blob: df4eb4890dd809149065a29b96bf5c1a9cf5b5d1 [file] [log] [blame]
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/rendering/RenderBlockFlow.h"
#include "core/accessibility/AXObjectCache.h"
#include "core/frame/FrameView.h"
#include "core/rendering/HitTestLocation.h"
#include "core/rendering/RenderFlowThread.h"
#include "core/rendering/RenderLayer.h"
#include "core/rendering/RenderMultiColumnFlowThread.h"
#include "core/rendering/RenderPagedFlowThread.h"
#include "core/rendering/RenderText.h"
#include "core/rendering/RenderView.h"
#include "core/rendering/TextAutosizer.h"
#include "core/rendering/line/LineWidth.h"
#include "core/rendering/svg/SVGTextRunRenderingContext.h"
#include "platform/text/BidiTextRun.h"
namespace blink {
bool RenderBlockFlow::s_canPropagateFloatIntoSibling = false;
struct SameSizeAsMarginInfo {
uint16_t bitfields;
LayoutUnit margins[2];
};
COMPILE_ASSERT(sizeof(RenderBlockFlow::MarginValues) == sizeof(LayoutUnit[4]), MarginValues_should_stay_small);
class MarginInfo {
// Collapsing flags for whether we can collapse our margins with our children's margins.
bool m_canCollapseWithChildren : 1;
bool m_canCollapseMarginBeforeWithChildren : 1;
bool m_canCollapseMarginAfterWithChildren : 1;
bool m_canCollapseMarginAfterWithLastChild: 1;
// Whether or not we are a quirky container, i.e., do we collapse away top and bottom
// margins in our container. Table cells and the body are the common examples. We
// also have a custom style property for Safari RSS to deal with TypePad blog articles.
bool m_quirkContainer : 1;
// This flag tracks whether we are still looking at child margins that can all collapse together at the beginning of a block.
// They may or may not collapse with the top margin of the block (|m_canCollapseTopWithChildren| tells us that), but they will
// always be collapsing with one another. This variable can remain set to true through multiple iterations
// as long as we keep encountering self-collapsing blocks.
bool m_atBeforeSideOfBlock : 1;
// This flag is set when we know we're examining bottom margins and we know we're at the bottom of the block.
bool m_atAfterSideOfBlock : 1;
// These variables are used to detect quirky margins that we need to collapse away (in table cells
// and in the body element).
bool m_hasMarginBeforeQuirk : 1;
bool m_hasMarginAfterQuirk : 1;
bool m_determinedMarginBeforeQuirk : 1;
bool m_discardMargin : 1;
// These flags track the previous maximal positive and negative margins.
LayoutUnit m_positiveMargin;
LayoutUnit m_negativeMargin;
public:
MarginInfo(RenderBlockFlow*, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding);
void setAtBeforeSideOfBlock(bool b) { m_atBeforeSideOfBlock = b; }
void setAtAfterSideOfBlock(bool b) { m_atAfterSideOfBlock = b; }
void clearMargin()
{
m_positiveMargin = 0;
m_negativeMargin = 0;
}
void setHasMarginBeforeQuirk(bool b) { m_hasMarginBeforeQuirk = b; }
void setHasMarginAfterQuirk(bool b) { m_hasMarginAfterQuirk = b; }
void setDeterminedMarginBeforeQuirk(bool b) { m_determinedMarginBeforeQuirk = b; }
void setPositiveMargin(LayoutUnit p) { ASSERT(!m_discardMargin); m_positiveMargin = p; }
void setNegativeMargin(LayoutUnit n) { ASSERT(!m_discardMargin); m_negativeMargin = n; }
void setPositiveMarginIfLarger(LayoutUnit p)
{
ASSERT(!m_discardMargin);
if (p > m_positiveMargin)
m_positiveMargin = p;
}
void setNegativeMarginIfLarger(LayoutUnit n)
{
ASSERT(!m_discardMargin);
if (n > m_negativeMargin)
m_negativeMargin = n;
}
void setMargin(LayoutUnit p, LayoutUnit n) { ASSERT(!m_discardMargin); m_positiveMargin = p; m_negativeMargin = n; }
void setCanCollapseMarginAfterWithChildren(bool collapse) { m_canCollapseMarginAfterWithChildren = collapse; }
void setCanCollapseMarginAfterWithLastChild(bool collapse) { m_canCollapseMarginAfterWithLastChild = collapse; }
void setDiscardMargin(bool value) { m_discardMargin = value; }
bool atBeforeSideOfBlock() const { return m_atBeforeSideOfBlock; }
bool canCollapseWithMarginBefore() const { return m_atBeforeSideOfBlock && m_canCollapseMarginBeforeWithChildren; }
bool canCollapseWithMarginAfter() const { return m_atAfterSideOfBlock && m_canCollapseMarginAfterWithChildren; }
bool canCollapseMarginBeforeWithChildren() const { return m_canCollapseMarginBeforeWithChildren; }
bool canCollapseMarginAfterWithChildren() const { return m_canCollapseMarginAfterWithChildren; }
bool canCollapseMarginAfterWithLastChild() const { return m_canCollapseMarginAfterWithLastChild; }
bool quirkContainer() const { return m_quirkContainer; }
bool determinedMarginBeforeQuirk() const { return m_determinedMarginBeforeQuirk; }
bool hasMarginBeforeQuirk() const { return m_hasMarginBeforeQuirk; }
bool hasMarginAfterQuirk() const { return m_hasMarginAfterQuirk; }
LayoutUnit positiveMargin() const { return m_positiveMargin; }
LayoutUnit negativeMargin() const { return m_negativeMargin; }
bool discardMargin() const { return m_discardMargin; }
LayoutUnit margin() const { return m_positiveMargin - m_negativeMargin; }
};
static bool inNormalFlow(RenderBox* child)
{
RenderBlock* curr = child->containingBlock();
RenderView* renderView = child->view();
while (curr && curr != renderView) {
if (curr->hasColumns() || curr->isRenderFlowThread())
return true;
if (curr->isFloatingOrOutOfFlowPositioned())
return false;
curr = curr->containingBlock();
}
return true;
}
void RenderBlockFlow::RenderBlockFlowRareData::trace(Visitor* visitor)
{
visitor->trace(m_multiColumnFlowThread);
}
RenderBlockFlow::RenderBlockFlow(ContainerNode* node)
: RenderBlock(node)
{
COMPILE_ASSERT(sizeof(MarginInfo) == sizeof(SameSizeAsMarginInfo), MarginInfo_should_stay_small);
setChildrenInline(true);
}
RenderBlockFlow::~RenderBlockFlow()
{
}
void RenderBlockFlow::trace(Visitor* visitor)
{
visitor->trace(m_rareData);
RenderBlock::trace(visitor);
}
RenderBlockFlow* RenderBlockFlow::createAnonymous(Document* document)
{
RenderBlockFlow* renderer = new RenderBlockFlow(0);
renderer->setDocumentForAnonymous(document);
return renderer;
}
RenderObject* RenderBlockFlow::layoutSpecialExcludedChild(bool relayoutChildren, SubtreeLayoutScope& layoutScope)
{
RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread();
if (!flowThread)
return 0;
setLogicalTopForChild(flowThread, borderBefore() + paddingBefore());
flowThread->layoutColumns(relayoutChildren, layoutScope);
determineLogicalLeftPositionForChild(flowThread);
return flowThread;
}
bool RenderBlockFlow::updateLogicalWidthAndColumnWidth()
{
bool relayoutChildren = RenderBlock::updateLogicalWidthAndColumnWidth();
if (RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
if (flowThread->needsNewWidth())
return true;
}
return relayoutChildren;
}
void RenderBlockFlow::checkForPaginationLogicalHeightChange(LayoutUnit& pageLogicalHeight, bool& pageLogicalHeightChanged, bool& hasSpecifiedPageLogicalHeight)
{
if (RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
LogicalExtentComputedValues computedValues;
computeLogicalHeight(LayoutUnit(), logicalTop(), computedValues);
LayoutUnit columnHeight = computedValues.m_extent - borderAndPaddingLogicalHeight() - scrollbarLogicalHeight();
pageLogicalHeightChanged = columnHeight != flowThread->columnHeightAvailable();
flowThread->setColumnHeightAvailable(std::max<LayoutUnit>(columnHeight, 0));
} else if (hasColumns()) {
ColumnInfo* colInfo = columnInfo();
if (!pageLogicalHeight) {
LayoutUnit oldLogicalHeight = logicalHeight();
setLogicalHeight(0);
// We need to go ahead and set our explicit page height if one exists, so that we can
// avoid doing two layout passes.
updateLogicalHeight();
LayoutUnit columnHeight = contentLogicalHeight();
if (columnHeight > 0) {
pageLogicalHeight = columnHeight;
hasSpecifiedPageLogicalHeight = true;
}
setLogicalHeight(oldLogicalHeight);
}
if (colInfo->columnHeight() != pageLogicalHeight && everHadLayout()) {
colInfo->setColumnHeight(pageLogicalHeight);
pageLogicalHeightChanged = true;
}
if (!hasSpecifiedPageLogicalHeight && !pageLogicalHeight)
colInfo->clearForcedBreaks();
} else if (isRenderFlowThread()) {
RenderFlowThread* flowThread = toRenderFlowThread(this);
// FIXME: This is a hack to always make sure we have a page logical height, if said height
// is known. The page logical height thing in LayoutState is meaningless for flow
// thread-based pagination (page height isn't necessarily uniform throughout the flow
// thread), but as long as it is used universally as a means to determine whether page
// height is known or not, we need this. Page height is unknown when column balancing is
// enabled and flow thread height is still unknown (i.e. during the first layout pass). When
// it's unknown, we need to prevent the pagination code from assuming page breaks everywhere
// and thereby eating every top margin. It should be trivial to clean up and get rid of this
// hack once the old multicol implementation is gone.
pageLogicalHeight = flowThread->isPageLogicalHeightKnown() ? LayoutUnit(1) : LayoutUnit(0);
pageLogicalHeightChanged = flowThread->pageLogicalSizeChanged();
}
}
bool RenderBlockFlow::shouldRelayoutForPagination(LayoutUnit& pageLogicalHeight, LayoutUnit layoutOverflowLogicalBottom) const
{
// FIXME: We don't balance properly at all in the presence of forced page breaks. We need to understand what
// the distance between forced page breaks is so that we can avoid making the minimum column height too tall.
ColumnInfo* colInfo = columnInfo();
LayoutUnit columnHeight = pageLogicalHeight;
const int minColumnCount = colInfo->forcedBreaks() + 1;
const int desiredColumnCount = colInfo->desiredColumnCount();
if (minColumnCount >= desiredColumnCount) {
// The forced page breaks are in control of the balancing. Just set the column height to the
// maximum page break distance.
if (!pageLogicalHeight) {
LayoutUnit distanceBetweenBreaks = std::max<LayoutUnit>(colInfo->maximumDistanceBetweenForcedBreaks(),
view()->layoutState()->pageLogicalOffset(*this, borderBefore() + paddingBefore() + layoutOverflowLogicalBottom) - colInfo->forcedBreakOffset());
columnHeight = std::max(colInfo->minimumColumnHeight(), distanceBetweenBreaks);
}
} else if (layoutOverflowLogicalBottom > boundedMultiply(pageLogicalHeight, desiredColumnCount)) {
// Now that we know the intrinsic height of the columns, we have to rebalance them.
columnHeight = std::max<LayoutUnit>(colInfo->minimumColumnHeight(), ceilf(layoutOverflowLogicalBottom.toFloat() / desiredColumnCount));
}
if (columnHeight && columnHeight != pageLogicalHeight) {
pageLogicalHeight = columnHeight;
return true;
}
return false;
}
void RenderBlockFlow::setColumnCountAndHeight(unsigned count, LayoutUnit pageLogicalHeight)
{
ColumnInfo* colInfo = columnInfo();
if (pageLogicalHeight)
colInfo->setColumnCountAndHeight(count, pageLogicalHeight);
if (columnCount(colInfo)) {
setLogicalHeight(borderBefore() + paddingBefore() + colInfo->columnHeight() + borderAfter() + paddingAfter() + scrollbarLogicalHeight());
m_overflow.clear();
}
}
void RenderBlockFlow::setBreakAtLineToAvoidWidow(int lineToBreak)
{
ASSERT(lineToBreak >= 0);
ensureRareData();
ASSERT(!m_rareData->m_didBreakAtLineToAvoidWidow);
m_rareData->m_lineBreakToAvoidWidow = lineToBreak;
}
void RenderBlockFlow::setDidBreakAtLineToAvoidWidow()
{
ASSERT(!shouldBreakAtLineToAvoidWidow());
// This function should be called only after a break was applied to avoid widows
// so assert |m_rareData| exists.
