blob: 32b266fffeffe74e0c916a249bd96a8fb5490cf1 [file] [log] [blame]
/*
* Copyright (C) 2003, 2004, 2005, 2006, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/platform/graphics/GraphicsContext.h"
#include "core/platform/graphics/BitmapImage.h"
#include "core/platform/graphics/Gradient.h"
#include "core/platform/graphics/ImageBuffer.h"
#include "core/platform/graphics/IntRect.h"
#include "core/platform/graphics/RoundedRect.h"
#include "core/platform/graphics/TextRunIterator.h"
#include "core/platform/graphics/skia/SkiaUtils.h"
#include "core/platform/text/BidiResolver.h"
#include "third_party/skia/include/core/SkAnnotation.h"
#include "third_party/skia/include/core/SkColorFilter.h"
#include "third_party/skia/include/core/SkData.h"
#include "third_party/skia/include/core/SkDevice.h"
#include "third_party/skia/include/core/SkRRect.h"
#include "third_party/skia/include/core/SkRefCnt.h"
#include "third_party/skia/include/effects/SkBlurMaskFilter.h"
#include "third_party/skia/include/effects/SkCornerPathEffect.h"
#include "third_party/skia/include/effects/SkLumaXfermode.h"
#include "weborigin/KURL.h"
#include "wtf/Assertions.h"
#include "wtf/MathExtras.h"
#if OS(MACOSX)
#include <ApplicationServices/ApplicationServices.h>
#endif
using namespace std;
namespace WebCore {
struct GraphicsContext::DeferredSaveState {
DeferredSaveState(unsigned mask, int count) : m_flags(mask), m_restoreCount(count) { }
unsigned m_flags;
int m_restoreCount;
};
GraphicsContext::GraphicsContext(SkCanvas* canvas)
: m_canvas(canvas)
, m_deferredSaveFlags(0)
, m_annotationMode(0)
#if !ASSERT_DISABLED
, m_annotationCount(0)
, m_layerCount(0)
#endif
, m_trackOpaqueRegion(false)
, m_trackTextRegion(false)
, m_useHighResMarker(false)
, m_updatingControlTints(false)
, m_accelerated(false)
, m_isCertainlyOpaque(true)
, m_printing(false)
{
m_stateStack.append(adoptPtr(new GraphicsContextState()));
m_state = m_stateStack.last().get();
}
GraphicsContext::~GraphicsContext()
{
ASSERT(m_stateStack.size() == 1);
ASSERT(!m_annotationCount);
ASSERT(!m_layerCount);
}
const SkBitmap* GraphicsContext::bitmap() const
{
TRACE_EVENT0("skia", "GraphicsContext::bitmap");
return &m_canvas->getDevice()->accessBitmap(false);
}
const SkBitmap& GraphicsContext::layerBitmap(AccessMode access) const
{
return m_canvas->getTopDevice()->accessBitmap(access == ReadWrite);
}
SkBaseDevice* GraphicsContext::createCompatibleDevice(const IntSize& size, bool hasAlpha) const
{
if (paintingDisabled())
return 0;
return m_canvas->createCompatibleDevice(SkBitmap::kARGB_8888_Config, size.width(), size.height(), !hasAlpha);
}
void GraphicsContext::save()
{
if (paintingDisabled())
return;
m_stateStack.append(m_state->clone());
m_state = m_stateStack.last().get();
m_saveStateStack.append(DeferredSaveState(m_deferredSaveFlags, m_canvas->getSaveCount()));
m_deferredSaveFlags |= SkCanvas::kMatrixClip_SaveFlag;
}
void GraphicsContext::restore()
{
if (paintingDisabled())
return;
if (m_stateStack.size() == 1) {
LOG_ERROR("ERROR void GraphicsContext::restore() stack is empty");
return;
}
m_stateStack.removeLast();
m_state = m_stateStack.last().get();
DeferredSaveState savedState = m_saveStateStack.last();
m_saveStateStack.removeLast();
m_deferredSaveFlags = savedState.m_flags;
m_canvas->restoreToCount(savedState.m_restoreCount);
}
void GraphicsContext::saveLayer(const SkRect* bounds, const SkPaint* paint, SkCanvas::SaveFlags saveFlags)
{
if (paintingDisabled())
return;
realizeSave(SkCanvas::kMatrixClip_SaveFlag);
m_canvas->saveLayer(bounds, paint, saveFlags);
if (bounds)
m_canvas->clipRect(*bounds);
if (m_trackOpaqueRegion)
m_opaqueRegion.pushCanvasLayer(paint);
}
void GraphicsContext::restoreLayer()
{
if (paintingDisabled())
return;
m_canvas->restore();
if (m_trackOpaqueRegion)
m_opaqueRegion.popCanvasLayer(this);
}
void GraphicsContext::beginAnnotation(const GraphicsContextAnnotation& annotation)
{
if (paintingDisabled())
return;
canvas()->beginCommentGroup("GraphicsContextAnnotation");
AnnotationList annotations;
annotation.asAnnotationList(annotations);
AnnotationList::const_iterator end = annotations.end();
for (AnnotationList::const_iterator it = annotations.begin(); it != end; ++it)
canvas()->addComment(it->first, it->second.ascii().data());
#if !ASSERT_DISABLED
++m_annotationCount;
#endif
}
void GraphicsContext::endAnnotation()
{
if (paintingDisabled())
return;
canvas()->endCommentGroup();
ASSERT(m_annotationCount > 0);
#if !ASSERT_DISABLED
--m_annotationCount;
#endif
}
void GraphicsContext::setStrokeColor(const Color& color)
{
m_state->m_strokeData.setColor(color);
m_state->m_strokeData.clearGradient();
m_state->m_strokeData.clearPattern();
}
void GraphicsContext::setStrokePattern(PassRefPtr<Pattern> pattern)
{
if (paintingDisabled())
return;
ASSERT(pattern);
if (!pattern) {
setStrokeColor(Color::black);
return;
}
m_state->m_strokeData.clearGradient();
m_state->m_strokeData.setPattern(pattern);
}
void GraphicsContext::setStrokeGradient(PassRefPtr<Gradient> gradient)
{
if (paintingDisabled())
return;
ASSERT(gradient);
if (!gradient) {
setStrokeColor(Color::black);
return;
}
m_state->m_strokeData.setGradient(gradient);
m_state->m_strokeData.clearPattern();
}
void GraphicsContext::setFillColor(const Color& color)
{
m_state->m_fillColor = color;
m_state->m_fillGradient.clear();
m_state->m_fillPattern.clear();
}
void GraphicsContext::setFillPattern(PassRefPtr<Pattern> pattern)
{
if (paintingDisabled())
return;
ASSERT(pattern);
if (!pattern) {
setFillColor(Color::black);
return;
}
m_state->m_fillGradient.clear();
m_state->m_fillPattern = pattern;
}
void GraphicsContext::setFillGradient(PassRefPtr<Gradient> gradient)
{
if (paintingDisabled())
return;
ASSERT(gradient);
if (!gradient) {
setFillColor(Color::black);
return;
}
m_state->m_fillGradient = gradient;
m_state->m_fillPattern.clear();
}
void GraphicsContext::setShadow(const FloatSize& offset, float blur, const Color& color,
DrawLooper::ShadowTransformMode shadowTransformMode,
DrawLooper::ShadowAlphaMode shadowAlphaMode)
{
if (paintingDisabled())
return;
if (!color.isValid() || !color.alpha() || (!offset.width() && !offset.height() && !blur)) {
clearShadow();
return;
}
DrawLooper drawLooper;
drawLooper.addShadow(offset, blur, color, shadowTransformMode, shadowAlphaMode);
drawLooper.addUnmodifiedContent();
setDrawLooper(drawLooper);
}
void GraphicsContext::setDrawLooper(const DrawLooper& drawLooper)
{
if (paintingDisabled())
return;
m_state->m_looper = drawLooper.skDrawLooper();
}
void GraphicsContext::clearDrawLooper()
{
if (paintingDisabled())
return;
m_state->m_looper.clear();
}
bool GraphicsContext::hasShadow() const
{
return !!m_state->m_looper;
}
int GraphicsContext::getNormalizedAlpha() const
{
int alpha = roundf(m_state->m_alpha * 256);
if (alpha > 255)
alpha = 255;
else if (alpha < 0)
alpha = 0;
return alpha;
}
bool GraphicsContext::getClipBounds(SkRect* bounds) const
{
if (paintingDisabled())
return false;
return m_canvas->getClipBounds(bounds);
}
const SkMatrix& GraphicsContext::getTotalMatrix() const
{
if (paintingDisabled())
return SkMatrix::I();
return m_canvas->getTotalMatrix();
}
bool GraphicsContext::isPrintingDevice() const
{
if (paintingDisabled())
return false;
return m_canvas->getTopDevice()->getDeviceCapabilities() & SkBaseDevice::kVector_Capability;
}
void GraphicsContext::adjustTextRenderMode(SkPaint* paint)
{
if (paintingDisabled())
return;
if (!paint->isLCDRenderText())
return;
paint->setLCDRenderText(couldUseLCDRenderedText());
}
bool GraphicsContext::couldUseLCDRenderedText()
{
// Our layers only have a single alpha channel. This means that subpixel
// rendered text cannot be composited correctly when the layer is
// collapsed. Therefore, subpixel text is disabled when we are drawing
// onto a layer.
