNeeded(paintInfo, paintOffset);
for (unsigned c = dirtiedColumns.start(); c < dirtiedColumns.end(); c++) {
CellStruct& current = cellAt(r, c);
if (!current.hasCells())
continue;
for (unsigned i = 0; i < current.cells.size(); ++i) {
if (m_overflowingCells.contains(current.cells[i]))
continue;
if (current.cells[i]->rowSpan() > 1 || current.cells[i]->colSpan() > 1) {
if (!spanningCells.add(current.cells[i]).isNewEntry)
continue;
}
cells.append(current.cells[i]);
}
}
}
// Sort the dirty cells by paint order.
if (!m_overflowingCells.size())
std::stable_sort(cells.begin(), cells.end(), compareCellPositions);
else
std::sort(cells.begin(), cells.end(), compareCellPositionsWithOverflowingCells);
if (paintInfo.phase == PaintPhaseCollapsedTableBorders) {
for (unsigned i = cells.size(); i > 0; --i) {
LayoutPoint cellPoint = flipForWritingModeForChild(cells[i - 1], paintOffset);
cells[i - 1]->paintCollapsedBorders(paintInfo, cellPoint);
}
} else {
for (unsigned i = 0; i < cells.size(); ++i)
paintCell(cells[i], paintInfo, paintOffset);
}
}
}
}
void RenderTableSection::imageChanged(WrappedImagePtr, const IntRect*)
{
// FIXME: Examine cells and repaint only the rect the image paints in.
repaint();
}
void RenderTableSection::recalcCells()
{
ASSERT(m_needsCellRecalc);
// We reset the flag here to ensure that |addCell| works. This is safe to do as
// fillRowsWithDefaultStartingAtPosition makes sure we match the table's columns
// representation.
m_needsCellRecalc = false;
m_cCol = 0;
m_cRow = 0;
m_grid.clear();
for (RenderObject* row = firstChild(); row; row = row->nextSibling()) {
if (row->isTableRow()) {
unsigned insertionRow = m_cRow;
m_cRow++;
m_cCol = 0;
ensureRows(m_cRow);
RenderTableRow* tableRow = toRenderTableRow(row);
m_grid[insertionRow].rowRenderer = tableRow;
tableRow->setRowIndex(insertionRow);
setRowLogicalHeightToRowStyleLogicalHeight(m_grid[insertionRow]);
for (RenderObject* cell = row->firstChild(); cell; cell = cell->nextSibling()) {
if (!cell->isTableCell())
continue;
RenderTableCell* tableCell = toRenderTableCell(cell);
addCell(tableCell, tableRow);
}
}
}
m_grid.shrinkToFit();
setNeedsLayout();
}
// FIXME: This function could be made O(1) in certain cases (like for the non-most-constrainive cells' case).
void RenderTableSection::rowLogicalHeightChanged(unsigned rowIndex)
{
if (needsCellRecalc())
return;
setRowLogicalHeightToRowStyleLogicalHeight(m_grid[rowIndex]);
for (RenderObject* cell = m_grid[rowIndex].rowRenderer->firstChild(); cell; cell = cell->nextSibling()) {
if (!cell->isTableCell())
continue;
updateLogicalHeightForCell(m_grid[rowIndex], toRenderTableCell(cell));
}
}
void RenderTableSection::setNeedsCellRecalc()
{
m_needsCellRecalc = true;
if (RenderTable* t = table())
t->setNeedsSectionRecalc();
}
unsigned RenderTableSection::numColumns() const
{
unsigned result = 0;
for (unsigned r = 0; r < m_grid.size(); ++r) {
for (unsigned c = result; c < table()->numEffCols(); ++c) {
const CellStruct& cell = cellAt(r, c);
if (cell.hasCells() || cell.inColSpan)
result = c;
}
}
return result + 1;
}
const BorderValue& RenderTableSection::borderAdjoiningStartCell(const RenderTableCell* cell) const
{
ASSERT(cell->isFirstOrLastCellInRow());
return hasSameDirectionAs(cell) ? style()->borderStart() : style()->borderEnd();
}
const BorderValue& RenderTableSection::borderAdjoiningEndCell(const RenderTableCell* cell) const
{
ASSERT(cell->isFirstOrLastCellInRow());
return hasSameDirectionAs(cell) ? style()->borderEnd() : style()->borderStart();
}
const RenderTableCell* RenderTableSection::firstRowCellAdjoiningTableStart() const
{
unsigned adjoiningStartCellColumnIndex = hasSameDirectionAs(table()) ? 0 : table()->lastColumnIndex();
return cellAt(0, adjoiningStartCellColumnIndex).primaryCell();
}
const RenderTableCell* RenderTableSection::firstRowCellAdjoiningTableEnd() const
{
unsigned adjoiningEndCellColumnIndex = hasSameDirectionAs(table()) ? table()->lastColumnIndex() : 0;
return cellAt(0, adjoiningEndCellColumnIndex).primaryCell();
}
void RenderTableSection::appendColumn(unsigned pos)
{
ASSERT(!m_needsCellRecalc);
for (unsigned row = 0; row < m_grid.size(); ++row)
m_grid[row].row.resize(pos + 1);
}
void RenderTableSection::splitColumn(unsigned pos, unsigned first)
{
ASSERT(!m_needsCellRecalc);
if (m_cCol > pos)
m_cCol++;
for (unsigned row = 0; row < m_grid.size(); ++row) {
Row& r = m_grid[row].row;
r.insert(pos + 1, CellStruct());
if (r[pos].hasCells()) {
r[pos + 1].cells.append(r[pos].cells);
RenderTableCell* cell = r[pos].primaryCell();
ASSERT(cell);
ASSERT(cell->colSpan() >= (r[pos].inColSpan ? 1u : 0));
unsigned colleft = cell->colSpan() - r[pos].inColSpan;
if (first > colleft)
r[pos + 1].inColSpan = 0;
else
r[pos + 1].inColSpan = first + r[pos].inColSpan;
} else {
r[pos + 1].inColSpan = 0;
}
}
}
// Hit Testing
bool RenderTableSection::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction action)
{
// If we have no children then we have nothing to do.
if (!firstChild())
return false;
// Table sections cannot ever be hit tested. Effectively they do not exist.