ASSERT(m_rareData);
m_rareData->m_didBreakAtLineToAvoidWidow = true;
}
void RenderBlockFlow::clearDidBreakAtLineToAvoidWidow()
{
if (!m_rareData)
return;
m_rareData->m_didBreakAtLineToAvoidWidow = false;
}
void RenderBlockFlow::clearShouldBreakAtLineToAvoidWidow() const
{
ASSERT(shouldBreakAtLineToAvoidWidow());
if (!m_rareData)
return;
m_rareData->m_lineBreakToAvoidWidow = -1;
}
bool RenderBlockFlow::isSelfCollapsingBlock() const
{
m_hasOnlySelfCollapsingChildren = RenderBlock::isSelfCollapsingBlock();
return m_hasOnlySelfCollapsingChildren;
}
void RenderBlockFlow::layoutBlock(bool relayoutChildren)
{
ASSERT(needsLayout());
ASSERT(isInlineBlockOrInlineTable() || !isInline());
// If we are self-collapsing with self-collapsing descendants this will get set to save us burrowing through our
// descendants every time in |isSelfCollapsingBlock|. We reset it here so that |isSelfCollapsingBlock| attempts to burrow
// at least once and so that it always gives a reliable result reflecting the latest layout.
m_hasOnlySelfCollapsingChildren = false;
if (!relayoutChildren && simplifiedLayout())
return;
SubtreeLayoutScope layoutScope(*this);
// Multiple passes might be required for column and pagination based layout
// In the case of the old column code the number of passes will only be two
// however, in the newer column code the number of passes could equal the
// number of columns.
bool done = false;
LayoutUnit pageLogicalHeight = 0;
while (!done)
done = layoutBlockFlow(relayoutChildren, pageLogicalHeight, layoutScope);
fitBorderToLinesIfNeeded();
RenderView* renderView = view();
if (renderView->layoutState()->pageLogicalHeight())
setPageLogicalOffset(renderView->layoutState()->pageLogicalOffset(*this, logicalTop()));
updateLayerTransformAfterLayout();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
if (m_repaintLogicalTop != m_repaintLogicalBottom) {
bool hasVisibleContent = style()->visibility() == VISIBLE;
if (!hasVisibleContent) {
RenderLayer* layer = enclosingLayer();
layer->updateDescendantDependentFlags();
hasVisibleContent = layer->hasVisibleContent();
}
if (hasVisibleContent)
setShouldInvalidateOverflowForPaint(true);
}
clearNeedsLayout();
}
inline bool RenderBlockFlow::layoutBlockFlow(bool relayoutChildren, LayoutUnit &pageLogicalHeight, SubtreeLayoutScope& layoutScope)
{
LayoutUnit oldLeft = logicalLeft();
bool logicalWidthChanged = updateLogicalWidthAndColumnWidth();
relayoutChildren |= logicalWidthChanged;
rebuildFloatsFromIntruding();
bool pageLogicalHeightChanged = false;
bool hasSpecifiedPageLogicalHeight = false;
checkForPaginationLogicalHeightChange(pageLogicalHeight, pageLogicalHeightChanged, hasSpecifiedPageLogicalHeight);
if (pageLogicalHeightChanged)
relayoutChildren = true;
LayoutState state(*this, locationOffset(), pageLogicalHeight, pageLogicalHeightChanged, columnInfo(), logicalWidthChanged);
// We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track
// our current maximal positive and negative margins. These values are used when we
// are collapsed with adjacent blocks, so for example, if you have block A and B
// collapsing together, then you'd take the maximal positive margin from both A and B
// and subtract it from the maximal negative margin from both A and B to get the
// true collapsed margin. This algorithm is recursive, so when we finish layout()
// our block knows its current maximal positive/negative values.
//
// Start out by setting our margin values to our current margins. Table cells have
// no margins, so we don't fill in the values for table cells.
if (!isTableCell()) {
initMaxMarginValues();
setHasMarginBeforeQuirk(style()->hasMarginBeforeQuirk());
setHasMarginAfterQuirk(style()->hasMarginAfterQuirk());
setPaginationStrut(0);
}
LayoutUnit beforeEdge = borderBefore() + paddingBefore();
LayoutUnit afterEdge = borderAfter() + paddingAfter() + scrollbarLogicalHeight();
LayoutUnit previousHeight = logicalHeight();
setLogicalHeight(beforeEdge);
m_repaintLogicalTop = 0;
m_repaintLogicalBottom = 0;
if (!firstChild() && !isAnonymousBlock())
setChildrenInline(true);
TextAutosizer::LayoutScope textAutosizerLayoutScope(this);
if (childrenInline())
layoutInlineChildren(relayoutChildren, m_repaintLogicalTop, m_repaintLogicalBottom, afterEdge);
else
layoutBlockChildren(relayoutChildren, layoutScope, beforeEdge, afterEdge);
// Expand our intrinsic height to encompass floats.
if (lowestFloatLogicalBottom() > (logicalHeight() - afterEdge) && createsBlockFormattingContext())
setLogicalHeight(lowestFloatLogicalBottom() + afterEdge);
if (RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
if (flowThread->recalculateColumnHeights()) {
setChildNeedsLayout(MarkOnlyThis);
return false;
}
} else if (hasColumns()) {
OwnPtr<RenderOverflow> savedOverflow = m_overflow.release();
if (childrenInline())
addOverflowFromInlineChildren();
else
addOverflowFromBlockChildren();
LayoutUnit layoutOverflowLogicalBottom = (isHorizontalWritingMode() ? layoutOverflowRect().maxY() : layoutOverflowRect().maxX()) - borderBefore() - paddingBefore();
m_overflow = savedOverflow.release();
if (!hasSpecifiedPageLogicalHeight && shouldRelayoutForPagination(pageLogicalHeight, layoutOverflowLogicalBottom)) {
setEverHadLayout(true);
return false;
}
setColumnCountAndHeight(ceilf(layoutOverflowLogicalBottom.toFloat() / pageLogicalHeight.toFloat()), pageLogicalHeight.toFloat());
}
if (shouldBreakAtLineToAvoidWidow()) {
setEverHadLayout(true);
return false;
}
// Calculate our new height.
LayoutUnit oldHeight = logicalHeight();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
LayoutUnit newHeight = logicalHeight();
if (oldHeight > newHeight && !childrenInline()) {
// One of our children's floats may have become an overhanging float for us.
for (RenderObject* child = lastChild(); child; child = child->previousSibling()) {
if (child->isRenderBlockFlow() && !child->isFloatingOrOutOfFlowPositioned()) {
RenderBlockFlow* block = toRenderBlockFlow(child);
if (block->lowestFloatLogicalBottom() + block->logicalTop() <= newHeight)
break;
addOverhangingFloats(block, false);
}
}
}
bool heightChanged = (previousHeight != newHeight);
if (heightChanged)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isDocumentElement(), oldLeft != logicalLeft() ? ForcedLayoutAfterContainingBlockMoved : DefaultLayout);
computeRegionRangeForBlock(flowThreadContainingBlock());
// Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway).
computeOverflow(oldClientAfterEdge);
m_descendantsWithFloatsMarkedForLayout = false;
return true;
}
void RenderBlockFlow::determineLogicalLeftPositionForChild(RenderBox* child)
{
LayoutUnit startPosition = borderStart() + paddingStart();
if (style()->shouldPlaceBlockDirectionScrollbarOnLogicalLeft())
startPosition -= verticalScrollbarWidth();
LayoutUnit totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth();
// Add in our start margin.
LayoutUnit childMarginStart = marginStartForChild(child);
LayoutUnit newPosition = startPosition + childMarginStart;
// Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need
// to shift over as necessary to dodge any floats that might get in the way.
if (child->avoidsFloats() && containsFloats() && !flowThreadContainingBlock())
newPosition += computeStartPositionDeltaForChildAvoidingFloats(child, marginStartForChild(child));
setLogicalLeftForChild(child, style()->isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child));
}
void RenderBlockFlow::setLogicalLeftForChild(RenderBox* child, LayoutUnit logicalLeft)
{
if (isHorizontalWritingMode()) {
child->setX(logicalLeft);
} else {
child->setY(logicalLeft);
}
}
void RenderBlockFlow::setLogicalTopForChild(RenderBox* child, LayoutUnit logicalTop)
{
if (isHorizontalWritingMode()) {
child->setY(logicalTop);
} else {
child->setX(logicalTop);
}
}
void RenderBlockFlow::layoutBlockChild(RenderBox* child, MarginInfo& marginInfo, LayoutUnit& previousFloatLogicalBottom)
{
LayoutUnit oldPosMarginBefore = maxPositiveMarginBefore();
LayoutUnit oldNegMarginBefore = maxNegativeMarginBefore();
// The child is a normal flow object. Compute the margins we will use for collapsing now.
child->computeAndSetBlockDirectionMargins(this);
// Try to guess our correct logical top position. In most cases this guess will
// be correct. Only if we're wrong (when we compute the real logical top position)
// will we have to potentially relayout.
LayoutUnit estimateWithoutPagination;
LayoutUnit logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo, estimateWithoutPagination);
// Cache our old rect so that we can dirty the proper repaint rects if the child moves.
LayoutRect oldRect = child->frameRect();
LayoutUnit oldLogicalTop = logicalTopForChild(child);
// Go ahead and position the child as though it didn't collapse with the top.
setLogicalTopForChild(child, logicalTopEstimate);
RenderBlockFlow* childRenderBlockFlow = child->isRenderBlockFlow() ? toRenderBlockFlow(child) : 0;
bool markDescendantsWithFloats = false;
if (logicalTopEstimate != oldLogicalTop && childRenderBlockFlow && !childRenderBlockFlow->avoidsFloats() && childRenderBlockFlow->containsFloats()) {
markDescendantsWithFloats = true;
} else if (UNLIKELY(logicalTopEstimate.mightBeSaturated())) {
// logicalTopEstimate, returned by estimateLogicalTopPosition, might be saturated for
// very large elements. If it does the comparison with oldLogicalTop might yield a
// false negative as adding and removing margins, borders etc from a saturated number
// might yield incorrect results. If this is the case always mark for layout.
markDescendantsWithFloats = true;
} else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) {
// If an element might be affected by the presence of floats, then always mark it for
// layout.
LayoutUnit fb = std::max(previousFloatLogicalBottom, lowestFloatLogicalBottom());
if (fb > logicalTopEstimate)
markDescendantsWithFloats = true;
}
if (childRenderBlockFlow) {
if (markDescendantsWithFloats)
childRenderBlockFlow->markAllDescendantsWithFloatsForLayout();
if (!child->isWritingModeRoot())
previousFloatLogicalBottom = std::max(previousFloatLogicalBottom, oldLogicalTop + childRenderBlockFlow->lowestFloatLogicalBottom());
}
SubtreeLayoutScope layoutScope(*child);
if (!child->needsLayout())
child->markForPaginationRelayoutIfNeeded(layoutScope);
bool childHadLayout = child->everHadLayout();
bool childNeededLayout = child->needsLayout();
if (childNeededLayout)
child->layout();
// Cache if we are at the top of the block right now.
bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock();
bool childIsSelfCollapsing = child->isSelfCollapsingBlock();
// Now determine the correct ypos based off examination of collapsing margin
// values.
LayoutUnit logicalTopBeforeClear = collapseMargins(child, marginInfo, childIsSelfCollapsing);
// Now check for clear.
LayoutUnit logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear, childIsSelfCollapsing);
bool paginated = view()->layoutState()->isPaginated();
if (paginated) {
logicalTopAfterClear = adjustBlockChildForPagination(logicalTopAfterClear, estimateWithoutPagination, child,
atBeforeSideOfBlock && logicalTopBeforeClear == logicalTopAfterClear);
}
setLogicalTopForChild(child, logicalTopAfterClear);
// Now we have a final top position. See if it really does end up being different from our estimate.
// clearFloatsIfNeeded can also mark the child as needing a layout even though we didn't move. This happens
// when collapseMargins dynamically adds overhanging floats because of a child with negative margins.
if (logicalTopAfterClear != logicalTopEstimate || child->needsLayout() || (paginated && childRenderBlockFlow && childRenderBlockFlow->shouldBreakAtLineToAvoidWidow())) {
SubtreeLayoutScope layoutScope(*child);
if (child->shrinkToAvoidFloats()) {
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
layoutScope.setChildNeedsLayout(child);
}
if (childRenderBlockFlow && !childRenderBlockFlow->avoidsFloats() && childRenderBlockFlow->containsFloats())
childRenderBlockFlow->markAllDescendantsWithFloatsForLayout();
if (!child->needsLayout())
child->markForPaginationRelayoutIfNeeded(layoutScope);
// Our guess was wrong. Make the child lay itself out again.
child->layoutIfNeeded();
}
// If we previously encountered a self-collapsing sibling of this child that had clearance then
// we set this bit to ensure we would not collapse the child's margins, and those of any subsequent
// self-collapsing siblings, with our parent. If this child is not self-collapsing then it can
// collapse its margins with the parent so reset the bit.
if (!marginInfo.canCollapseMarginAfterWithLastChild() && !childIsSelfCollapsing)
marginInfo.setCanCollapseMarginAfterWithLastChild(true);
// We are no longer at the top of the block if we encounter a non-empty child.
// This has to be done after checking for clear, so that margins can be reset if a clear occurred.
if (marginInfo.atBeforeSideOfBlock() && !childIsSelfCollapsing)
marginInfo.setAtBeforeSideOfBlock(false);
// Now place the child in the correct left position
determineLogicalLeftPositionForChild(child);
LayoutSize childOffset = child->location() - oldRect.location();
// Update our height now that the child has been placed in the correct position.
setLogicalHeight(logicalHeight() + logicalHeightForChild(child));
if (mustSeparateMarginAfterForChild(child)) {
setLogicalHeight(logicalHeight() + marginAfterForChild(child));
marginInfo.clearMargin();
}
// If the child has overhanging floats that intrude into following siblings (or possibly out
// of this block), then the parent gets notified of the floats now.
if (childRenderBlockFlow)
addOverhangingFloats(childRenderBlockFlow, !childNeededLayout);
// If the child moved, we have to invalidate it's paint as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// invalidate our paint (and the child) anyway.
bool didNotDoFullLayoutAndMoved = childHadLayout && !selfNeedsLayout() && (childOffset.width() || childOffset.height());
bool didNotLayoutAndNeedsPaintInvalidation = !childHadLayout && child->checkForPaintInvalidation();
if (didNotDoFullLayoutAndMoved || didNotLayoutAndNeedsPaintInvalidation)
child->invalidatePaintForOverhangingFloats(true);
if (paginated) {
// Check for an after page/column break.