if (paintingDisabled() || isDrawingToLayer() || !isCertainlyOpaque())
return false;
return shouldSmoothFonts();
}
void GraphicsContext::setCompositeOperation(CompositeOperator compositeOperation, BlendMode blendMode)
{
m_state->m_compositeOperator = compositeOperation;
m_state->m_blendMode = blendMode;
m_state->m_xferMode = WebCoreCompositeToSkiaComposite(compositeOperation, blendMode);
}
void GraphicsContext::setColorSpaceConversion(ColorSpace srcColorSpace, ColorSpace dstColorSpace)
{
m_state->m_colorFilter = ImageBuffer::createColorSpaceFilter(srcColorSpace, dstColorSpace);
}
bool GraphicsContext::readPixels(SkBitmap* bitmap, int x, int y, SkCanvas::Config8888 config8888)
{
if (paintingDisabled())
return false;
return m_canvas->readPixels(bitmap, x, y, config8888);
}
void GraphicsContext::setMatrix(const SkMatrix& matrix)
{
if (paintingDisabled())
return;
realizeSave(SkCanvas::kMatrix_SaveFlag);
m_canvas->setMatrix(matrix);
}
bool GraphicsContext::concat(const SkMatrix& matrix)
{
if (paintingDisabled())
return false;
realizeSave(SkCanvas::kMatrix_SaveFlag);
return m_canvas->concat(matrix);
}
void GraphicsContext::beginTransparencyLayer(float opacity, const FloatRect* bounds)
{
beginTransparencyLayer(opacity, m_state->m_compositeOperator, bounds);
}
void GraphicsContext::beginTransparencyLayer(float opacity, CompositeOperator op, const FloatRect* bounds)
{
if (paintingDisabled())
return;
// We need the "alpha" layer flag here because the base layer is opaque
// (the surface of the page) but layers on top may have transparent parts.
// Without explicitly setting the alpha flag, the layer will inherit the
// opaque setting of the base and some things won't work properly.
SkCanvas::SaveFlags saveFlags = static_cast<SkCanvas::SaveFlags>(SkCanvas::kHasAlphaLayer_SaveFlag | SkCanvas::kFullColorLayer_SaveFlag);
SkPaint layerPaint;
layerPaint.setAlpha(static_cast<unsigned char>(opacity * 255));
RefPtr<SkXfermode> xferMode = WebCoreCompositeToSkiaComposite(op, m_state->m_blendMode);
layerPaint.setXfermode(xferMode.get());
if (bounds) {
SkRect skBounds = WebCoreFloatRectToSKRect(*bounds);
saveLayer(&skBounds, &layerPaint, saveFlags);
} else {
saveLayer(0, &layerPaint, saveFlags);
}
#if !ASSERT_DISABLED
++m_layerCount;
#endif
}
void GraphicsContext::beginMaskedLayer(const FloatRect& bounds, MaskType maskType)
{
if (paintingDisabled())
return;
SkPaint layerPaint;
layerPaint.setXfermode(maskType == AlphaMaskType
? SkXfermode::Create(SkXfermode::kSrcIn_Mode)
: SkLumaMaskXfermode::Create(SkXfermode::kSrcIn_Mode));
SkRect skBounds = WebCoreFloatRectToSKRect(bounds);
saveLayer(&skBounds, &layerPaint);
#if !ASSERT_DISABLED
++m_layerCount;
#endif
}
void GraphicsContext::endLayer()
{
if (paintingDisabled())
return;
restoreLayer();
ASSERT(m_layerCount > 0);
#if !ASSERT_DISABLED
--m_layerCount;
#endif
}
void GraphicsContext::setupPaintForFilling(SkPaint* paint) const
{
if (paintingDisabled())
return;
setupPaintCommon(paint);
setupShader(paint, m_state->m_fillGradient.get(), m_state->m_fillPattern.get(), m_state->m_fillColor.rgb());
}
float GraphicsContext::setupPaintForStroking(SkPaint* paint, int length) const
{
if (paintingDisabled())
return 0.0f;
setupPaintCommon(paint);
setupShader(paint, m_state->m_strokeData.gradient(), m_state->m_strokeData.pattern(),
m_state->m_strokeData.color().rgb());
return m_state->m_strokeData.setupPaint(paint, length);
}
void GraphicsContext::drawConvexPolygon(size_t numPoints, const FloatPoint* points, bool shouldAntialias)
{
if (paintingDisabled())
return;
if (numPoints <= 1)
return;
SkPath path;
setPathFromConvexPoints(&path, numPoints, points);
SkPaint paint;
setupPaintForFilling(&paint);
paint.setAntiAlias(shouldAntialias);
drawPath(path, paint);
if (strokeStyle() != NoStroke) {
paint.reset();
setupPaintForStroking(&paint);
drawPath(path, paint);
}
}
// This method is only used to draw the little circles used in lists.
void GraphicsContext::drawEllipse(const IntRect& elipseRect)
{
if (paintingDisabled())
return;
SkRect rect = elipseRect;
SkPaint paint;
setupPaintForFilling(&paint);
drawOval(rect, paint);
if (strokeStyle() != NoStroke) {
paint.reset();
setupPaintForStroking(&paint);
drawOval(rect, paint);
}
}
void GraphicsContext::drawFocusRing(const Path& focusRingPath, int width, int offset, const Color& color)
{
// FIXME: Implement support for offset.