// Just forward to our children always.
LayoutPoint adjustedLocation = accumulatedOffset + location();
if (hasOverflowClip() && !locationInContainer.intersects(overflowClipRect(adjustedLocation, locationInContainer.region())))
return false;
if (hasOverflowingCell()) {
for (RenderObject* child = lastChild(); child; child = child->previousSibling()) {
// FIXME: We have to skip over inline flows, since they can show up inside table rows
// at the moment (a demoted inline <form> for example). If we ever implement a
// table-specific hit-test method (which we should do for performance reasons anyway),
// then we can remove this check.
if (child->isBox() && !toRenderBox(child)->hasSelfPaintingLayer()) {
LayoutPoint childPoint = flipForWritingModeForChild(toRenderBox(child), adjustedLocation);
if (child->nodeAtPoint(request, result, locationInContainer, childPoint, action)) {
updateHitTestResult(result, toLayoutPoint(locationInContainer.point() - childPoint));
return true;
}
}
}
return false;
}
recalcCellsIfNeeded();
LayoutRect hitTestRect = locationInContainer.boundingBox();
hitTestRect.moveBy(-adjustedLocation);
LayoutRect tableAlignedRect = logicalRectForWritingModeAndDirection(hitTestRect);
CellSpan rowSpan = spannedRows(tableAlignedRect);
CellSpan columnSpan = spannedColumns(tableAlignedRect);
// Now iterate over the spanned rows and columns.
for (unsigned hitRow = rowSpan.start(); hitRow < rowSpan.end(); ++hitRow) {
for (unsigned hitColumn = columnSpan.start(); hitColumn < columnSpan.end(); ++hitColumn) {
CellStruct& current = cellAt(hitRow, hitColumn);
// If the cell is empty, there's nothing to do
if (!current.hasCells())
continue;
for (unsigned i = current.cells.size() ; i; ) {
--i;
RenderTableCell* cell = current.cells[i];
LayoutPoint cellPoint = flipForWritingModeForChild(cell, adjustedLocation);
if (static_cast<RenderObject*>(cell)->nodeAtPoint(request, result, locationInContainer, cellPoint, action)) {
updateHitTestResult(result, locationInContainer.point() - toLayoutSize(cellPoint));
return true;
}
}
if (!result.isRectBasedTest())
break;
}
if (!result.isRectBasedTest())
break;
}
return false;
}
void RenderTableSection::removeCachedCollapsedBorders(const RenderTableCell* cell)
{
if (!table()->collapseBorders())
return;
for (int side = CBSBefore; side <= CBSEnd; ++side)
m_cellsCollapsedBorders.remove(make_pair(cell, side));
}
void RenderTableSection::setCachedCollapsedBorder(const RenderTableCell* cell, CollapsedBorderSide side, CollapsedBorderValue border)
{
ASSERT(table()->collapseBorders());
m_cellsCollapsedBorders.set(make_pair(cell, side), border);
}
CollapsedBorderValue& RenderTableSection::cachedCollapsedBorder(const RenderTableCell* cell, CollapsedBorderSide side)
{
ASSERT(table()->collapseBorders());
HashMap<pair<const RenderTableCell*, int>, CollapsedBorderValue>::iterator it = m_cellsCollapsedBorders.find(make_pair(cell, side));
ASSERT(it != m_cellsCollapsedBorders.end());
return it->value;
}
RenderTableSection* RenderTableSection::createAnonymousWithParentRenderer(const RenderObject* parent)
{
RefPtr<RenderStyle> newStyle = RenderStyle::createAnonymousStyleWithDisplay(parent->style(), TABLE_ROW_GROUP);
RenderTableSection* newSection = new RenderTableSection(0);
newSection->setDocumentForAnonymous(&parent->document());
newSection->setStyle(newStyle.release());
return newSection;
}
void RenderTableSection::setLogicalPositionForCell(RenderTableCell* cell, unsigned effectiveColumn) const
{
LayoutPoint oldCellLocation = cell->location();
LayoutPoint cellLocation(0, m_rowPos[cell->rowIndex()]);
int horizontalBorderSpacing = table()->hBorderSpacing();
// FIXME: The table's direction should determine our row's direction, not the section's (see bug 96691).
if (!style()->isLeftToRightDirection())
cellLocation.setX(table()->columnPositions()[table()->numEffCols()] - table()->columnPositions()[table()->colToEffCol(cell->col() + cell->colSpan())] + horizontalBorderSpacing);
else
cellLocation.setX(table()->columnPositions()[effectiveColumn] + horizontalBorderSpacing);
cell->setLogicalLocation(cellLocation);
view()->addLayoutDelta(oldCellLocation - cell->location());
}
} // namespace WebCore