LayoutUnit newHeight = applyAfterBreak(child, logicalHeight(), marginInfo);
if (newHeight != height())
setLogicalHeight(newHeight);
}
}
LayoutUnit RenderBlockFlow::adjustBlockChildForPagination(LayoutUnit logicalTopAfterClear, LayoutUnit estimateWithoutPagination, RenderBox* child, bool atBeforeSideOfBlock)
{
RenderBlockFlow* childBlockFlow = child->isRenderBlockFlow() ? toRenderBlockFlow(child) : 0;
if (estimateWithoutPagination != logicalTopAfterClear) {
// Our guess prior to pagination movement was wrong. Before we attempt to paginate, let's try again at the new
// position.
setLogicalHeight(logicalTopAfterClear);
setLogicalTopForChild(child, logicalTopAfterClear);
if (child->shrinkToAvoidFloats()) {
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
child->setChildNeedsLayout(MarkOnlyThis);
}
SubtreeLayoutScope layoutScope(*child);
if (childBlockFlow) {
if (!childBlockFlow->avoidsFloats() && childBlockFlow->containsFloats())
childBlockFlow->markAllDescendantsWithFloatsForLayout();
if (!child->needsLayout())
child->markForPaginationRelayoutIfNeeded(layoutScope);
}
// Our guess was wrong. Make the child lay itself out again.
child->layoutIfNeeded();
}
LayoutUnit oldTop = logicalTopAfterClear;
// If the object has a page or column break value of "before", then we should shift to the top of the next page.
LayoutUnit result = applyBeforeBreak(child, logicalTopAfterClear);
// For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
LayoutUnit logicalTopBeforeUnsplittableAdjustment = result;
LayoutUnit logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, result);
LayoutUnit paginationStrut = 0;
LayoutUnit unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment;
LayoutUnit childLogicalHeight = child->logicalHeight();
if (unsplittableAdjustmentDelta) {
setPageBreak(result, childLogicalHeight - unsplittableAdjustmentDelta);
paginationStrut = unsplittableAdjustmentDelta;
} else if (childBlockFlow && childBlockFlow->paginationStrut()) {
paginationStrut = childBlockFlow->paginationStrut();
}
if (paginationStrut) {
// We are willing to propagate out to our parent block as long as we were at the top of the block prior
// to collapsing our margins, and as long as we didn't clear or move as a result of other pagination.
if (atBeforeSideOfBlock && oldTop == result && !isOutOfFlowPositioned() && !isTableCell()) {
// FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't
// have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too
// and pushes to the next page anyway, so not too concerned about it.
setPaginationStrut(result + paginationStrut);
if (childBlockFlow)
childBlockFlow->setPaginationStrut(0);
} else {
result += paginationStrut;
}
}
if (!unsplittableAdjustmentDelta) {
if (LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(result)) {
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(result, ExcludePageBoundary);
LayoutUnit spaceShortage = childLogicalHeight - remainingLogicalHeight;
if (spaceShortage > 0) {
// If the child crosses a column boundary, report a break, in case nothing inside it
// has already done so. The column balancer needs to know how much it has to stretch
// the columns to make more content fit. If no breaks are reported (but do occur),
// the balancer will have no clue. Only measure the space after the last column
// boundary, in case it crosses more than one.
LayoutUnit spaceShortageInLastColumn = intMod(spaceShortage, pageLogicalHeight);
setPageBreak(result, spaceShortageInLastColumn ? spaceShortageInLastColumn : spaceShortage);
} else if (remainingLogicalHeight == pageLogicalHeight && offsetFromLogicalTopOfFirstPage() + child->logicalTop()) {
// We're at the very top of a page or column, and it's not the first one. This child
// may turn out to be the smallest piece of content that causes a page break, so we
// need to report it.
setPageBreak(result, childLogicalHeight);
}
}
}
// Similar to how we apply clearance. Go ahead and boost height() to be the place where we're going to position the child.
setLogicalHeight(logicalHeight() + (result - oldTop));
// Return the final adjusted logical top.
return result;
}
static inline LayoutUnit calculateMinimumPageHeight(RenderStyle* renderStyle, RootInlineBox* lastLine, LayoutUnit lineTop, LayoutUnit lineBottom)
{
// We may require a certain minimum number of lines per page in order to satisfy
// orphans and widows, and that may affect the minimum page height.
unsigned lineCount = std::max<unsigned>(renderStyle->hasAutoOrphans() ? 1 : renderStyle->orphans(), renderStyle->hasAutoWidows() ? 1 : renderStyle->widows());
if (lineCount > 1) {
RootInlineBox* line = lastLine;
for (unsigned i = 1; i < lineCount && line->prevRootBox(); i++)
line = line->prevRootBox();
// FIXME: Paginating using line overflow isn't all fine. See FIXME in
// adjustLinePositionForPagination() for more details.
LayoutRect overflow = line->logicalVisualOverflowRect(line->lineTop(), line->lineBottom());
lineTop = std::min(line->lineTopWithLeading(), overflow.y());
}
return lineBottom - lineTop;
}
void RenderBlockFlow::adjustLinePositionForPagination(RootInlineBox* lineBox, LayoutUnit& delta, RenderFlowThread* flowThread)
{
// FIXME: For now we paginate using line overflow. This ensures that lines don't overlap at all when we
// put a strut between them for pagination purposes. However, this really isn't the desired rendering, since
// the line on the top of the next page will appear too far down relative to the same kind of line at the top
// of the first column.
//
// The rendering we would like to see is one where the lineTopWithLeading is at the top of the column, and any line overflow
// simply spills out above the top of the column. This effect would match what happens at the top of the first column.
// We can't achieve this rendering, however, until we stop columns from clipping to the column bounds (thus allowing
// for overflow to occur), and then cache visible overflow for each column rect.
//
// Furthermore, the paint we have to do when a column has overflow has to be special. We need to exclude
// content that paints in a previous column (and content that paints in the following column).
//
// For now we'll at least honor the lineTopWithLeading when paginating if it is above the logical top overflow. This will
// at least make positive leading work in typical cases.
//
// FIXME: Another problem with simply moving lines is that the available line width may change (because of floats).
// Technically if the location we move the line to has a different line width than our old position, then we need to dirty the
// line and all following lines.
LayoutRect logicalVisualOverflow = lineBox->logicalVisualOverflowRect(lineBox->lineTop(), lineBox->lineBottom());
LayoutUnit logicalOffset = std::min(lineBox->lineTopWithLeading(), logicalVisualOverflow.y());
LayoutUnit logicalBottom = std::max(lineBox->lineBottomWithLeading(), logicalVisualOverflow.maxY());
LayoutUnit lineHeight = logicalBottom - logicalOffset;
updateMinimumPageHeight(logicalOffset, calculateMinimumPageHeight(style(), lineBox, logicalOffset, logicalBottom));
logicalOffset += delta;
lineBox->setPaginationStrut(0);
lineBox->setIsFirstAfterPageBreak(false);
LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset);
bool hasUniformPageLogicalHeight = !flowThread || flowThread->regionsHaveUniformLogicalHeight();
// If lineHeight is greater than pageLogicalHeight, but logicalVisualOverflow.height() still fits, we are
// still going to add a strut, so that the visible overflow fits on a single page.
if (!pageLogicalHeight || (hasUniformPageLogicalHeight && logicalVisualOverflow.height() > pageLogicalHeight)) {
// FIXME: In case the line aligns with the top of the page (or it's slightly shifted downwards) it will not be marked as the first line in the page.
// From here, the fix is not straightforward because it's not easy to always determine when the current line is the first in the page.
return;
}
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary);
int lineIndex = lineCount(lineBox);
if (remainingLogicalHeight < lineHeight || (shouldBreakAtLineToAvoidWidow() && lineBreakToAvoidWidow() == lineIndex)) {
if (shouldBreakAtLineToAvoidWidow() && lineBreakToAvoidWidow() == lineIndex) {
clearShouldBreakAtLineToAvoidWidow();
setDidBreakAtLineToAvoidWidow();
}
if (lineHeight > pageLogicalHeight) {
// Split the top margin in order to avoid splitting the visible part of the line.
remainingLogicalHeight -= std::min(lineHeight - pageLogicalHeight, std::max<LayoutUnit>(0, logicalVisualOverflow.y() - lineBox->lineTopWithLeading()));
}
LayoutUnit totalLogicalHeight = lineHeight + std::max<LayoutUnit>(0, logicalOffset);
LayoutUnit pageLogicalHeightAtNewOffset = hasUniformPageLogicalHeight ? pageLogicalHeight : pageLogicalHeightForOffset(logicalOffset + remainingLogicalHeight);
setPageBreak(logicalOffset, lineHeight - remainingLogicalHeight);
if (((lineBox == firstRootBox() && totalLogicalHeight < pageLogicalHeightAtNewOffset) || (!style()->hasAutoOrphans() && style()->orphans() >= lineIndex))
&& !isOutOfFlowPositioned() && !isTableCell()) {
setPaginationStrut(remainingLogicalHeight + std::max<LayoutUnit>(0, logicalOffset));
} else {
delta += remainingLogicalHeight;
lineBox->setPaginationStrut(remainingLogicalHeight);
lineBox->setIsFirstAfterPageBreak(true);
}
} else if (remainingLogicalHeight == pageLogicalHeight) {
// We're at the very top of a page or column.
if (lineBox != firstRootBox())
lineBox->setIsFirstAfterPageBreak(true);
if (lineBox != firstRootBox() || offsetFromLogicalTopOfFirstPage())
setPageBreak(logicalOffset, lineHeight);
}
}
void RenderBlockFlow::rebuildFloatsFromIntruding()
{
if (m_floatingObjects)
m_floatingObjects->setHorizontalWritingMode(isHorizontalWritingMode());
HashSet<RenderBox*> oldIntrudingFloatSet;
if (!childrenInline() && m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
if (!floatingObject->isDescendant())
oldIntrudingFloatSet.add(floatingObject->renderer());
}
}
// Inline blocks are covered by the isReplaced() check in the avoidFloats method.
if (avoidsFloats() || isDocumentElement() || isRenderView() || isFloatingOrOutOfFlowPositioned() || isTableCell()) {
if (m_floatingObjects) {
m_floatingObjects->clear();
}
if (!oldIntrudingFloatSet.isEmpty())
markAllDescendantsWithFloatsForLayout();
return;
}
RendererToFloatInfoMap floatMap;
if (m_floatingObjects) {
if (childrenInline())
m_floatingObjects->moveAllToFloatInfoMap(floatMap);
else
m_floatingObjects->clear();
}
// We should not process floats if the parent node is not a RenderBlockFlow. Otherwise, we will add
// floats in an invalid context. This will cause a crash arising from a bad cast on the parent.
// See <rdar://problem/8049753>, where float property is applied on a text node in a SVG.
if (!parent() || !parent()->isRenderBlockFlow())
return;
// Attempt to locate a previous sibling with overhanging floats. We skip any elements that
// may have shifted to avoid floats, and any objects whose floats cannot interact with objects
// outside it (i.e. objects that create a new block formatting context).
RenderBlockFlow* parentBlockFlow = toRenderBlockFlow(parent());
bool parentHasFloats = false;
RenderObject* prev = previousSibling();
while (prev && (!prev->isBox() || !prev->isRenderBlock() || toRenderBlock(prev)->avoidsFloats() || toRenderBlock(prev)->createsBlockFormattingContext())) {
if (prev->isFloating())
parentHasFloats = true;
prev = prev->previousSibling();
}
// First add in floats from the parent. Self-collapsing blocks let their parent track any floats that intrude into
// them (as opposed to floats they contain themselves) so check for those here too.