UNUSED_PARAM(offset);
if (paintingDisabled())
return;
SkPaint paint;
paint.setAntiAlias(true);
paint.setStyle(SkPaint::kStroke_Style);
paint.setColor(color.rgb());
drawOuterPath(focusRingPath.skPath(), paint, width);
drawInnerPath(focusRingPath.skPath(), paint, width);
}
void GraphicsContext::drawFocusRing(const Vector<IntRect>& rects, int width, int offset, const Color& color)
{
if (paintingDisabled())
return;
unsigned rectCount = rects.size();
if (!rectCount)
return;
SkRegion focusRingRegion;
const int focusRingOutset = getFocusRingOutset(offset);
for (unsigned i = 0; i < rectCount; i++) {
SkIRect r = rects[i];
r.inset(-focusRingOutset, -focusRingOutset);
focusRingRegion.op(r, SkRegion::kUnion_Op);
}
SkPath path;
SkPaint paint;
paint.setAntiAlias(true);
paint.setStyle(SkPaint::kStroke_Style);
paint.setColor(color.rgb());
focusRingRegion.getBoundaryPath(&path);
drawOuterPath(path, paint, width);
drawInnerPath(path, paint, width);
}
static inline IntRect areaCastingShadowInHole(const IntRect& holeRect, int shadowBlur, int shadowSpread, const IntSize& shadowOffset)
{
IntRect bounds(holeRect);
bounds.inflate(shadowBlur);
if (shadowSpread < 0)
bounds.inflate(-shadowSpread);
IntRect offsetBounds = bounds;
offsetBounds.move(-shadowOffset);
return unionRect(bounds, offsetBounds);
}
void GraphicsContext::drawInnerShadow(const RoundedRect& rect, const Color& shadowColor, const IntSize shadowOffset, int shadowBlur, int shadowSpread, Edges clippedEdges)
{
IntRect holeRect(rect.rect());
holeRect.inflate(-shadowSpread);
if (holeRect.isEmpty()) {
if (rect.isRounded())
fillRoundedRect(rect, shadowColor);
else
fillRect(rect.rect(), shadowColor);
return;
}
if (clippedEdges & LeftEdge) {
holeRect.move(-max(shadowOffset.width(), 0) - shadowBlur, 0);
holeRect.setWidth(holeRect.width() + max(shadowOffset.width(), 0) + shadowBlur);
}
if (clippedEdges & TopEdge) {
holeRect.move(0, -max(shadowOffset.height(), 0) - shadowBlur);
holeRect.setHeight(holeRect.height() + max(shadowOffset.height(), 0) + shadowBlur);
}
if (clippedEdges & RightEdge)
holeRect.setWidth(holeRect.width() - min(shadowOffset.width(), 0) + shadowBlur);
if (clippedEdges & BottomEdge)
holeRect.setHeight(holeRect.height() - min(shadowOffset.height(), 0) + shadowBlur);
Color fillColor(shadowColor.red(), shadowColor.green(), shadowColor.blue(), 255);
IntRect outerRect = areaCastingShadowInHole(rect.rect(), shadowBlur, shadowSpread, shadowOffset);
RoundedRect roundedHole(holeRect, rect.radii());
save();
if (rect.isRounded()) {
Path path;
path.addRoundedRect(rect);
clipPath(path);
roundedHole.shrinkRadii(shadowSpread);
} else {
clip(rect.rect());
}
DrawLooper drawLooper;
drawLooper.addShadow(shadowOffset, shadowBlur, shadowColor,
DrawLooper::ShadowRespectsTransforms, DrawLooper::ShadowIgnoresAlpha);
setDrawLooper(drawLooper);
fillRectWithRoundedHole(outerRect, roundedHole, fillColor);
restore();
clearDrawLooper();
}
// This is only used to draw borders.
void GraphicsContext::drawLine(const IntPoint& point1, const IntPoint& point2)
{
if (paintingDisabled())
return;
StrokeStyle penStyle = strokeStyle();
if (penStyle == NoStroke)
return;
SkPaint paint;
FloatPoint p1 = point1;
FloatPoint p2 = point2;
bool isVerticalLine = (p1.x() == p2.x());
int width = roundf(strokeThickness());
// We know these are vertical or horizontal lines, so the length will just
// be the sum of the displacement component vectors give or take 1 -
// probably worth the speed up of no square root, which also won't be exact.
FloatSize disp = p2 - p1;
int length = SkScalarRound(disp.width() + disp.height());
setupPaintForStroking(&paint, length);
if (strokeStyle() == DottedStroke || strokeStyle() == DashedStroke) {
// Do a rect fill of our endpoints. This ensures we always have the
// appearance of being a border. We then draw the actual dotted/dashed line.
SkRect r1, r2;
r1.set(p1.x(), p1.y(), p1.x() + width, p1.y() + width);
r2.set(p2.x(), p2.y(), p2.x() + width, p2.y() + width);
if (isVerticalLine) {
r1.offset(-width / 2, 0);
r2.offset(-width / 2, -width);
} else {
r1.offset(0, -width / 2);
r2.offset(-width, -width / 2);
}
SkPaint fillPaint;
fillPaint.setColor(paint.getColor());
drawRect(r1, fillPaint);
drawRect(r2, fillPaint);
}
adjustLineToPixelBoundaries(p1, p2, width, penStyle);
SkPoint pts[2] = { (SkPoint)p1, (SkPoint)p2 };
m_canvas->drawPoints(SkCanvas::kLines_PointMode, 2, pts, paint);
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawPoints(this, SkCanvas::kLines_PointMode, 2, pts, paint);
}
void GraphicsContext::drawLineForDocumentMarker(const FloatPoint& pt, float width, DocumentMarkerLineStyle style)
{
if (paintingDisabled())
return;
int deviceScaleFactor = m_useHighResMarker ? 2 : 1;
// Create the pattern we'll use to draw the underline.
int index = style == DocumentMarkerGrammarLineStyle ? 1 : 0;
static SkBitmap* misspellBitmap1x[2] = { 0, 0 };
static SkBitmap* misspellBitmap2x[2] = { 0, 0 };
SkBitmap** misspellBitmap = deviceScaleFactor == 2 ? misspellBitmap2x : misspellBitmap1x;
if (!misspellBitmap[index]) {
#if OS(MACOSX)
// Match the artwork used by the Mac.
const int rowPixels = 4 * deviceScaleFactor;
const int colPixels = 3 * deviceScaleFactor;
misspellBitmap[index] = new SkBitmap;
misspellBitmap[index]->setConfig(SkBitmap::kARGB_8888_Config,
rowPixels, colPixels);
misspellBitmap[index]->allocPixels();
misspellBitmap[index]->eraseARGB(0, 0, 0, 0);
const uint32_t transparentColor = 0x00000000;
if (deviceScaleFactor == 1) {
const uint32_t colors[2][6] = {
{ 0x2a2a0600, 0x57571000, 0xa8a81b00, 0xbfbf1f00, 0x70701200, 0xe0e02400 },
{ 0x2a0f0f0f, 0x571e1e1e, 0xa83d3d3d, 0xbf454545, 0x70282828, 0xe0515151 }
};
// Pattern: a b a a b a
// c d c c d c
// e f e e f e
for (int x = 0; x < colPixels; ++x) {
uint32_t* row = misspellBitmap[index]->getAddr32(0, x);
row[0] = colors[index][x * 2];
row[1] = colors[index][x * 2 + 1];
row[2] = colors[index][x * 2];
row[3] = transparentColor;
}
} else if (deviceScaleFactor == 2) {
const uint32_t colors[2][18] = {
{ 0x0a090101, 0x33320806, 0x55540f0a, 0x37360906, 0x6e6c120c, 0x6e6c120c, 0x7674140d, 0x8d8b1810, 0x8d8b1810,
0x96941a11, 0xb3b01f15, 0xb3b01f15, 0x6d6b130c, 0xd9d62619, 0xd9d62619, 0x19180402, 0x7c7a150e, 0xcecb2418 },
{ 0x0a020202, 0x33141414, 0x55232323, 0x37161616, 0x6e2e2e2e, 0x6e2e2e2e, 0x76313131, 0x8d3a3a3a, 0x8d3a3a3a,
0x963e3e3e, 0xb34b4b4b, 0xb34b4b4b, 0x6d2d2d2d, 0xd95b5b5b, 0xd95b5b5b, 0x19090909, 0x7c343434, 0xce575757 }
};
// Pattern: a b c c b a
// d e f f e d
// g h j j h g
// k l m m l k
// n o p p o n
// q r s s r q
for (int x = 0; x < colPixels; ++x) {
uint32_t* row = misspellBitmap[index]->getAddr32(0, x);
row[0] = colors[index][x * 3];
row[1] = colors[index][x * 3 + 1];
row[2] = colors[index][x * 3 + 2];
row[3] = colors[index][x * 3 + 2];
row[4] = colors[index][x * 3 + 1];
row[5] = colors[index][x * 3];
row[6] = transparentColor;
row[7] = transparentColor;
}
} else
ASSERT_NOT_REACHED();
#else
// We use a 2-pixel-high misspelling indicator because that seems to be
// what WebKit is designed for, and how much room there is in a typical
// page for it.