LayoutUnit logicalTopOffset = logicalTop();
bool parentHasIntrudingFloats = !parentHasFloats && (!prev || toRenderBlockFlow(prev)->isSelfCollapsingBlock()) && parentBlockFlow->lowestFloatLogicalBottom() > logicalTopOffset;
if (parentHasFloats || parentHasIntrudingFloats)
addIntrudingFloats(parentBlockFlow, parentBlockFlow->logicalLeftOffsetForContent(), logicalTopOffset);
// Add overhanging floats from the previous RenderBlockFlow, but only if it has a float that intrudes into our space.
if (prev) {
RenderBlockFlow* blockFlow = toRenderBlockFlow(prev);
logicalTopOffset -= blockFlow->logicalTop();
if (blockFlow->lowestFloatLogicalBottom() > logicalTopOffset)
addIntrudingFloats(blockFlow, 0, logicalTopOffset);
}
if (childrenInline()) {
LayoutUnit changeLogicalTop = LayoutUnit::max();
LayoutUnit changeLogicalBottom = LayoutUnit::min();
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
FloatingObject* oldFloatingObject = floatMap.get(floatingObject->renderer());
LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject);
if (oldFloatingObject) {
LayoutUnit oldLogicalBottom = logicalBottomForFloat(oldFloatingObject);
if (logicalWidthForFloat(floatingObject) != logicalWidthForFloat(oldFloatingObject) || logicalLeftForFloat(floatingObject) != logicalLeftForFloat(oldFloatingObject)) {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalBottom, oldLogicalBottom));
} else {
if (logicalBottom != oldLogicalBottom) {
changeLogicalTop = std::min(changeLogicalTop, std::min(logicalBottom, oldLogicalBottom));
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalBottom, oldLogicalBottom));
}
LayoutUnit logicalTop = logicalTopForFloat(floatingObject);
LayoutUnit oldLogicalTop = logicalTopForFloat(oldFloatingObject);
if (logicalTop != oldLogicalTop) {
changeLogicalTop = std::min(changeLogicalTop, std::min(logicalTop, oldLogicalTop));
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalTop, oldLogicalTop));
}
}
if (oldFloatingObject->originatingLine() && !selfNeedsLayout()) {
ASSERT(oldFloatingObject->originatingLine()->renderer() == this);
oldFloatingObject->originatingLine()->markDirty();
}
floatMap.remove(floatingObject->renderer());
} else {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, logicalBottom);
}
}
}
RendererToFloatInfoMap::iterator end = floatMap.end();
for (RendererToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) {
OwnPtr<FloatingObject>& floatingObject = it->value;
if (!floatingObject->isDescendant()) {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, logicalBottomForFloat(floatingObject.get()));
}
}
markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom);
} else if (!oldIntrudingFloatSet.isEmpty()) {
// If there are previously intruding floats that no longer intrude, then children with floats
// should also get layout because they might need their floating object lists cleared.
if (m_floatingObjects->set().size() < oldIntrudingFloatSet.size()) {
markAllDescendantsWithFloatsForLayout();
} else {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end && !oldIntrudingFloatSet.isEmpty(); ++it)
oldIntrudingFloatSet.remove((*it)->renderer());
if (!oldIntrudingFloatSet.isEmpty())
markAllDescendantsWithFloatsForLayout();
}
}
}
void RenderBlockFlow::layoutBlockChildren(bool relayoutChildren, SubtreeLayoutScope& layoutScope, LayoutUnit beforeEdge, LayoutUnit afterEdge)
{
dirtyForLayoutFromPercentageHeightDescendants(layoutScope);
// The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts,
MarginInfo marginInfo(this, beforeEdge, afterEdge);
// Fieldsets need to find their legend and position it inside the border of the object.
// The legend then gets skipped during normal layout. The same is true for ruby text.
// It doesn't get included in the normal layout process but is instead skipped.
RenderObject* childToExclude = layoutSpecialExcludedChild(relayoutChildren, layoutScope);
LayoutUnit previousFloatLogicalBottom = 0;
RenderBox* next = firstChildBox();
RenderBox* lastNormalFlowChild = 0;
while (next) {
RenderBox* child = next;
next = child->nextSiblingBox();
// FIXME: this should only be set from clearNeedsLayout crbug.com/361250
child->setLayoutDidGetCalled(true);
if (childToExclude == child)
continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs).
updateBlockChildDirtyBitsBeforeLayout(relayoutChildren, child);
if (child->isOutOfFlowPositioned()) {
child->containingBlock()->insertPositionedObject(child);
adjustPositionedBlock(child, marginInfo);
continue;
}
if (child->isFloating()) {
insertFloatingObject(child);
adjustFloatingBlock(marginInfo);
continue;
}
// Lay out the child.
layoutBlockChild(child, marginInfo, previousFloatLogicalBottom);
lastNormalFlowChild = child;
}
// Now do the handling of the bottom of the block, adding in our bottom border/padding and
// determining the correct collapsed bottom margin information.
handleAfterSideOfBlock(lastNormalFlowChild, beforeEdge, afterEdge, marginInfo);
}
// Our MarginInfo state used when laying out block children.
MarginInfo::MarginInfo(RenderBlockFlow* blockFlow, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding)
: m_canCollapseMarginAfterWithLastChild(true)
, m_atBeforeSideOfBlock(true)
, m_atAfterSideOfBlock(false)
, m_hasMarginBeforeQuirk(false)
, m_hasMarginAfterQuirk(false)
, m_determinedMarginBeforeQuirk(false)
, m_discardMargin(false)
{
RenderStyle* blockStyle = blockFlow->style();
ASSERT(blockFlow->isRenderView() || blockFlow->parent());
m_canCollapseWithChildren = !blockFlow->createsBlockFormattingContext() && !blockFlow->isRenderFlowThread() && !blockFlow->isRenderView();
m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && !beforeBorderPadding && blockStyle->marginBeforeCollapse() != MSEPARATE;
// If any height other than auto is specified in CSS, then we don't collapse our bottom
// margins with our children's margins. To do otherwise would be to risk odd visual
// effects when the children overflow out of the parent block and yet still collapse
// with it. We also don't collapse if we have any bottom border/padding.
m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && !afterBorderPadding
&& (blockStyle->logicalHeight().isAuto() && !blockStyle->logicalHeight().value()) && blockStyle->marginAfterCollapse() != MSEPARATE;
m_quirkContainer = blockFlow->isTableCell() || blockFlow->isBody();
m_discardMargin = m_canCollapseMarginBeforeWithChildren && blockFlow->mustDiscardMarginBefore();
m_positiveMargin = (m_canCollapseMarginBeforeWithChildren && !blockFlow->mustDiscardMarginBefore()) ? blockFlow->maxPositiveMarginBefore() : LayoutUnit();
m_negativeMargin = (m_canCollapseMarginBeforeWithChildren && !blockFlow->mustDiscardMarginBefore()) ? blockFlow->maxNegativeMarginBefore() : LayoutUnit();
}
RenderBlockFlow::MarginValues RenderBlockFlow::marginValuesForChild(RenderBox* child) const
{
LayoutUnit childBeforePositive = 0;
LayoutUnit childBeforeNegative = 0;
LayoutUnit childAfterPositive = 0;
LayoutUnit childAfterNegative = 0;
LayoutUnit beforeMargin = 0;
LayoutUnit afterMargin = 0;
RenderBlockFlow* childRenderBlockFlow = child->isRenderBlockFlow() ? toRenderBlockFlow(child) : 0;
// If the child has the same directionality as we do, then we can just return its
// margins in the same direction.
if (!child->isWritingModeRoot()) {
if (childRenderBlockFlow) {
childBeforePositive = childRenderBlockFlow->maxPositiveMarginBefore();
childBeforeNegative = childRenderBlockFlow->maxNegativeMarginBefore();
childAfterPositive = childRenderBlockFlow->maxPositiveMarginAfter();
childAfterNegative = childRenderBlockFlow->maxNegativeMarginAfter();
} else {
beforeMargin = child->marginBefore();
afterMargin = child->marginAfter();
}
} else if (child->isHorizontalWritingMode() == isHorizontalWritingMode()) {
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the margins for the opposite edges.
if (childRenderBlockFlow) {
childBeforePositive = childRenderBlockFlow->maxPositiveMarginAfter();
childBeforeNegative = childRenderBlockFlow->maxNegativeMarginAfter();
childAfterPositive = childRenderBlockFlow->maxPositiveMarginBefore();
childAfterNegative = childRenderBlockFlow->maxNegativeMarginBefore();
} else {
beforeMargin = child->marginAfter();
afterMargin = child->marginBefore();
}
} else {
// The child is perpendicular to us, which means its margins don't collapse but are on the
// "logical left/right" sides of the child box. We can just return the raw margin in this case.
beforeMargin = marginBeforeForChild(child);
afterMargin = marginAfterForChild(child);
}
// Resolve uncollapsing margins into their positive/negative buckets.
if (beforeMargin) {
if (beforeMargin > 0)
childBeforePositive = beforeMargin;
else
childBeforeNegative = -beforeMargin;
}
if (afterMargin) {
if (afterMargin > 0)
childAfterPositive = afterMargin;
else
childAfterNegative = -afterMargin;
}
return RenderBlockFlow::MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative);
}
LayoutUnit RenderBlockFlow::collapseMargins(RenderBox* child, MarginInfo& marginInfo, bool childIsSelfCollapsing)
{
bool childDiscardMarginBefore = mustDiscardMarginBeforeForChild(child);
bool childDiscardMarginAfter = mustDiscardMarginAfterForChild(child);
// The child discards the before margin when the the after margin has discard in the case of a self collapsing block.
childDiscardMarginBefore = childDiscardMarginBefore || (childDiscardMarginAfter && childIsSelfCollapsing);
// Get the four margin values for the child and cache them.
const RenderBlockFlow::MarginValues childMargins = marginValuesForChild(child);
// Get our max pos and neg top margins.
LayoutUnit posTop = childMargins.positiveMarginBefore();
LayoutUnit negTop = childMargins.negativeMarginBefore();
// For self-collapsing blocks, collapse our bottom margins into our
// top to get new posTop and negTop values.
if (childIsSelfCollapsing) {
posTop = std::max(posTop, childMargins.positiveMarginAfter());
negTop = std::max(negTop, childMargins.negativeMarginAfter());
}
// See if the top margin is quirky. We only care if this child has
// margins that will collapse with us.
bool topQuirk = hasMarginBeforeQuirk(child);
if (marginInfo.canCollapseWithMarginBefore()) {
if (!childDiscardMarginBefore && !marginInfo.discardMargin()) {
// This child is collapsing with the top of the
// block. If it has larger margin values, then we need to update
// our own maximal values.
if (!document().inQuirksMode() || !marginInfo.quirkContainer() || !topQuirk)
setMaxMarginBeforeValues(std::max(posTop, maxPositiveMarginBefore()), std::max(negTop, maxNegativeMarginBefore()));
// The minute any of the margins involved isn't a quirk, don't
// collapse it away, even if the margin is smaller (www.webreference.com
// has an example of this, a <dt> with 0.8em author-specified inside
// a <dl> inside a <td>.
if (!marginInfo.determinedMarginBeforeQuirk() && !topQuirk && (posTop - negTop)) {
setHasMarginBeforeQuirk(false);
marginInfo.setDeterminedMarginBeforeQuirk(true);
}
if (!marginInfo.determinedMarginBeforeQuirk() && topQuirk && !marginBefore()) {
// We have no top margin and our top child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
// Don't do this for a block that split two inlines though. You do
// still apply margins in this case.
setHasMarginBeforeQuirk(true);
}
} else {
// The before margin of the container will also discard all the margins it is collapsing with.
setMustDiscardMarginBefore();
}
}
// Once we find a child with discardMarginBefore all the margins collapsing with us must also discard.
if (childDiscardMarginBefore) {
marginInfo.setDiscardMargin(true);
marginInfo.clearMargin();
}
if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop))
marginInfo.setHasMarginBeforeQuirk(topQuirk);
LayoutUnit beforeCollapseLogicalTop = logicalHeight();
LayoutUnit logicalTop = beforeCollapseLogicalTop;
LayoutUnit clearanceForSelfCollapsingBlock;
RenderObject* prev = child->previousSibling();
RenderBlockFlow* previousBlockFlow = prev && prev->isRenderBlockFlow() && !prev->isFloatingOrOutOfFlowPositioned() ? toRenderBlockFlow(prev) : 0;
// If the child's previous sibling is a self-collapsing block that cleared a float then its top border edge has been set at the bottom border edge
// of the float. Since we want to collapse the child's top margin with the self-collapsing block's top and bottom margins we need to adjust our parent's height to match the
// margin top of the self-collapsing block. If the resulting collapsed margin leaves the child still intruding into the float then we will want to clear it.
if (!marginInfo.canCollapseWithMarginBefore() && previousBlockFlow && previousBlockFlow->isSelfCollapsingBlock()) {
clearanceForSelfCollapsingBlock = previousBlockFlow->marginOffsetForSelfCollapsingBlock();
setLogicalHeight(logicalHeight() - clearanceForSelfCollapsingBlock);
}
if (childIsSelfCollapsing) {
// For a self collapsing block both the before and after margins get discarded. The block doesn't contribute anything to the height of the block.
// Also, the child's top position equals the logical height of the container.
if (!childDiscardMarginBefore && !marginInfo.discardMargin()) {
// This child has no height. We need to compute our
// position before we collapse the child's margins together,
// so that we can get an accurate position for the zero-height block.
LayoutUnit collapsedBeforePos = std::max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore());
LayoutUnit collapsedBeforeNeg = std::max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore());
marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg);
// Now collapse the child's margins together, which means examining our
// bottom margin values as well.
marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter());
marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter());
if (!marginInfo.canCollapseWithMarginBefore()) {
// We need to make sure that the position of the self-collapsing block
// is correct, since it could have overflowing content
// that needs to be positioned correctly (e.g., a block that
// had a specified height of 0 but that actually had subcontent).
logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg;
}
}
} else {
if (mustSeparateMarginBeforeForChild(child)) {
ASSERT(!marginInfo.discardMargin() || (marginInfo.discardMargin() && !marginInfo.margin()));
// If we are at the before side of the block and we collapse, ignore the computed margin
// and just add the child margin to the container height. This will correctly position
// the child inside the container.
LayoutUnit separateMargin = !marginInfo.canCollapseWithMarginBefore() ? marginInfo.margin() : LayoutUnit(0);
setLogicalHeight(logicalHeight() + separateMargin + marginBeforeForChild(child));
logicalTop = logicalHeight();
} else if (!marginInfo.discardMargin() && (!marginInfo.atBeforeSideOfBlock()
|| (!marginInfo.canCollapseMarginBeforeWithChildren()
&& (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginBeforeQuirk())))) {
// We're collapsing with a previous sibling's margins and not
// with the top of the block.
setLogicalHeight(logicalHeight() + std::max(marginInfo.positiveMargin(), posTop) - std::max(marginInfo.negativeMargin(), negTop));
logicalTop = logicalHeight();
}
marginInfo.setDiscardMargin(childDiscardMarginAfter);
if (!marginInfo.discardMargin()) {
marginInfo.setPositiveMargin(childMargins.positiveMarginAfter());
marginInfo.setNegativeMargin(childMargins.negativeMarginAfter());
} else {
marginInfo.clearMargin();
}
if (marginInfo.margin())
marginInfo.setHasMarginAfterQuirk(hasMarginAfterQuirk(child));
}
// If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins
// collapsed into the page edge.