const int rowPixels = 32 * deviceScaleFactor; // Must be multiple of 4 for pattern below.
const int colPixels = 2 * deviceScaleFactor;
misspellBitmap[index] = new SkBitmap;
misspellBitmap[index]->setConfig(SkBitmap::kARGB_8888_Config, rowPixels, colPixels);
misspellBitmap[index]->allocPixels();
misspellBitmap[index]->eraseARGB(0, 0, 0, 0);
if (deviceScaleFactor == 1)
draw1xMarker(misspellBitmap[index], index);
else if (deviceScaleFactor == 2)
draw2xMarker(misspellBitmap[index], index);
else
ASSERT_NOT_REACHED();
#endif
}
#if OS(MACOSX)
SkScalar originX = WebCoreFloatToSkScalar(pt.x()) * deviceScaleFactor;
SkScalar originY = WebCoreFloatToSkScalar(pt.y()) * deviceScaleFactor;
// Make sure to draw only complete dots.
int rowPixels = misspellBitmap[index]->width();
float widthMod = fmodf(width * deviceScaleFactor, rowPixels);
if (rowPixels - widthMod > deviceScaleFactor)
width -= widthMod / deviceScaleFactor;
#else
SkScalar originX = WebCoreFloatToSkScalar(pt.x());
// Offset it vertically by 1 so that there's some space under the text.
SkScalar originY = WebCoreFloatToSkScalar(pt.y()) + 1;
originX *= deviceScaleFactor;
originY *= deviceScaleFactor;
#endif
RefPtr<SkShader> shader = adoptRef(SkShader::CreateBitmapShader(
*misspellBitmap[index], SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode));
SkMatrix matrix;
matrix.setTranslate(originX, originY);
shader->setLocalMatrix(matrix);
SkPaint paint;
paint.setShader(shader.get());
SkRect rect;
rect.set(originX, originY, originX + WebCoreFloatToSkScalar(width) * deviceScaleFactor, originY + SkIntToScalar(misspellBitmap[index]->height()));
if (deviceScaleFactor == 2) {
save();
scale(FloatSize(0.5, 0.5));
}
drawRect(rect, paint);
if (deviceScaleFactor == 2)
restore();
}
void GraphicsContext::drawLineForText(const FloatPoint& pt, float width, bool printing)
{
if (paintingDisabled())
return;
if (width <= 0)
return;
int thickness = SkMax32(static_cast<int>(strokeThickness()), 1);
SkRect r;
r.fLeft = WebCoreFloatToSkScalar(pt.x());
// Avoid anti-aliasing lines. Currently, these are always horizontal.
// Round to nearest pixel to match text and other content.
r.fTop = WebCoreFloatToSkScalar(floorf(pt.y() + 0.5f));
r.fRight = r.fLeft + WebCoreFloatToSkScalar(width);
r.fBottom = r.fTop + SkIntToScalar(thickness);
SkPaint paint;
switch (strokeStyle()) {
case NoStroke:
case SolidStroke:
case DoubleStroke:
case WavyStroke:
setupPaintForFilling(&paint);
break;
case DottedStroke:
case DashedStroke:
setupPaintForStroking(&paint);
break;
}
// Text lines are drawn using the stroke color.
paint.setColor(effectiveStrokeColor());
drawRect(r, paint);
}
// Draws a filled rectangle with a stroked border.
void GraphicsContext::drawRect(const IntRect& rect)
{
if (paintingDisabled())
return;
ASSERT(!rect.isEmpty());
if (rect.isEmpty())
return;
SkRect skRect = rect;
SkPaint paint;
int fillcolorNotTransparent = m_state->m_fillColor.rgb() & 0xFF000000;
if (fillcolorNotTransparent) {
setupPaintForFilling(&paint);
drawRect(skRect, paint);
}
if (m_state->m_strokeData.style() != NoStroke && (m_state->m_strokeData.color().rgb() & 0xFF000000)) {
// We do a fill of four rects to simulate the stroke of a border.
paint.reset();
setupPaintForFilling(&paint);
// need to jam in the strokeColor
paint.setColor(this->effectiveStrokeColor());
SkRect topBorder = { skRect.fLeft, skRect.fTop, skRect.fRight, skRect.fTop + 1 };
drawRect(topBorder, paint);
SkRect bottomBorder = { skRect.fLeft, skRect.fBottom - 1, skRect.fRight, skRect.fBottom };
drawRect(bottomBorder, paint);
SkRect leftBorder = { skRect.fLeft, skRect.fTop + 1, skRect.fLeft + 1, skRect.fBottom - 1 };
drawRect(leftBorder, paint);
SkRect rightBorder = { skRect.fRight - 1, skRect.fTop + 1, skRect.fRight, skRect.fBottom - 1 };
drawRect(rightBorder, paint);
}
}
void GraphicsContext::drawText(const Font& font, const TextRunPaintInfo& runInfo, const FloatPoint& point)
{
if (paintingDisabled())
return;
font.drawText(this, runInfo, point);
}
void GraphicsContext::drawEmphasisMarks(const Font& font, const TextRunPaintInfo& runInfo, const AtomicString& mark, const FloatPoint& point)
{
if (paintingDisabled())
return;
font.drawEmphasisMarks(this, runInfo, mark, point);
}
void GraphicsContext::drawBidiText(const Font& font, const TextRunPaintInfo& runInfo, const FloatPoint& point, Font::CustomFontNotReadyAction customFontNotReadyAction)
{
if (paintingDisabled())
return;
// sub-run painting is not supported for Bidi text.
const TextRun& run = runInfo.run;
ASSERT((runInfo.from == 0) && (runInfo.to == run.length()));
BidiResolver<TextRunIterator, BidiCharacterRun> bidiResolver;
bidiResolver.setStatus(BidiStatus(run.direction(), run.directionalOverride()));
bidiResolver.setPositionIgnoringNestedIsolates(TextRunIterator(&run, 0));
// FIXME: This ownership should be reversed. We should pass BidiRunList
// to BidiResolver in createBidiRunsForLine.
BidiRunList<BidiCharacterRun>& bidiRuns = bidiResolver.runs();
bidiResolver.createBidiRunsForLine(TextRunIterator(&run, run.length()));
if (!bidiRuns.runCount())
return;
FloatPoint currPoint = point;
BidiCharacterRun* bidiRun = bidiRuns.firstRun();
while (bidiRun) {
TextRun subrun = run.subRun(bidiRun->start(), bidiRun->stop() - bidiRun->start());
bool isRTL = bidiRun->level() % 2;
subrun.setDirection(isRTL ? RTL : LTR);
subrun.setDirectionalOverride(bidiRun->dirOverride(false));
TextRunPaintInfo subrunInfo(subrun);
subrunInfo.bounds = runInfo.bounds;
font.drawText(this, subrunInfo, currPoint, customFontNotReadyAction);
bidiRun = bidiRun->next();
// FIXME: Have Font::drawText return the width of what it drew so that we don't have to re-measure here.
if (bidiRun)
currPoint.move(font.width(subrun), 0);
}
bidiRuns.deleteRuns();
}
void GraphicsContext::drawHighlightForText(const Font& font, const TextRun& run, const FloatPoint& point, int h, const Color& backgroundColor, int from, int to)
{
if (paintingDisabled())
return;
fillRect(font.selectionRectForText(run, point, h, from, to), backgroundColor);
}
void GraphicsContext::drawImage(Image* image, const IntPoint& p, CompositeOperator op, RespectImageOrientationEnum shouldRespectImageOrientation)
{
if (!image)
return;
drawImage(image, FloatRect(IntRect(p, image->size())), FloatRect(FloatPoint(), FloatSize(image->size())), op, shouldRespectImageOrientation);
}
void GraphicsContext::drawImage(Image* image, const IntRect& r, CompositeOperator op, RespectImageOrientationEnum shouldRespectImageOrientation, bool useLowQualityScale)
{
if (!image)
return;
drawImage(image, FloatRect(r), FloatRect(FloatPoint(), FloatSize(image->size())), op, shouldRespectImageOrientation, useLowQualityScale);
}
void GraphicsContext::drawImage(Image* image, const IntPoint& dest, const IntRect& srcRect, CompositeOperator op, RespectImageOrientationEnum shouldRespectImageOrientation)
{
drawImage(image, FloatRect(IntRect(dest, srcRect.size())), FloatRect(srcRect), op, shouldRespectImageOrientation);
}
void GraphicsContext::drawImage(Image* image, const FloatRect& dest, const FloatRect& src, CompositeOperator op, RespectImageOrientationEnum shouldRespectImageOrientation, bool useLowQualityScale)
{
drawImage(image, dest, src, op, BlendModeNormal, shouldRespectImageOrientation, useLowQualityScale);
}
void GraphicsContext::drawImage(Image* image, const FloatRect& dest)
{
if (!image)
return;
drawImage(image, dest, FloatRect(IntRect(IntPoint(), image->size())));
}
void GraphicsContext::drawImage(Image* image, const FloatRect& dest, const FloatRect& src, CompositeOperator op, BlendMode blendMode, RespectImageOrientationEnum shouldRespectImageOrientation, bool useLowQualityScale)
{ if (paintingDisabled() || !image)
return;
InterpolationQuality previousInterpolationQuality = InterpolationDefault;
if (useLowQualityScale) {
previousInterpolationQuality = imageInterpolationQuality();
setImageInterpolationQuality(InterpolationLow);
}
image->draw(this, dest, src, op, blendMode, shouldRespectImageOrientation);
if (useLowQualityScale)
setImageInterpolationQuality(previousInterpolationQuality);
}
void GraphicsContext::drawTiledImage(Image* image, const IntRect& destRect, const IntPoint& srcPoint, const IntSize& tileSize, CompositeOperator op, bool useLowQualityScale, BlendMode blendMode)
{
if (paintingDisabled() || !image)
return;
if (useLowQualityScale) {
InterpolationQuality previousInterpolationQuality = imageInterpolationQuality();
setImageInterpolationQuality(InterpolationLow);
image->drawTiled(this, destRect, srcPoint, tileSize, op, blendMode);
setImageInterpolationQuality(previousInterpolationQuality);
} else {
image->drawTiled(this, destRect, srcPoint, tileSize, op, blendMode);
}
}
void GraphicsContext::drawTiledImage(Image* image, const IntRect& dest, const IntRect& srcRect,
const FloatSize& tileScaleFactor, Image::TileRule hRule, Image::TileRule vRule, CompositeOperator op, bool useLowQualityScale)
{
if (paintingDisabled() || !image)
return;
if (hRule == Image::StretchTile && vRule == Image::StretchTile) {
// Just do a scale.
drawImage(image, dest, srcRect, op);
return;
}
if (useLowQualityScale) {
InterpolationQuality previousInterpolationQuality = imageInterpolationQuality();
setImageInterpolationQuality(InterpolationLow);
image->drawTiled(this, dest, srcRect, tileScaleFactor, hRule, vRule, op);
setImageInterpolationQuality(previousInterpolationQuality);
} else {
image->drawTiled(this, dest, srcRect, tileScaleFactor, hRule, vRule, op);
}
}
void GraphicsContext::drawImageBuffer(ImageBuffer* image, const IntPoint& p, CompositeOperator op, BlendMode blendMode)
{
if (!image)
return;
drawImageBuffer(image, FloatRect(IntRect(p, image->logicalSize())), FloatRect(FloatPoint(), FloatSize(image->logicalSize())), op, blendMode);
}
void GraphicsContext::drawImageBuffer(ImageBuffer* image, const IntRect& r, CompositeOperator op, BlendMode blendMode, bool useLowQualityScale)
{
if (!image)
return;
drawImageBuffer(image, FloatRect(r), FloatRect(FloatPoint(), FloatSize(image->logicalSize())), op, blendMode, useLowQualityScale);
}
void GraphicsContext::drawImageBuffer(ImageBuffer* image, const IntPoint& dest, const IntRect& srcRect, CompositeOperator op, BlendMode blendMode)
{
drawImageBuffer(image, FloatRect(IntRect(dest, srcRect.size())), FloatRect(srcRect), op, blendMode);
}
void GraphicsContext::drawImageBuffer(ImageBuffer* image, const IntRect& dest, const IntRect& srcRect, CompositeOperator op, BlendMode blendMode, bool useLowQualityScale)
{
drawImageBuffer(image, FloatRect(dest), FloatRect(srcRect), op, blendMode, useLowQualityScale);
}
void GraphicsContext::drawImageBuffer(ImageBuffer* image, const FloatRect& dest)
{
if (!image)
return;
drawImageBuffer(image, dest, FloatRect(IntRect(IntPoint(), image->logicalSize())));
}
void GraphicsContext::drawImageBuffer(ImageBuffer* image, const FloatRect& dest, const FloatRect& src, CompositeOperator op, BlendMode blendMode, bool useLowQualityScale)
{
if (paintingDisabled() || !image)
return;
if (useLowQualityScale) {
InterpolationQuality previousInterpolationQuality = imageInterpolationQuality();
setImageInterpolationQuality(InterpolationLow);
image->draw(this, dest, src, op, blendMode, useLowQualityScale);
setImageInterpolationQuality(previousInterpolationQuality);
} else {
image->draw(this, dest, src, op, blendMode, useLowQualityScale);
}
}
void GraphicsContext::writePixels(const SkBitmap& bitmap, int x, int y, SkCanvas::Config8888 config8888)
{
if (paintingDisabled())
return;
m_canvas->writePixels(bitmap, x, y, config8888);
if (m_trackOpaqueRegion) {
SkRect rect = SkRect::MakeXYWH(x, y, bitmap.width(), bitmap.height());
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
m_opaqueRegion.didDrawRect(this, rect, paint, &bitmap);
}
}
void GraphicsContext::drawBitmap(const SkBitmap& bitmap, SkScalar left, SkScalar top, const SkPaint* paint)
{
if (paintingDisabled())
return;
m_canvas->drawBitmap(bitmap, left, top, paint);
if (m_trackOpaqueRegion) {
SkRect rect = SkRect::MakeXYWH(left, top, bitmap.width(), bitmap.height());
m_opaqueRegion.didDrawRect(this, rect, *paint, &bitmap);
}
}
void GraphicsContext::drawBitmapRect(const SkBitmap& bitmap, const SkRect* src,
const SkRect& dst, const SkPaint* paint)
{
if (paintingDisabled())
return;
m_canvas->drawBitmapRectToRect(bitmap, src, dst, paint);
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawRect(this, dst, *paint, &bitmap);
}
void GraphicsContext::drawOval(const SkRect& oval, const SkPaint& paint)
{
if (paintingDisabled())
return;
m_canvas->drawOval(oval, paint);
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawBounded(this, oval, paint);
}
void GraphicsContext::drawPath(const SkPath& path, const SkPaint& paint)
{
if (paintingDisabled())
return;
m_canvas->drawPath(path, paint);
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawPath(this, path, paint);
}
void GraphicsContext::drawRect(const SkRect& rect, const SkPaint& paint)
{
if (paintingDisabled())
return;
m_canvas->drawRect(rect, paint);
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawRect(this, rect, paint, 0);
}
void GraphicsContext::didDrawRect(const SkRect& rect, const SkPaint& paint, const SkBitmap* bitmap)
{
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawRect(this, rect, paint, bitmap);
}
void GraphicsContext::drawPosText(const void* text, size_t byteLength,
const SkPoint pos[], const SkRect& textRect, const SkPaint& paint)
{
if (paintingDisabled())
return;
m_canvas->drawPosText(text, byteLength, pos, paint);
didDrawTextInRect(textRect);
// FIXME: compute bounds for positioned text.