LayoutState* layoutState = view()->layoutState();
if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTop > beforeCollapseLogicalTop) {
LayoutUnit oldLogicalTop = logicalTop;
logicalTop = std::min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop));
setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop));
}
if (previousBlockFlow) {
// If |child| is a self-collapsing block it may have collapsed into a previous sibling and although it hasn't reduced the height of the parent yet
// any floats from the parent will now overhang.
LayoutUnit oldLogicalHeight = logicalHeight();
setLogicalHeight(logicalTop);
if (!previousBlockFlow->avoidsFloats() && (previousBlockFlow->logicalTop() + previousBlockFlow->lowestFloatLogicalBottom()) > logicalTop)
addOverhangingFloats(previousBlockFlow, false);
setLogicalHeight(oldLogicalHeight);
// If |child|'s previous sibling is a self-collapsing block that cleared a float and margin collapsing resulted in |child| moving up
// into the margin area of the self-collapsing block then the float it clears is now intruding into |child|. Layout again so that we can look for
// floats in the parent that overhang |child|'s new logical top.
bool logicalTopIntrudesIntoFloat = clearanceForSelfCollapsingBlock > 0 && logicalTop < beforeCollapseLogicalTop;
if (logicalTopIntrudesIntoFloat && containsFloats() && !child->avoidsFloats() && lowestFloatLogicalBottom() > logicalTop)
child->setNeedsLayoutAndFullPaintInvalidation();
}
return logicalTop;
}
void RenderBlockFlow::adjustPositionedBlock(RenderBox* child, const MarginInfo& marginInfo)
{
bool isHorizontal = isHorizontalWritingMode();
bool hasStaticBlockPosition = child->style()->hasStaticBlockPosition(isHorizontal);
LayoutUnit logicalTop = logicalHeight();
updateStaticInlinePositionForChild(child, logicalTop);
if (!marginInfo.canCollapseWithMarginBefore()) {
// Positioned blocks don't collapse margins, so add the margin provided by
// the container now. The child's own margin is added later when calculating its logical top.
LayoutUnit collapsedBeforePos = marginInfo.positiveMargin();
LayoutUnit collapsedBeforeNeg = marginInfo.negativeMargin();
logicalTop += collapsedBeforePos - collapsedBeforeNeg;
}
RenderLayer* childLayer = child->layer();
if (childLayer->staticBlockPosition() != logicalTop) {
childLayer->setStaticBlockPosition(logicalTop);
if (hasStaticBlockPosition)
child->setChildNeedsLayout(MarkOnlyThis);
}
}
LayoutUnit RenderBlockFlow::computeStartPositionDeltaForChildAvoidingFloats(const RenderBox* child, LayoutUnit childMarginStart)
{
LayoutUnit startPosition = startOffsetForContent();
// Add in our start margin.
LayoutUnit oldPosition = startPosition + childMarginStart;
LayoutUnit newPosition = oldPosition;
LayoutUnit blockOffset = logicalTopForChild(child);
LayoutUnit startOff = startOffsetForLine(blockOffset, false, logicalHeightForChild(child));
if (style()->textAlign() != WEBKIT_CENTER && !child->style()->marginStartUsing(style()).isAuto()) {
if (childMarginStart < 0)
startOff += childMarginStart;
newPosition = std::max(newPosition, startOff); // Let the float sit in the child's margin if it can fit.
} else if (startOff != startPosition) {
newPosition = startOff + childMarginStart;
}
return newPosition - oldPosition;
}
LayoutUnit RenderBlockFlow::clearFloatsIfNeeded(RenderBox* child, MarginInfo& marginInfo, LayoutUnit oldTopPosMargin, LayoutUnit oldTopNegMargin, LayoutUnit yPos, bool childIsSelfCollapsing)
{
LayoutUnit heightIncrease = getClearDelta(child, yPos);
if (!heightIncrease)
return yPos;
if (childIsSelfCollapsing) {
bool childDiscardMargin = mustDiscardMarginBeforeForChild(child) || mustDiscardMarginAfterForChild(child);
// For self-collapsing blocks that clear, they can still collapse their
// margins with following siblings. Reset the current margins to represent
// the self-collapsing block's margins only.
// If DISCARD is specified for -webkit-margin-collapse, reset the margin values.
RenderBlockFlow::MarginValues childMargins = marginValuesForChild(child);
if (!childDiscardMargin) {
marginInfo.setPositiveMargin(std::max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter()));
marginInfo.setNegativeMargin(std::max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter()));
} else {
marginInfo.clearMargin();
}
marginInfo.setDiscardMargin(childDiscardMargin);
// CSS2.1 states:
// "If the top and bottom margins of an element with clearance are adjoining, its margins collapse with
// the adjoining margins of following siblings but that resulting margin does not collapse with the bottom margin of the parent block."
// So the parent's bottom margin cannot collapse through this block or any subsequent self-collapsing blocks. Set a bit to ensure
// this happens; it will get reset if we encounter an in-flow sibling that is not self-collapsing.
marginInfo.setCanCollapseMarginAfterWithLastChild(false);
// For now set the border-top of |child| flush with the bottom border-edge of the float so it can layout any floating or positioned children of
// its own at the correct vertical position. If subsequent siblings attempt to collapse with |child|'s margins in |collapseMargins| we will
// adjust the height of the parent to |child|'s margin top (which if it is positive sits up 'inside' the float it's clearing) so that all three
// margins can collapse at the correct vertical position.
// Per CSS2.1 we need to ensure that any negative margin-top clears |child| beyond the bottom border-edge of the float so that the top border edge of the child
// (i.e. its clearance) is at a position that satisfies the equation: "the amount of clearance is set so that clearance + margin-top = [height of float],
// i.e., clearance = [height of float] - margin-top".
setLogicalHeight(child->logicalTop() + childMargins.negativeMarginBefore());
} else {
// Increase our height by the amount we had to clear.
setLogicalHeight(logicalHeight() + heightIncrease);
}
if (marginInfo.canCollapseWithMarginBefore()) {
// We can no longer collapse with the top of the block since a clear
// occurred. The empty blocks collapse into the cleared block.
setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin);
marginInfo.setAtBeforeSideOfBlock(false);
// In case the child discarded the before margin of the block we need to reset the mustDiscardMarginBefore flag to the initial value.
setMustDiscardMarginBefore(style()->marginBeforeCollapse() == MDISCARD);
}
return yPos + heightIncrease;
}
void RenderBlockFlow::setCollapsedBottomMargin(const MarginInfo& marginInfo)
{
if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) {
// Update the after side margin of the container to discard if the after margin of the last child also discards and we collapse with it.
// Don't update the max margin values because we won't need them anyway.
if (marginInfo.discardMargin()) {
setMustDiscardMarginAfter();
return;
}
// Update our max pos/neg bottom margins, since we collapsed our bottom margins
// with our children.
setMaxMarginAfterValues(std::max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), std::max(maxNegativeMarginAfter(), marginInfo.negativeMargin()));
if (!marginInfo.hasMarginAfterQuirk())
setHasMarginAfterQuirk(false);
if (marginInfo.hasMarginAfterQuirk() && !marginAfter()) {
// We have no bottom margin and our last child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
setHasMarginAfterQuirk(true);
}
}
}
void RenderBlockFlow::marginBeforeEstimateForChild(RenderBox* child, LayoutUnit& positiveMarginBefore, LayoutUnit& negativeMarginBefore, bool& discardMarginBefore) const
{
// Give up if in quirks mode and we're a body/table cell and the top margin of the child box is quirky.
// Give up if the child specified -webkit-margin-collapse: separate that prevents collapsing.
// FIXME: Use writing mode independent accessor for marginBeforeCollapse.
if ((document().inQuirksMode() && hasMarginBeforeQuirk(child) && (isTableCell() || isBody())) || child->style()->marginBeforeCollapse() == MSEPARATE)
return;
// The margins are discarded by a child that specified -webkit-margin-collapse: discard.
// FIXME: Use writing mode independent accessor for marginBeforeCollapse.
if (child->style()->marginBeforeCollapse() == MDISCARD) {
positiveMarginBefore = 0;
negativeMarginBefore = 0;
discardMarginBefore = true;
return;
}
LayoutUnit beforeChildMargin = marginBeforeForChild(child);
positiveMarginBefore = std::max(positiveMarginBefore, beforeChildMargin);
negativeMarginBefore = std::max(negativeMarginBefore, -beforeChildMargin);
if (!child->isRenderBlockFlow())
return;
RenderBlockFlow* childBlockFlow = toRenderBlockFlow(child);
if (childBlockFlow->childrenInline() || childBlockFlow->isWritingModeRoot())
return;
MarginInfo childMarginInfo(childBlockFlow, childBlockFlow->borderBefore() + childBlockFlow->paddingBefore(), childBlockFlow->borderAfter() + childBlockFlow->paddingAfter());
if (!childMarginInfo.canCollapseMarginBeforeWithChildren())
return;
RenderBox* grandchildBox = childBlockFlow->firstChildBox();
for ( ; grandchildBox; grandchildBox = grandchildBox->nextSiblingBox()) {
if (!grandchildBox->isFloatingOrOutOfFlowPositioned())
break;
}
// Give up if there is clearance on the box, since it probably won't collapse into us.
if (!grandchildBox || grandchildBox->style()->clear() != CNONE)
return;
// Make sure to update the block margins now for the grandchild box so that we're looking at current values.
if (grandchildBox->needsLayout()) {
grandchildBox->computeAndSetBlockDirectionMargins(this);
if (grandchildBox->isRenderBlock()) {
RenderBlock* grandchildBlock = toRenderBlock(grandchildBox);
grandchildBlock->setHasMarginBeforeQuirk(grandchildBox->style()->hasMarginBeforeQuirk());
grandchildBlock->setHasMarginAfterQuirk(grandchildBox->style()->hasMarginAfterQuirk());
}
}
// Collapse the margin of the grandchild box with our own to produce an estimate.
childBlockFlow->marginBeforeEstimateForChild(grandchildBox, positiveMarginBefore, negativeMarginBefore, discardMarginBefore);
}
LayoutUnit RenderBlockFlow::estimateLogicalTopPosition(RenderBox* child, const MarginInfo& marginInfo, LayoutUnit& estimateWithoutPagination)
{
// FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological
// relayout if there are intruding floats.
LayoutUnit logicalTopEstimate = logicalHeight();
if (!marginInfo.canCollapseWithMarginBefore()) {
LayoutUnit positiveMarginBefore = 0;
LayoutUnit negativeMarginBefore = 0;
bool discardMarginBefore = false;
if (child->selfNeedsLayout()) {
// Try to do a basic estimation of how the collapse is going to go.
marginBeforeEstimateForChild(child, positiveMarginBefore, negativeMarginBefore, discardMarginBefore);
} else {
// Use the cached collapsed margin values from a previous layout. Most of the time they
// will be right.
RenderBlockFlow::MarginValues marginValues = marginValuesForChild(child);
positiveMarginBefore = std::max(positiveMarginBefore, marginValues.positiveMarginBefore());
negativeMarginBefore = std::max(negativeMarginBefore, marginValues.negativeMarginBefore());
discardMarginBefore = mustDiscardMarginBeforeForChild(child);
}
// Collapse the result with our current margins.
if (!discardMarginBefore)
logicalTopEstimate += std::max(marginInfo.positiveMargin(), positiveMarginBefore) - std::max(marginInfo.negativeMargin(), negativeMarginBefore);
}
// Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current
// page.
LayoutState* layoutState = view()->layoutState();
if (layoutState->isPaginated() && layoutState->pageLogicalHeight() && logicalTopEstimate > logicalHeight())
logicalTopEstimate = std::min(logicalTopEstimate, nextPageLogicalTop(logicalHeight()));
logicalTopEstimate += getClearDelta(child, logicalTopEstimate);
estimateWithoutPagination = logicalTopEstimate;
if (layoutState->isPaginated()) {
// If the object has a page or column break value of "before", then we should shift to the top of the next page.
logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate);
// For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate);
if (!child->selfNeedsLayout() && child->isRenderBlockFlow())
logicalTopEstimate += toRenderBlockFlow(child)->paginationStrut();
}
return logicalTopEstimate;
}
LayoutUnit RenderBlockFlow::marginOffsetForSelfCollapsingBlock()
{
ASSERT(isSelfCollapsingBlock());
RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
if (parentBlock && style()->clear() && parentBlock->getClearDelta(this, logicalHeight()))
return marginValuesForChild(this).positiveMarginBefore();
return LayoutUnit();
}
void RenderBlockFlow::adjustFloatingBlock(const MarginInfo& marginInfo)
{
// The float should be positioned taking into account the bottom margin
// of the previous flow. We add that margin into the height, get the
// float positioned properly, and then subtract the margin out of the
// height again. In the case of self-collapsing blocks, we always just
// use the top margins, since the self-collapsing block collapsed its
// own bottom margin into its top margin.
//
// Note also that the previous flow may collapse its margin into the top of
// our block. If this is the case, then we do not add the margin in to our
// height when computing the position of the float. This condition can be tested
// for by simply calling canCollapseWithMarginBefore. See
// http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for
// an example of this scenario.
LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? LayoutUnit() : marginInfo.margin();
setLogicalHeight(logicalHeight() + marginOffset);
positionNewFloats();
setLogicalHeight(logicalHeight() - marginOffset);
}
void RenderBlockFlow::handleAfterSideOfBlock(RenderBox* lastChild, LayoutUnit beforeSide, LayoutUnit afterSide, MarginInfo& marginInfo)
{
marginInfo.setAtAfterSideOfBlock(true);
// If our last child was a self-collapsing block with clearance then our logical height is flush with the
// bottom edge of the float that the child clears. The correct vertical position for the margin-collapsing we want
// to perform now is at the child's margin-top - so adjust our height to that position.
if (lastChild && lastChild->isRenderBlockFlow() && lastChild->isSelfCollapsingBlock())
setLogicalHeight(logicalHeight() - toRenderBlockFlow(lastChild)->marginOffsetForSelfCollapsingBlock());
if (marginInfo.canCollapseMarginAfterWithChildren() && !marginInfo.canCollapseMarginAfterWithLastChild())
marginInfo.setCanCollapseMarginAfterWithChildren(false);
// If we can't collapse with children then go ahead and add in the bottom margin.
if (!marginInfo.discardMargin() && (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()
&& (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginAfterQuirk())))
setLogicalHeight(logicalHeight() + marginInfo.margin());
// Now add in our bottom border/padding.
setLogicalHeight(logicalHeight() + afterSide);
// Negative margins can cause our height to shrink below our minimal height (border/padding).
// If this happens, ensure that the computed height is increased to the minimal height.
setLogicalHeight(std::max(logicalHeight(), beforeSide + afterSide));
// Update our bottom collapsed margin info.
setCollapsedBottomMargin(marginInfo);
}
void RenderBlockFlow::setMustDiscardMarginBefore(bool value)
{
if (style()->marginBeforeCollapse() == MDISCARD) {
ASSERT(value);
return;
}
if (!m_rareData && !value)
return;
if (!m_rareData)
m_rareData = adoptPtrWillBeNoop(new RenderBlockFlowRareData(this));
m_rareData->m_discardMarginBefore = value;
}
void RenderBlockFlow::setMustDiscardMarginAfter(bool value)
{
if (style()->marginAfterCollapse() == MDISCARD) {
ASSERT(value);
return;
}
if (!m_rareData && !value)
return;
if (!m_rareData)
m_rareData = adoptPtrWillBeNoop(new RenderBlockFlowRareData(this));
m_rareData->m_discardMarginAfter = value;
}
bool RenderBlockFlow::mustDiscardMarginBefore() const
{
return style()->marginBeforeCollapse() == MDISCARD || (m_rareData && m_rareData->m_discardMarginBefore);
}
bool RenderBlockFlow::mustDiscardMarginAfter() const
{
return style()->marginAfterCollapse() == MDISCARD || (m_rareData && m_rareData->m_discardMarginAfter);
}
bool RenderBlockFlow::mustDiscardMarginBeforeForChild(const RenderBox* child) const
{
ASSERT(!child->selfNeedsLayout());
if (!child->isWritingModeRoot())
return child->isRenderBlockFlow() ? toRenderBlockFlow(child)->mustDiscardMarginBefore() : (child->style()->marginBeforeCollapse() == MDISCARD);
if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
return child->isRenderBlockFlow() ? toRenderBlockFlow(child)->mustDiscardMarginAfter() : (child->style()->marginAfterCollapse() == MDISCARD);
// FIXME: We return false here because the implementation is not geometrically complete. We have values only for before/after, not start/end.
// In case the boxes are perpendicular we assume the property is not specified.
return false;
}
bool RenderBlockFlow::mustDiscardMarginAfterForChild(const RenderBox* child) const
{
ASSERT(!child->selfNeedsLayout());
if (!child->isWritingModeRoot())
return child->isRenderBlockFlow() ? toRenderBlockFlow(child)->mustDiscardMarginAfter() : (child->style()->marginAfterCollapse() == MDISCARD);
if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
return child->isRenderBlockFlow() ? toRenderBlockFlow(child)->mustDiscardMarginBefore() : (child->style()->marginBeforeCollapse() == MDISCARD);
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
void RenderBlockFlow::setMaxMarginBeforeValues(LayoutUnit pos, LayoutUnit neg)
{
if (!m_rareData) {
if (pos == RenderBlockFlowRareData::positiveMarginBeforeDefault(this) && neg == RenderBlockFlowRareData::negativeMarginBeforeDefault(this))
return;
m_rareData = adoptPtrWillBeNoop(new RenderBlockFlowRareData(this));
}
m_rareData->m_margins.setPositiveMarginBefore(pos);
m_rareData->m_margins.setNegativeMarginBefore(neg);
}
void RenderBlockFlow::setMaxMarginAfterValues(LayoutUnit pos, LayoutUnit neg)
{
if (!m_rareData) {
if (pos == RenderBlockFlowRareData::positiveMarginAfterDefault(this) && neg == RenderBlockFlowRareData::negativeMarginAfterDefault(this))
return;
m_rareData = adoptPtrWillBeNoop(new RenderBlockFlowRareData(this));
}
m_rareData->m_margins.setPositiveMarginAfter(pos);
m_rareData->m_margins.setNegativeMarginAfter(neg);
}
bool RenderBlockFlow::mustSeparateMarginBeforeForChild(const RenderBox* child) const
{
ASSERT(!child->selfNeedsLayout());
const RenderStyle* childStyle = child->style();
if (!child->isWritingModeRoot())
return childStyle->marginBeforeCollapse() == MSEPARATE;
if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
return childStyle->marginAfterCollapse() == MSEPARATE;
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
bool RenderBlockFlow::mustSeparateMarginAfterForChild(const RenderBox* child) const
{
ASSERT(!child->selfNeedsLayout());
const RenderStyle* childStyle = child->style();
if (!child->isWritingModeRoot())
return childStyle->marginAfterCollapse() == MSEPARATE;
if (child->isHorizontalWritingMode() == isHorizontalWritingMode())
return childStyle->marginBeforeCollapse() == MSEPARATE;
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
LayoutUnit RenderBlockFlow::applyBeforeBreak(RenderBox* child, LayoutUnit logicalOffset)
{
// FIXME: Add page break checking here when we support printing.
RenderFlowThread* flowThread = flowThreadContainingBlock();
bool isInsideMulticolFlowThread = flowThread;
bool checkColumnBreaks = isInsideMulticolFlowThread || view()->layoutState()->isPaginatingColumns();
bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->pageLogicalHeight(); // FIXME: Once columns can print we have to check this.
bool checkBeforeAlways = (checkColumnBreaks && child->style()->columnBreakBefore() == PBALWAYS)
|| (checkPageBreaks && child->style()->pageBreakBefore() == PBALWAYS);
if (checkBeforeAlways && inNormalFlow(child)) {
if (checkColumnBreaks) {
if (isInsideMulticolFlowThread) {
LayoutUnit offsetBreakAdjustment = 0;
if (flowThread->addForcedRegionBreak(offsetFromLogicalTopOfFirstPage() + logicalOffset, child, true, &offsetBreakAdjustment))
return logicalOffset + offsetBreakAdjustment;
} else {
view()->layoutState()->addForcedColumnBreak(*child, logicalOffset);
}
}
return nextPageLogicalTop(logicalOffset, IncludePageBoundary);
}
return logicalOffset;
}
LayoutUnit RenderBlockFlow::applyAfterBreak(RenderBox* child, LayoutUnit logicalOffset, MarginInfo& marginInfo)
{
// FIXME: Add page break checking here when we support printing.
RenderFlowThread* flowThread = flowThreadContainingBlock();
bool isInsideMulticolFlowThread = flowThread;
bool checkColumnBreaks = isInsideMulticolFlowThread || view()->layoutState()->isPaginatingColumns();
bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->pageLogicalHeight(); // FIXME: Once columns can print we have to check this.
bool checkAfterAlways = (checkColumnBreaks && child->style()->columnBreakAfter() == PBALWAYS)
|| (checkPageBreaks && child->style()->pageBreakAfter() == PBALWAYS);
if (checkAfterAlways && inNormalFlow(child)) {
LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? LayoutUnit() : marginInfo.margin();
// So our margin doesn't participate in the next collapsing steps.
marginInfo.clearMargin();
if (checkColumnBreaks) {
if (isInsideMulticolFlowThread) {
LayoutUnit offsetBreakAdjustment = 0;
if (flowThread->addForcedRegionBreak(offsetFromLogicalTopOfFirstPage() + logicalOffset + marginOffset, child, false, &offsetBreakAdjustment))
return logicalOffset + marginOffset + offsetBreakAdjustment;
} else {
view()->layoutState()->addForcedColumnBreak(*child, logicalOffset);
}
}
return nextPageLogicalTop(logicalOffset, IncludePageBoundary);
}
return logicalOffset;
}
void RenderBlockFlow::addOverflowFromFloats()
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
if (floatingObject->isDescendant())
addOverflowFromChild(floatingObject->renderer(), IntSize(xPositionForFloatIncludingMargin(floatingObject), yPositionForFloatIncludingMargin(floatingObject)));
}
}
void RenderBlockFlow::computeOverflow(LayoutUnit oldClientAfterEdge, bool recomputeFloats)
{
RenderBlock::computeOverflow(oldClientAfterEdge, recomputeFloats);
if (!hasColumns() && (recomputeFloats || createsBlockFormattingContext() || hasSelfPaintingLayer()))
addOverflowFromFloats();
}
RootInlineBox* RenderBlockFlow::createAndAppendRootInlineBox()
{
RootInlineBox* rootBox = createRootInlineBox();
m_lineBoxes.appendLineBox(rootBox);
if (UNLIKELY(AXObjectCache::accessibilityEnabled()) && m_lineBoxes.firstLineBox() == rootBox) {
if (AXObjectCache* cache = document().existingAXObjectCache())
cache->recomputeIsIgnored(this);
}
return rootBox;
}
void RenderBlockFlow::deleteLineBoxTree()
{
if (containsFloats())
m_floatingObjects->clearLineBoxTreePointers();
m_lineBoxes.deleteLineBoxTree();
if (AXObjectCache* cache = document().existingAXObjectCache())
cache->recomputeIsIgnored(this);
}
void RenderBlockFlow::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout)
{
if (!everHadLayout() && !containsFloats())
return;
if (m_descendantsWithFloatsMarkedForLayout && !floatToRemove)
return;
m_descendantsWithFloatsMarkedForLayout |= !floatToRemove;
MarkingBehavior markParents = inLayout ? MarkOnlyThis : MarkContainingBlockChain;
setChildNeedsLayout(markParents);
if (floatToRemove)
removeFloatingObject(floatToRemove);
// Iterate over our children and mark them as needed.
if (!childrenInline()) {
for (RenderObject* child = firstChild(); child; child = child->nextSibling()) {
if ((!floatToRemove && child->isFloatingOrOutOfFlowPositioned()) || !child->isRenderBlock())
continue;
if (!child->isRenderBlockFlow()) {
RenderBlock* childBlock = toRenderBlock(child);
if (childBlock->shrinkToAvoidFloats() && childBlock->everHadLayout())
childBlock->setChildNeedsLayout(markParents);
continue;
}
RenderBlockFlow* childBlockFlow = toRenderBlockFlow(child);
if ((floatToRemove ? childBlockFlow->containsFloat(floatToRemove) : childBlockFlow->containsFloats()) || childBlockFlow->shrinkToAvoidFloats())
childBlockFlow->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout);
}
}
}
void RenderBlockFlow::markSiblingsWithFloatsForLayout(RenderBox* floatToRemove)
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (RenderObject* next = nextSibling(); next; next = next->nextSibling()) {
if (!next->isRenderBlockFlow() || next->isFloatingOrOutOfFlowPositioned() || toRenderBlockFlow(next)->avoidsFloats())
continue;
RenderBlockFlow* nextBlock = toRenderBlockFlow(next);
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
RenderBox* floatingBox = (*it)->renderer();
if (floatToRemove && floatingBox != floatToRemove)
continue;
if (nextBlock->containsFloat(floatingBox))
nextBlock->markAllDescendantsWithFloatsForLayout(floatingBox);
}
}
}
LayoutUnit RenderBlockFlow::getClearDelta(RenderBox* child, LayoutUnit logicalTop)
{
// There is no need to compute clearance if we have no floats.
if (!containsFloats())
return 0;
// At least one float is present. We need to perform the clearance computation.
bool clearSet = child->style()->clear() != CNONE;
LayoutUnit logicalBottom = 0;
switch (child->style()->clear()) {
case CNONE:
break;
case CLEFT:
logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
break;
case CRIGHT:
logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatRight);
break;
case CBOTH:
logicalBottom = lowestFloatLogicalBottom();
break;
}
// We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default).
LayoutUnit result = clearSet ? std::max<LayoutUnit>(0, logicalBottom - logicalTop) : LayoutUnit();
if (!result && child->avoidsFloats()) {
LayoutUnit newLogicalTop = logicalTop;
while (true) {
LayoutUnit availableLogicalWidthAtNewLogicalTopOffset = availableLogicalWidthForLine(newLogicalTop, false, logicalHeightForChild(child));
if (availableLogicalWidthAtNewLogicalTopOffset == availableLogicalWidthForContent())
return newLogicalTop - logicalTop;
LayoutRect borderBox = child->borderBoxRect();
LayoutUnit childLogicalWidthAtOldLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height();
// FIXME: None of this is right for perpendicular writing-mode children.