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawUnbounded(this, paint, OpaqueRegionSkia::FillOrStroke);
}
void GraphicsContext::drawPosTextH(const void* text, size_t byteLength,
const SkScalar xpos[], SkScalar constY, const SkRect& textRect, const SkPaint& paint)
{
if (paintingDisabled())
return;
m_canvas->drawPosTextH(text, byteLength, xpos, constY, paint);
didDrawTextInRect(textRect);
// FIXME: compute bounds for positioned text.
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawUnbounded(this, paint, OpaqueRegionSkia::FillOrStroke);
}
void GraphicsContext::drawTextOnPath(const void* text, size_t byteLength,
const SkPath& path, const SkRect& textRect, const SkMatrix* matrix, const SkPaint& paint)
{
if (paintingDisabled())
return;
m_canvas->drawTextOnPath(text, byteLength, path, matrix, paint);
didDrawTextInRect(textRect);
// FIXME: compute bounds for positioned text.
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawUnbounded(this, paint, OpaqueRegionSkia::FillOrStroke);
}
void GraphicsContext::fillPath(const Path& pathToFill)
{
if (paintingDisabled() || pathToFill.isEmpty())
return;
// Use const_cast and temporarily modify the fill type instead of copying the path.
SkPath& path = const_cast<SkPath&>(pathToFill.skPath());
SkPath::FillType previousFillType = path.getFillType();
SkPath::FillType temporaryFillType = m_state->m_fillRule == RULE_EVENODD ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType;
path.setFillType(temporaryFillType);
SkPaint paint;
setupPaintForFilling(&paint);
drawPath(path, paint);
path.setFillType(previousFillType);
}
void GraphicsContext::fillRect(const FloatRect& rect)
{
if (paintingDisabled())
return;
SkRect r = rect;
SkPaint paint;
setupPaintForFilling(&paint);
drawRect(r, paint);
}
void GraphicsContext::fillRect(const FloatRect& rect, const Color& color)
{
if (paintingDisabled())
return;
SkRect r = rect;
SkPaint paint;
setupPaintCommon(&paint);
paint.setColor(color.rgb());
drawRect(r, paint);
}
void GraphicsContext::fillRoundedRect(const IntRect& rect, const IntSize& topLeft, const IntSize& topRight,
const IntSize& bottomLeft, const IntSize& bottomRight, const Color& color)
{
if (paintingDisabled())
return;
if (topLeft.width() + topRight.width() > rect.width()
|| bottomLeft.width() + bottomRight.width() > rect.width()
|| topLeft.height() + bottomLeft.height() > rect.height()
|| topRight.height() + bottomRight.height() > rect.height()) {
// Not all the radii fit, return a rect. This matches the behavior of
// Path::createRoundedRectangle. Without this we attempt to draw a round
// shadow for a square box.
fillRect(rect, color);
return;
}
SkVector radii[4];
setRadii(radii, topLeft, topRight, bottomRight, bottomLeft);
SkRRect rr;
rr.setRectRadii(rect, radii);
SkPaint paint;
setupPaintForFilling(&paint);
paint.setColor(color.rgb());
m_canvas->drawRRect(rr, paint);
if (m_trackOpaqueRegion)
m_opaqueRegion.didDrawBounded(this, rr.getBounds(), paint);
}
void GraphicsContext::fillEllipse(const FloatRect& ellipse)
{
if (paintingDisabled())
return;
SkRect rect = ellipse;
SkPaint paint;
setupPaintForFilling(&paint);
drawOval(rect, paint);
}
void GraphicsContext::strokePath(const Path& pathToStroke)
{
if (paintingDisabled() || pathToStroke.isEmpty())
return;
const SkPath& path = pathToStroke.skPath();
SkPaint paint;
setupPaintForStroking(&paint);
drawPath(path, paint);
}
void GraphicsContext::strokeRect(const FloatRect& rect, float lineWidth)
{
if (paintingDisabled())
return;
SkPaint paint;
setupPaintForStroking(&paint);
paint.setStrokeWidth(WebCoreFloatToSkScalar(lineWidth));
// strokerect has special rules for CSS when the rect is degenerate:
// if width==0 && height==0, do nothing
// if width==0 || height==0, then just draw line for the other dimension
SkRect r(rect);
bool validW = r.width() > 0;
bool validH = r.height() > 0;
if (validW && validH) {
drawRect(r, paint);
} else if (validW || validH) {
// we are expected to respect the lineJoin, so we can't just call
// drawLine -- we have to create a path that doubles back on itself.
SkPath path;
path.moveTo(r.fLeft, r.fTop);
path.lineTo(r.fRight, r.fBottom);
path.close();
drawPath(path, paint);
}
}
void GraphicsContext::strokeEllipse(const FloatRect& ellipse)
{
if (paintingDisabled())
return;
SkRect rect(ellipse);
SkPaint paint;
setupPaintForStroking(&paint);
drawOval(rect, paint);
}
void GraphicsContext::clipRoundedRect(const RoundedRect& rect)
{
if (paintingDisabled())
return;
SkVector radii[4];
RoundedRect::Radii wkRadii = rect.radii();
setRadii(radii, wkRadii.topLeft(), wkRadii.topRight(), wkRadii.bottomRight(), wkRadii.bottomLeft());
SkRRect r;
r.setRectRadii(rect.rect(), radii);
clipRRect(r, AntiAliased);
}
void GraphicsContext::clipOut(const Path& pathToClip)
{
if (paintingDisabled())
return;
// Use const_cast and temporarily toggle the inverse fill type instead of copying the path.
SkPath& path = const_cast<SkPath&>(pathToClip.skPath());
path.toggleInverseFillType();
clipPath(path, AntiAliased);
path.toggleInverseFillType();
}
void GraphicsContext::clipPath(const Path& pathToClip, WindRule clipRule)
{
if (paintingDisabled() || pathToClip.isEmpty())
return;
// Use const_cast and temporarily modify the fill type instead of copying the path.
SkPath& path = const_cast<SkPath&>(pathToClip.skPath());
SkPath::FillType previousFillType = path.getFillType();
SkPath::FillType temporaryFillType = clipRule == RULE_EVENODD ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType;
path.setFillType(temporaryFillType);
clipPath(path, AntiAliased);
path.setFillType(previousFillType);
}
void GraphicsContext::clipConvexPolygon(size_t numPoints, const FloatPoint* points, bool antialiased)
{
if (paintingDisabled())
return;
if (numPoints <= 1)
return;
SkPath path;
setPathFromConvexPoints(&path, numPoints, points);
clipPath(path, antialiased ? AntiAliased : NotAntiAliased);
}
void GraphicsContext::clipOutRoundedRect(const RoundedRect& rect)
{
if (paintingDisabled())
return;
if (!rect.isRounded()) {
clipOut(rect.rect());
return;
}
Path path;
path.addRoundedRect(rect);
clipOut(path);
}
void GraphicsContext::canvasClip(const Path& pathToClip, WindRule clipRule)
{
if (paintingDisabled())
return;
// Use const_cast and temporarily modify the fill type instead of copying the path.