LayoutUnit childOldLogicalWidth = child->logicalWidth();
LayoutUnit childOldMarginLeft = child->marginLeft();
LayoutUnit childOldMarginRight = child->marginRight();
LayoutUnit childOldLogicalTop = child->logicalTop();
child->setLogicalTop(newLogicalTop);
child->updateLogicalWidth();
borderBox = child->borderBoxRect();
LayoutUnit childLogicalWidthAtNewLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height();
child->setLogicalTop(childOldLogicalTop);
child->setLogicalWidth(childOldLogicalWidth);
child->setMarginLeft(childOldMarginLeft);
child->setMarginRight(childOldMarginRight);
if (childLogicalWidthAtNewLogicalTopOffset <= availableLogicalWidthAtNewLogicalTopOffset) {
// Even though we may not be moving, if the logical width did shrink because of the presence of new floats, then
// we need to force a relayout as though we shifted. This happens because of the dynamic addition of overhanging floats
// from previous siblings when negative margins exist on a child (see the addOverhangingFloats call at the end of collapseMargins).
if (childLogicalWidthAtOldLogicalTopOffset != childLogicalWidthAtNewLogicalTopOffset)
child->setChildNeedsLayout(MarkOnlyThis);
return newLogicalTop - logicalTop;
}
newLogicalTop = nextFloatLogicalBottomBelow(newLogicalTop);
ASSERT(newLogicalTop >= logicalTop);
if (newLogicalTop < logicalTop)
break;
}
ASSERT_NOT_REACHED();
}
return result;
}
void RenderBlockFlow::createFloatingObjects()
{
m_floatingObjects = adoptPtr(new FloatingObjects(this, isHorizontalWritingMode()));
}
void RenderBlockFlow::styleWillChange(StyleDifference diff, const RenderStyle& newStyle)
{
RenderStyle* oldStyle = style();
s_canPropagateFloatIntoSibling = oldStyle ? !isFloatingOrOutOfFlowPositioned() && !avoidsFloats() : false;
if (oldStyle && parent() && diff.needsFullLayout() && oldStyle->position() != newStyle.position()
&& containsFloats() && !isFloating() && !isOutOfFlowPositioned() && newStyle.hasOutOfFlowPosition())
markAllDescendantsWithFloatsForLayout();
RenderBlock::styleWillChange(diff, newStyle);
}
void RenderBlockFlow::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
// After our style changed, if we lose our ability to propagate floats into next sibling
// blocks, then we need to find the top most parent containing that overhanging float and
// then mark its descendants with floats for layout and clear all floats from its next
// sibling blocks that exist in our floating objects list. See bug 56299 and 62875.
bool canPropagateFloatIntoSibling = !isFloatingOrOutOfFlowPositioned() && !avoidsFloats();
if (diff.needsFullLayout() && s_canPropagateFloatIntoSibling && !canPropagateFloatIntoSibling && hasOverhangingFloats()) {
RenderBlockFlow* parentBlockFlow = this;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (RenderObject* curr = parent(); curr && !curr->isRenderView(); curr = curr->parent()) {
if (curr->isRenderBlockFlow()) {
RenderBlockFlow* currBlock = toRenderBlockFlow(curr);
if (currBlock->hasOverhangingFloats()) {
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
RenderBox* renderer = (*it)->renderer();
if (currBlock->hasOverhangingFloat(renderer)) {
parentBlockFlow = currBlock;
break;
}
}
}
}
}
parentBlockFlow->markAllDescendantsWithFloatsForLayout();
parentBlockFlow->markSiblingsWithFloatsForLayout();
}
if (diff.needsFullLayout() || !oldStyle)
createOrDestroyMultiColumnFlowThreadIfNeeded(oldStyle);
}
void RenderBlockFlow::updateStaticInlinePositionForChild(RenderBox* child, LayoutUnit logicalTop)
{
if (child->style()->isOriginalDisplayInlineType())
setStaticInlinePositionForChild(child, startAlignedOffsetForLine(logicalTop, false));
else
setStaticInlinePositionForChild(child, startOffsetForContent());
}
void RenderBlockFlow::setStaticInlinePositionForChild(RenderBox* child, LayoutUnit inlinePosition)
{
child->layer()->setStaticInlinePosition(inlinePosition);
}
void RenderBlockFlow::addChild(RenderObject* newChild, RenderObject* beforeChild)
{
if (RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
flowThread->addChild(newChild, beforeChild);
return;
}
RenderBlock::addChild(newChild, beforeChild);
}
void RenderBlockFlow::moveAllChildrenIncludingFloatsTo(RenderBlock* toBlock, bool fullRemoveInsert)
{
RenderBlockFlow* toBlockFlow = toRenderBlockFlow(toBlock);
moveAllChildrenTo(toBlockFlow, fullRemoveInsert);
// When a portion of the render tree is being detached, anonymous blocks
// will be combined as their children are deleted. In this process, the
// anonymous block later in the tree is merged into the one preceeding it.
// It can happen that the later block (this) contains floats that the
// previous block (toBlockFlow) did not contain, and thus are not in the
// floating objects list for toBlockFlow. This can result in toBlockFlow containing
// floats that are not in it's floating objects list, but are in the
// floating objects lists of siblings and parents. This can cause problems
// when the float itself is deleted, since the deletion code assumes that
// if a float is not in it's containing block's floating objects list, it
// isn't in any floating objects list. In order to preserve this condition
// (removing it has serious performance implications), we need to copy the
// floating objects from the old block (this) to the new block (toBlockFlow).
// The float's metrics will likely all be wrong, but since toBlockFlow is
// already marked for layout, this will get fixed before anything gets
// displayed.
// See bug https://code.google.com/p/chromium/issues/detail?id=230907
if (m_floatingObjects) {
if (!toBlockFlow->m_floatingObjects)
toBlockFlow->createFloatingObjects();
const FloatingObjectSet& fromFloatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = fromFloatingObjectSet.end();
for (FloatingObjectSetIterator it = fromFloatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
// Don't insert the object again if it's already in the list
if (toBlockFlow->containsFloat(floatingObject->renderer()))
continue;
toBlockFlow->m_floatingObjects->add(floatingObject->unsafeClone());
}
}
}
void RenderBlockFlow::invalidatePaintForOverhangingFloats(bool paintAllDescendants)
{
// Repaint any overhanging floats (if we know we're the one to paint them).
// Otherwise, bail out.
if (!hasOverhangingFloats())
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
// Only repaint the object if it is overhanging, is not in its own layer, and
// is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter
// condition is replaced with being a descendant of us.
if (logicalBottomForFloat(floatingObject) > logicalHeight()
&& !floatingObject->renderer()->hasSelfPaintingLayer()
&& (floatingObject->shouldPaint() || (paintAllDescendants && floatingObject->renderer()->isDescendantOf(this)))) {
RenderBox* floatingRenderer = floatingObject->renderer();
floatingRenderer->setShouldDoFullPaintInvalidation(true);
floatingRenderer->invalidatePaintForOverhangingFloats(false);
}
}
}
void RenderBlockFlow::invalidatePaintForOverflow()
{
// FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines
// it had to lay out. We wouldn't need the hasOverflowClip() hack in that case either.
LayoutUnit repaintLogicalLeft = logicalLeftVisualOverflow();
LayoutUnit repaintLogicalRight = logicalRightVisualOverflow();
if (hasOverflowClip()) {
// If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow.
// Note the old code did this as well but even for overflow:visible. The addition of hasOverflowClip() at least tightens up the hack a bit.
// layoutInlineChildren should be patched to compute the entire repaint rect.
repaintLogicalLeft = std::min(repaintLogicalLeft, logicalLeftLayoutOverflow());
repaintLogicalRight = std::max(repaintLogicalRight, logicalRightLayoutOverflow());
}
LayoutRect repaintRect;
if (isHorizontalWritingMode())
repaintRect = LayoutRect(repaintLogicalLeft, m_repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft, m_repaintLogicalBottom - m_repaintLogicalTop);
else
repaintRect = LayoutRect(m_repaintLogicalTop, repaintLogicalLeft, m_repaintLogicalBottom - m_repaintLogicalTop, repaintLogicalRight - repaintLogicalLeft);
// The repaint rect may be split across columns, in which case adjustRectForColumns() will return the union.
adjustRectForColumns(repaintRect);
if (hasOverflowClip()) {
// Adjust repaint rect for scroll offset
repaintRect.move(-scrolledContentOffset());
// Don't allow this rect to spill out of our overflow box.
repaintRect.intersect(LayoutRect(LayoutPoint(), size()));
}
// Make sure the rect is still non-empty after intersecting for overflow above
if (!repaintRect.isEmpty()) {
// Hits in media/event-attributes.html
DisableCompositingQueryAsserts disabler;
invalidatePaintRectangle(repaintRect); // We need to do a partial repaint of our content.
if (hasReflection())
invalidatePaintRectangle(reflectedRect(repaintRect));
}
m_repaintLogicalTop = 0;
m_repaintLogicalBottom = 0;
}
void RenderBlockFlow::paintFloats(PaintInfo& paintInfo, const LayoutPoint& paintOffset, bool preservePhase)
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
// Only paint the object if our m_shouldPaint flag is set.
if (floatingObject->shouldPaint() && !floatingObject->renderer()->hasSelfPaintingLayer()) {
PaintInfo currentPaintInfo(paintInfo);
currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground;
// FIXME: LayoutPoint version of xPositionForFloatIncludingMargin would make this much cleaner.
LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, LayoutPoint(paintOffset.x() + xPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->x(), paintOffset.y() + yPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->y()));
floatingObject->renderer()->paint(currentPaintInfo, childPoint);
if (!preservePhase) {
currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds;
floatingObject->renderer()->paint(currentPaintInfo, childPoint);
currentPaintInfo.phase = PaintPhaseFloat;
floatingObject->renderer()->paint(currentPaintInfo, childPoint);
currentPaintInfo.phase = PaintPhaseForeground;
floatingObject->renderer()->paint(currentPaintInfo, childPoint);
currentPaintInfo.phase = PaintPhaseOutline;
floatingObject->renderer()->paint(currentPaintInfo, childPoint);
}
}
}
}
void RenderBlockFlow::clipOutFloatingObjects(RenderBlock* rootBlock, const PaintInfo* paintInfo, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock)
{
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
LayoutRect floatBox(offsetFromRootBlock.width() + xPositionForFloatIncludingMargin(floatingObject),
offsetFromRootBlock.height() + yPositionForFloatIncludingMargin(floatingObject),
floatingObject->renderer()->width(), floatingObject->renderer()->height());
rootBlock->flipForWritingMode(floatBox);
floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y());
paintInfo->context->clipOut(pixelSnappedIntRect(floatBox));
}
}
}
void RenderBlockFlow::clearFloats(EClear clear)
{
positionNewFloats();
// set y position
LayoutUnit newY = 0;
switch (clear) {
case CLEFT:
newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
break;
case CRIGHT:
newY = lowestFloatLogicalBottom(FloatingObject::FloatRight);
break;
case CBOTH:
newY = lowestFloatLogicalBottom();
default:
break;
}
if (height() < newY)
setLogicalHeight(newY);
}
bool RenderBlockFlow::containsFloat(RenderBox* renderer) const
{
return m_floatingObjects && m_floatingObjects->set().contains<FloatingObjectHashTranslator>(renderer);
}
void RenderBlockFlow::removeFloatingObjects()
{
if (!m_floatingObjects)
return;
markSiblingsWithFloatsForLayout();
m_floatingObjects->clear();
}
LayoutPoint RenderBlockFlow::flipFloatForWritingModeForChild(const FloatingObject* child, const LayoutPoint& point) const
{
if (!style()->isFlippedBlocksWritingMode())
return point;
// This is similar to RenderBox::flipForWritingModeForChild. We have to subtract out our left/top offsets twice, since
// it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped
// case.
if (isHorizontalWritingMode())
return LayoutPoint(point.x(), point.y() + height() - child->renderer()->height() - 2 * yPositionForFloatIncludingMargin(child));
return LayoutPoint(point.x() + width() - child->renderer()->width() - 2 * xPositionForFloatIncludingMargin(child), point.y());
}
LayoutUnit RenderBlockFlow::logicalLeftOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const
{
LayoutUnit offset = fixedOffset;
if (m_floatingObjects && m_floatingObjects->hasLeftObjects())
offset = m_floatingObjects->logicalLeftOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining);
return adjustLogicalLeftOffsetForLine(offset, applyTextIndent);
}
LayoutUnit RenderBlockFlow::logicalRightOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const
{
LayoutUnit offset = fixedOffset;
if (m_floatingObjects && m_floatingObjects->hasRightObjects())
offset = m_floatingObjects->logicalRightOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining);
return adjustLogicalRightOffsetForLine(offset, applyTextIndent);
}
LayoutUnit RenderBlockFlow::adjustLogicalLeftOffsetForLine(LayoutUnit offsetFromFloats, bool applyTextIndent) const
{
LayoutUnit left = offsetFromFloats;
if (applyTextIndent && style()->isLeftToRightDirection())
left += textIndentOffset();
return left;
}
LayoutUnit RenderBlockFlow::adjustLogicalRightOffsetForLine(LayoutUnit offsetFromFloats, bool applyTextIndent) const
{
LayoutUnit right = offsetFromFloats;
if (applyTextIndent && !style()->isLeftToRightDirection())
right -= textIndentOffset();
return right;
}
LayoutPoint RenderBlockFlow::computeLogicalLocationForFloat(const FloatingObject* floatingObject, LayoutUnit logicalTopOffset) const
{
RenderBox* childBox = floatingObject->renderer();
LayoutUnit logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
LayoutUnit logicalRightOffset; // Constant part of right offset.
logicalRightOffset = logicalRightOffsetForContent();
LayoutUnit floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); // The width we look for.