SkPath& path = const_cast<SkPath&>(pathToClip.skPath());
SkPath::FillType previousFillType = path.getFillType();
SkPath::FillType temporaryFillType = clipRule == RULE_EVENODD ? SkPath::kEvenOdd_FillType : SkPath::kWinding_FillType;
path.setFillType(temporaryFillType);
clipPath(path);
path.setFillType(previousFillType);
}
bool GraphicsContext::clipRect(const SkRect& rect, AntiAliasingMode aa, SkRegion::Op op)
{
if (paintingDisabled())
return false;
realizeSave(SkCanvas::kClip_SaveFlag);
return m_canvas->clipRect(rect, op, aa == AntiAliased);
}
bool GraphicsContext::clipPath(const SkPath& path, AntiAliasingMode aa, SkRegion::Op op)
{
if (paintingDisabled())
return false;
realizeSave(SkCanvas::kClip_SaveFlag);
return m_canvas->clipPath(path, op, aa == AntiAliased);
}
bool GraphicsContext::clipRRect(const SkRRect& rect, AntiAliasingMode aa, SkRegion::Op op)
{
if (paintingDisabled())
return false;
realizeSave(SkCanvas::kClip_SaveFlag);
return m_canvas->clipRRect(rect, op, aa == AntiAliased);
}
void GraphicsContext::rotate(float angleInRadians)
{
if (paintingDisabled())
return;
realizeSave(SkCanvas::kMatrix_SaveFlag);
m_canvas->rotate(WebCoreFloatToSkScalar(angleInRadians * (180.0f / 3.14159265f)));
}
void GraphicsContext::translate(float w, float h)
{
if (paintingDisabled())
return;
realizeSave(SkCanvas::kMatrix_SaveFlag);
m_canvas->translate(WebCoreFloatToSkScalar(w), WebCoreFloatToSkScalar(h));
}
void GraphicsContext::scale(const FloatSize& size)
{
if (paintingDisabled())
return;
realizeSave(SkCanvas::kMatrix_SaveFlag);
m_canvas->scale(WebCoreFloatToSkScalar(size.width()), WebCoreFloatToSkScalar(size.height()));
}
void GraphicsContext::setURLForRect(const KURL& link, const IntRect& destRect)
{
if (paintingDisabled())
return;
SkAutoDataUnref url(SkData::NewWithCString(link.string().utf8().data()));
SkAnnotateRectWithURL(m_canvas, destRect, url.get());
}
void GraphicsContext::setURLFragmentForRect(const String& destName, const IntRect& rect)
{
if (paintingDisabled())
return;
SkAutoDataUnref skDestName(SkData::NewWithCString(destName.utf8().data()));
SkAnnotateLinkToDestination(m_canvas, rect, skDestName.get());
}
void GraphicsContext::addURLTargetAtPoint(const String& name, const IntPoint& pos)
{
if (paintingDisabled())
return;
SkAutoDataUnref nameData(SkData::NewWithCString(name.utf8().data()));
SkAnnotateNamedDestination(m_canvas, SkPoint::Make(pos.x(), pos.y()), nameData);
}
AffineTransform GraphicsContext::getCTM(IncludeDeviceScale) const
{
if (paintingDisabled())
return AffineTransform();
const SkMatrix& m = getTotalMatrix();
return AffineTransform(SkScalarToDouble(m.getScaleX()),
SkScalarToDouble(m.getSkewY()),
SkScalarToDouble(m.getSkewX()),
SkScalarToDouble(m.getScaleY()),
SkScalarToDouble(m.getTranslateX()),
SkScalarToDouble(m.getTranslateY()));
}
void GraphicsContext::fillRect(const FloatRect& rect, const Color& color, CompositeOperator op)
{
if (paintingDisabled())
return;
CompositeOperator previousOperator = compositeOperation();
setCompositeOperation(op);
fillRect(rect, color);
setCompositeOperation(previousOperator);
}
void GraphicsContext::fillRoundedRect(const RoundedRect& rect, const Color& color)
{
if (rect.isRounded())
fillRoundedRect(rect.rect(), rect.radii().topLeft(), rect.radii().topRight(), rect.radii().bottomLeft(), rect.radii().bottomRight(), color);
else
fillRect(rect.rect(), color);
}
void GraphicsContext::fillRectWithRoundedHole(const IntRect& rect, const RoundedRect& roundedHoleRect, const Color& color)
{
if (paintingDisabled())
return;
Path path;
path.addRect(rect);
if (!roundedHoleRect.radii().isZero())
path.addRoundedRect(roundedHoleRect);
else
path.addRect(roundedHoleRect.rect());
WindRule oldFillRule = fillRule();
Color oldFillColor = fillColor();
setFillRule(RULE_EVENODD);
setFillColor(color);
fillPath(path);
setFillRule(oldFillRule);
setFillColor(oldFillColor);
}
void GraphicsContext::clearRect(const FloatRect& rect)
{
if (paintingDisabled())
return;
SkRect r = rect;
SkPaint paint;
setupPaintForFilling(&paint);
paint.setXfermodeMode(SkXfermode::kClear_Mode);
drawRect(r, paint);
}
void GraphicsContext::adjustLineToPixelBoundaries(FloatPoint& p1, FloatPoint& p2, float strokeWidth, StrokeStyle penStyle)
{
// For odd widths, we add in 0.5 to the appropriate x/y so that the float arithmetic
// works out. For example, with a border width of 3, WebKit will pass us (y1+y2)/2, e.g.,
// (50+53)/2 = 103/2 = 51 when we want 51.5. It is always true that an even width gave
// us a perfect position, but an odd width gave us a position that is off by exactly 0.5.
if (penStyle == DottedStroke || penStyle == DashedStroke) {
if (p1.x() == p2.x()) {
p1.setY(p1.y() + strokeWidth);
p2.setY(p2.y() - strokeWidth);
} else {
p1.setX(p1.x() + strokeWidth);
p2.setX(p2.x() - strokeWidth);
}
}
if (static_cast<int>(strokeWidth) % 2) { //odd
if (p1.x() == p2.x()) {
// We're a vertical line. Adjust our x.
p1.setX(p1.x() + 0.5f);
p2.setX(p2.x() + 0.5f);
} else {
// We're a horizontal line. Adjust our y.
p1.setY(p1.y() + 0.5f);
p2.setY(p2.y() + 0.5f);
}
}
}
static bool scalesMatch(AffineTransform a, AffineTransform b)
{
return a.xScale() == b.xScale() && a.yScale() == b.yScale();
}
PassOwnPtr<ImageBuffer> GraphicsContext::createCompatibleBuffer(const IntSize& size, bool hasAlpha) const
{
// Make the buffer larger if the context's transform is scaling it so we need a higher
// resolution than one pixel per unit. Also set up a corresponding scale factor on the
// graphics context.
AffineTransform transform = getCTM(DefinitelyIncludeDeviceScale);
IntSize scaledSize(static_cast<int>(ceil(size.width() * transform.xScale())), static_cast<int>(ceil(size.height() * transform.yScale())));
OwnPtr<ImageBuffer> buffer = ImageBuffer::createCompatibleBuffer(scaledSize, 1, this, hasAlpha);
if (!buffer)
return nullptr;
buffer->context()->scale(FloatSize(static_cast<float>(scaledSize.width()) / size.width(),
static_cast<float>(scaledSize.height()) / size.height()));
return buffer.release();
}
bool GraphicsContext::isCompatibleWithBuffer(ImageBuffer* buffer) const
{
GraphicsContext* bufferContext = buffer->context();
return scalesMatch(getCTM(), bufferContext->getCTM()) && m_accelerated == bufferContext->isAccelerated();
}
void GraphicsContext::addCornerArc(SkPath* path, const SkRect& rect, const IntSize& size, int startAngle)
{
SkIRect ir;
int rx = SkMin32(SkScalarRound(rect.width()), size.width());
int ry = SkMin32(SkScalarRound(rect.height()), size.height());
ir.set(-rx, -ry, rx, ry);
switch (startAngle) {
case 0:
ir.offset(rect.fRight - ir.fRight, rect.fBottom - ir.fBottom);
break;
case 90:
ir.offset(rect.fLeft - ir.fLeft, rect.fBottom - ir.fBottom);
break;
case 180:
ir.offset(rect.fLeft - ir.fLeft, rect.fTop - ir.fTop);
break;
case 270:
ir.offset(rect.fRight - ir.fRight, rect.fTop - ir.fTop);
break;
default:
ASSERT(0);
}
SkRect r;
r.set(ir);
path->arcTo(r, SkIntToScalar(startAngle), SkIntToScalar(90), false);
}
void GraphicsContext::setPathFromConvexPoints(SkPath* path, size_t numPoints, const FloatPoint* points)
{
path->incReserve(numPoints);
path->moveTo(WebCoreFloatToSkScalar(points[0].x()),
WebCoreFloatToSkScalar(points[0].y()));
for (size_t i = 1; i < numPoints; ++i) {
path->lineTo(WebCoreFloatToSkScalar(points[i].x()),
WebCoreFloatToSkScalar(points[i].y()));
}
/* The code used to just blindly call this
path->setIsConvex(true);
But webkit can sometimes send us non-convex 4-point values, so we mark the path's
convexity as unknown, so it will get computed by skia at draw time.
See crbug.com 108605
*/
SkPath::Convexity convexity = SkPath::kConvex_Convexity;
if (numPoints == 4)
convexity = SkPath::kUnknown_Convexity;
path->setConvexity(convexity);
}
void GraphicsContext::setupPaintCommon(SkPaint* paint) const
{
#if defined(SK_DEBUG)
{
SkPaint defaultPaint;
SkASSERT(*paint == defaultPaint);
}
#endif
paint->setAntiAlias(m_state->m_shouldAntialias);
if (!SkXfermode::IsMode(m_state->m_xferMode.get(), SkXfermode::kSrcOver_Mode))
paint->setXfermode(m_state->m_xferMode.get());
if (m_state->m_looper)
paint->setLooper(m_state->m_looper.get());
paint->setColorFilter(m_state->m_colorFilter.get());
}
void GraphicsContext::drawOuterPath(const SkPath& path, SkPaint& paint, int width)
{
#if OS(MACOSX)
paint.setAlpha(64);
paint.setStrokeWidth(width);
paint.setPathEffect(new SkCornerPathEffect((width - 1) * 0.5f))->unref();
#else
paint.setStrokeWidth(1);
paint.setPathEffect(new SkCornerPathEffect(1))->unref();
#endif
drawPath(path, paint);
}
void GraphicsContext::drawInnerPath(const SkPath& path, SkPaint& paint, int width)
{
#if OS(MACOSX)
paint.setAlpha(128);
paint.setStrokeWidth(width * 0.5f);
drawPath(path, paint);
#endif
}
void GraphicsContext::setRadii(SkVector* radii, IntSize topLeft, IntSize topRight, IntSize bottomRight, IntSize bottomLeft)
{
radii[SkRRect::kUpperLeft_Corner].set(SkIntToScalar(topLeft.width()),
SkIntToScalar(topLeft.height()));
radii[SkRRect::kUpperRight_Corner].set(SkIntToScalar(topRight.width()),
SkIntToScalar(topRight.height()));
radii[SkRRect::kLowerRight_Corner].set(SkIntToScalar(bottomRight.width()),
SkIntToScalar(bottomRight.height()));
radii[SkRRect::kLowerLeft_Corner].set(SkIntToScalar(bottomLeft.width()),
SkIntToScalar(bottomLeft.height()));
}
#if OS(MACOSX)
CGColorSpaceRef deviceRGBColorSpaceRef()
{
static CGColorSpaceRef deviceSpace = CGColorSpaceCreateDeviceRGB();
return deviceSpace;
}
#else
void GraphicsContext::draw2xMarker(SkBitmap* bitmap, int index)
{
const SkPMColor lineColor = lineColors(index);
const SkPMColor antiColor1 = antiColors1(index);
const SkPMColor antiColor2 = antiColors2(index);
uint32_t* row1 = bitmap->getAddr32(0, 0);
uint32_t* row2 = bitmap->getAddr32(0, 1);
uint32_t* row3 = bitmap->getAddr32(0, 2);
uint32_t* row4 = bitmap->getAddr32(0, 3);
// Pattern: X0o o0X0o o0
// XX0o o0XXX0o o0X
// o0XXX0o o0XXX0o
// o0X0o o0X0o
const SkPMColor row1Color[] = { lineColor, antiColor1, antiColor2, 0, 0, 0, antiColor2, antiColor1 };
const SkPMColor row2Color[] = { lineColor, lineColor, antiColor1, antiColor2, 0, antiColor2, antiColor1, lineColor };
const SkPMColor row3Color[] = { 0, antiColor2, antiColor1, lineColor, lineColor, lineColor, antiColor1, antiColor2 };
const SkPMColor row4Color[] = { 0, 0, antiColor2, antiColor1, lineColor, antiColor1, antiColor2, 0 };
for (int x = 0; x < bitmap->width() + 8; x += 8) {
int count = std::min(bitmap->width() - x, 8);
if (count > 0) {
memcpy(row1 + x, row1Color, count * sizeof(SkPMColor));
memcpy(row2 + x, row2Color, count * sizeof(SkPMColor));
memcpy(row3 + x, row3Color, count * sizeof(SkPMColor));
memcpy(row4 + x, row4Color, count * sizeof(SkPMColor));
}
}
}
void GraphicsContext::draw1xMarker(SkBitmap* bitmap, int index)
{
const uint32_t lineColor = lineColors(index);
const uint32_t antiColor = antiColors2(index);
// Pattern: X o o X o o X
// o X o o X o
uint32_t* row1 = bitmap->getAddr32(0, 0);
uint32_t* row2 = bitmap->getAddr32(0, 1);
for (int x = 0; x < bitmap->width(); x++) {
switch (x % 4) {
case 0:
row1[x] = lineColor;
break;
case 1:
row1[x] = antiColor;
row2[x] = antiColor;
break;
case 2:
row2[x] = lineColor;
break;
case 3:
row1[x] = antiColor;
row2[x] = antiColor;
break;
}
}
}
const SkPMColor GraphicsContext::lineColors(int index)
{
static const SkPMColor colors[] = {
SkPreMultiplyARGB(0xFF, 0xFF, 0x00, 0x00), // Opaque red.
SkPreMultiplyARGB(0xFF, 0xC0, 0xC0, 0xC0) // Opaque gray.
};
return colors[index];
}
const SkPMColor GraphicsContext::antiColors1(int index)
{
static const SkPMColor colors[] = {
SkPreMultiplyARGB(0xB0, 0xFF, 0x00, 0x00), // Semitransparent red.
SkPreMultiplyARGB(0xB0, 0xC0, 0xC0, 0xC0) // Semitransparent gray.
};
return colors[index];
}
const SkPMColor GraphicsContext::antiColors2(int index)
{
static const SkPMColor colors[] = {
SkPreMultiplyARGB(0x60, 0xFF, 0x00, 0x00), // More transparent red
SkPreMultiplyARGB(0x60, 0xC0, 0xC0, 0xC0) // More transparent gray
};
return colors[index];
}
#endif
void GraphicsContext::setupShader(SkPaint* paint, Gradient* grad, Pattern* pat, SkColor color) const
{
RefPtr<SkShader> shader;
if (grad) {
shader = grad->shader();
color = SK_ColorBLACK;
} else if (pat) {
shader = pat->shader();
color = SK_ColorBLACK;
paint->setFilterBitmap(imageInterpolationQuality() != InterpolationNone);
}
paint->setColor(m_state->applyAlpha(color));
if (!shader)
return;
paint->setShader(shader.get());
}
void GraphicsContext::didDrawTextInRect(const SkRect& textRect)
{
if (m_trackTextRegion) {
TRACE_EVENT0("skia", "PlatformContextSkia::trackTextRegion");
m_textRegion.join(textRect);
}
}
}