LayoutUnit floatLogicalLeft;
bool insideFlowThread = flowThreadContainingBlock();
if (childBox->style()->floating() == LeftFloat) {
LayoutUnit heightRemainingLeft = 1;
LayoutUnit heightRemainingRight = 1;
floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft);
while (logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) {
logicalTopOffset += std::min(heightRemainingLeft, heightRemainingRight);
floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft);
if (insideFlowThread) {
// Have to re-evaluate all of our offsets, since they may have changed.
logicalRightOffset = logicalRightOffsetForContent(); // Constant part of right offset.
logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset);
}
}
floatLogicalLeft = std::max(logicalLeftOffset - borderAndPaddingLogicalLeft(), floatLogicalLeft);
} else {
LayoutUnit heightRemainingLeft = 1;
LayoutUnit heightRemainingRight = 1;
floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight);
while (floatLogicalLeft - logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft) < floatLogicalWidth) {
logicalTopOffset += std::min(heightRemainingLeft, heightRemainingRight);
floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight);
if (insideFlowThread) {
// Have to re-evaluate all of our offsets, since they may have changed.
logicalRightOffset = logicalRightOffsetForContent(); // Constant part of right offset.
logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset);
}
}
// Use the original width of the float here, since the local variable
// |floatLogicalWidth| was capped to the available line width. See
// fast/block/float/clamped-right-float.html.
floatLogicalLeft -= logicalWidthForFloat(floatingObject);
}
return LayoutPoint(floatLogicalLeft, logicalTopOffset);
}
FloatingObject* RenderBlockFlow::insertFloatingObject(RenderBox* floatBox)
{
ASSERT(floatBox->isFloating());
// Create the list of special objects if we don't aleady have one
if (!m_floatingObjects) {
createFloatingObjects();
} else {
// Don't insert the object again if it's already in the list
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(floatBox);
if (it != floatingObjectSet.end())
return it->get();
}
// Create the special object entry & append it to the list
OwnPtr<FloatingObject> newObj = FloatingObject::create(floatBox);
// Our location is irrelevant if we're unsplittable or no pagination is in effect.
// Just go ahead and lay out the float.
bool isChildRenderBlock = floatBox->isRenderBlock();
if (isChildRenderBlock && !floatBox->needsLayout() && view()->layoutState()->pageLogicalHeightChanged())
floatBox->setChildNeedsLayout(MarkOnlyThis);
bool needsBlockDirectionLocationSetBeforeLayout = isChildRenderBlock && view()->layoutState()->needsBlockDirectionLocationSetBeforeLayout();
if (!needsBlockDirectionLocationSetBeforeLayout || isWritingModeRoot()) { // We are unsplittable if we're a block flow root.
floatBox->layoutIfNeeded();
} else {
floatBox->updateLogicalWidth();
floatBox->computeAndSetBlockDirectionMargins(this);
}
setLogicalWidthForFloat(newObj.get(), logicalWidthForChild(floatBox) + marginStartForChild(floatBox) + marginEndForChild(floatBox));
return m_floatingObjects->add(newObj.release());
}
void RenderBlockFlow::removeFloatingObject(RenderBox* floatBox)
{
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(floatBox);
if (it != floatingObjectSet.end()) {
FloatingObject* floatingObject = it->get();
if (childrenInline()) {
LayoutUnit logicalTop = logicalTopForFloat(floatingObject);
LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject);
// Fix for https://bugs.webkit.org/show_bug.cgi?id=54995.
if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == LayoutUnit::max()) {
logicalBottom = LayoutUnit::max();
} else {
// Special-case zero- and less-than-zero-height floats: those don't touch
// the line that they're on, but it still needs to be dirtied. This is
// accomplished by pretending they have a height of 1.
logicalBottom = std::max(logicalBottom, logicalTop + 1);
}
if (floatingObject->originatingLine()) {
if (!selfNeedsLayout()) {
ASSERT(floatingObject->originatingLine()->renderer() == this);
floatingObject->originatingLine()->markDirty();
}
#if ENABLE(ASSERT)
floatingObject->setOriginatingLine(0);
#endif
}
markLinesDirtyInBlockRange(0, logicalBottom);
}
m_floatingObjects->remove(floatingObject);
}
}
}
void RenderBlockFlow::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset)
{
if (!containsFloats())
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObject* curr = floatingObjectSet.last().get();
while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(curr) >= logicalOffset)) {
m_floatingObjects->remove(curr);
if (floatingObjectSet.isEmpty())
break;
curr = floatingObjectSet.last().get();
}
}
bool RenderBlockFlow::positionNewFloats()
{
if (!m_floatingObjects)
return false;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
if (floatingObjectSet.isEmpty())
return false;
// If all floats have already been positioned, then we have no work to do.
if (floatingObjectSet.last()->isPlaced())
return false;
// Move backwards through our floating object list until we find a float that has
// already been positioned. Then we'll be able to move forward, positioning all of
// the new floats that need it.
FloatingObjectSetIterator it = floatingObjectSet.end();
--it; // Go to last item.
FloatingObjectSetIterator begin = floatingObjectSet.begin();
FloatingObject* lastPlacedFloatingObject = 0;
while (it != begin) {
--it;
if ((*it)->isPlaced()) {
lastPlacedFloatingObject = it->get();
++it;
break;
}
}
LayoutUnit logicalTop = logicalHeight();
// The float cannot start above the top position of the last positioned float.
if (lastPlacedFloatingObject)
logicalTop = std::max(logicalTopForFloat(lastPlacedFloatingObject), logicalTop);
FloatingObjectSetIterator end = floatingObjectSet.end();
// Now walk through the set of unpositioned floats and place them.
for (; it != end; ++it) {
FloatingObject* floatingObject = it->get();
// The containing block is responsible for positioning floats, so if we have floats in our
// list that come from somewhere else, do not attempt to position them.
if (floatingObject->renderer()->containingBlock() != this)
continue;
RenderBox* childBox = floatingObject->renderer();
// FIXME Investigate if this can be removed. crbug.com/370006
childBox->setMayNeedPaintInvalidation(true);
LayoutUnit childLogicalLeftMargin = style()->isLeftToRightDirection() ? marginStartForChild(childBox) : marginEndForChild(childBox);
if (childBox->style()->clear() & CLEFT)
logicalTop = std::max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop);
if (childBox->style()->clear() & CRIGHT)
logicalTop = std::max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop);
LayoutPoint floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, logicalTop);
setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x());
setLogicalLeftForChild(childBox, floatLogicalLocation.x() + childLogicalLeftMargin);
setLogicalTopForChild(childBox, floatLogicalLocation.y() + marginBeforeForChild(childBox));
SubtreeLayoutScope layoutScope(*childBox);
LayoutState* layoutState = view()->layoutState();
bool isPaginated = layoutState->isPaginated();
if (isPaginated && !childBox->needsLayout())
childBox->markForPaginationRelayoutIfNeeded(layoutScope);
childBox->layoutIfNeeded();
if (isPaginated) {
// If we are unsplittable and don't fit, then we need to move down.
// We include our margins as part of the unsplittable area.
LayoutUnit newLogicalTop = adjustForUnsplittableChild(childBox, floatLogicalLocation.y(), true);
// See if we have a pagination strut that is making us move down further.
// Note that an unsplittable child can't also have a pagination strut, so this is
// exclusive with the case above.
RenderBlockFlow* childBlockFlow = childBox->isRenderBlockFlow() ? toRenderBlockFlow(childBox) : 0;
if (childBlockFlow && childBlockFlow->paginationStrut()) {
newLogicalTop += childBlockFlow->paginationStrut();
childBlockFlow->setPaginationStrut(0);
}
if (newLogicalTop != floatLogicalLocation.y()) {
floatingObject->setPaginationStrut(newLogicalTop - floatLogicalLocation.y());
floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, newLogicalTop);
setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x());
setLogicalLeftForChild(childBox, floatLogicalLocation.x() + childLogicalLeftMargin);
setLogicalTopForChild(childBox, floatLogicalLocation.y() + marginBeforeForChild(childBox));
if (childBox->isRenderBlock())
childBox->setChildNeedsLayout(MarkOnlyThis);
childBox->layoutIfNeeded();
}
}
setLogicalTopForFloat(floatingObject, floatLogicalLocation.y());
setLogicalHeightForFloat(floatingObject, logicalHeightForChild(childBox) + marginBeforeForChild(childBox) + marginAfterForChild(childBox));
m_floatingObjects->addPlacedObject(floatingObject);
if (ShapeOutsideInfo* shapeOutside = childBox->shapeOutsideInfo())
shapeOutside->setReferenceBoxLogicalSize(logicalSizeForChild(childBox));
}
return true;
}
bool RenderBlockFlow::hasOverhangingFloat(RenderBox* renderer)
{
if (!m_floatingObjects || hasColumns() || !parent())
return false;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(renderer);
if (it == floatingObjectSet.end())
return false;
return logicalBottomForFloat(it->get()) > logicalHeight();
}
void RenderBlockFlow::addIntrudingFloats(RenderBlockFlow* prev, LayoutUnit logicalLeftOffset, LayoutUnit logicalTopOffset)
{
ASSERT(!avoidsFloats());
// If we create our own block formatting context then our contents don't interact with floats outside it, even those from our parent.
if (createsBlockFormattingContext())
return;
// If the parent or previous sibling doesn't have any floats to add, don't bother.
if (!prev->m_floatingObjects)
return;
logicalLeftOffset += marginLogicalLeft();
const FloatingObjectSet& prevSet = prev->m_floatingObjects->set();
FloatingObjectSetIterator prevEnd = prevSet.end();
for (FloatingObjectSetIterator prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) {
FloatingObject* floatingObject = prevIt->get();
if (logicalBottomForFloat(floatingObject) > logicalTopOffset) {
if (!m_floatingObjects || !m_floatingObjects->set().contains(floatingObject)) {
// We create the floating object list lazily.
if (!m_floatingObjects)
createFloatingObjects();
// Applying the child's margin makes no sense in the case where the child was passed in.
// since this margin was added already through the modification of the |logicalLeftOffset| variable
// above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken
// into account. Only apply this code if prev is the parent, since otherwise the left margin
// will get applied twice.
LayoutSize offset = isHorizontalWritingMode()
? LayoutSize(logicalLeftOffset - (prev != parent() ? prev->marginLeft() : LayoutUnit()), logicalTopOffset)
: LayoutSize(logicalTopOffset, logicalLeftOffset - (prev != parent() ? prev->marginTop() : LayoutUnit()));
m_floatingObjects->add(floatingObject->copyToNewContainer(offset));
}
}
}
}
void RenderBlockFlow::addOverhangingFloats(RenderBlockFlow* child, bool makeChildPaintOtherFloats)
{
// Prevent floats from being added to the canvas by the root element, e.g., <html>.
if (!child->containsFloats() || child->isRenderRegion() || child->createsBlockFormattingContext())
return;
LayoutUnit childLogicalTop = child->logicalTop();
LayoutUnit childLogicalLeft = child->logicalLeft();
// Floats that will remain the child's responsibility to paint should factor into its
// overflow.
FloatingObjectSetIterator childEnd = child->m_floatingObjects->set().end();
for (FloatingObjectSetIterator childIt = child->m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) {
FloatingObject* floatingObject = childIt->get();
LayoutUnit logicalBottomForFloat = std::min(this->logicalBottomForFloat(floatingObject), LayoutUnit::max() - childLogicalTop);
LayoutUnit logicalBottom = childLogicalTop + logicalBottomForFloat;
if (logicalBottom > logicalHeight()) {
// If the object is not in the list, we add it now.
if (!containsFloat(floatingObject->renderer())) {
LayoutSize offset = isHorizontalWritingMode() ? LayoutSize(-childLogicalLeft, -childLogicalTop) : LayoutSize(-childLogicalTop, -childLogicalLeft);
bool shouldPaint = false;
// The nearest enclosing layer always paints the float (so that zindex and stacking
// behaves properly). We always want to propagate the desire to paint the float as
// far out as we can, to the outermost block that overlaps the float, stopping only
// if we hit a self-painting layer boundary.
if (floatingObject->renderer()->enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer()) {
floatingObject->setShouldPaint(false);
shouldPaint = true;
}
// We create the floating object list lazily.
if (!m_floatingObjects)
createFloatingObjects();
m_floatingObjects->add(floatingObject->copyToNewContainer(offset, shouldPaint, true));
}
} else {
if (makeChildPaintOtherFloats && !floatingObject->shouldPaint() && !floatingObject->renderer()->hasSelfPaintingLayer()
&& floatingObject->renderer()->isDescendantOf(child) && floatingObject->renderer()->enclosingFloatPaintingLayer() == child->enclosingFloatPaintingLayer()) {
// The float is not overhanging from this block, so if it is a descendant of the child, the child should
// paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing
// layer.
// If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats
// it should paint.
floatingObject->setShouldPaint(true);
}
// Since the float doesn't overhang, it didn't get put into our list. We need to go ahead and add its overflow in to the
// child now.
if (floatingObject->isDescendant())
child->addOverflowFromChild(floatingObject->renderer(), LayoutSize(xPositionForFloatIncludingMargin(floatingObject), yPositionForFloatIncludingMargin(floatingObject)));
}
}
}
LayoutUnit RenderBlockFlow::lowestFloatLogicalBottom(FloatingObject::Type floatType) const
{
if (!m_floatingObjects)
return 0;
return m_floatingObjects->lowestFloatLogicalBottom(floatType);
}
LayoutUnit RenderBlockFlow::nextFloatLogicalBottomBelow(LayoutUnit logicalHeight, ShapeOutsideFloatOffsetMode offsetMode) const
{
if (!m_floatingObjects)
return logicalHeight;
LayoutUnit logicalBottom;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
LayoutUnit floatLogicalBottom = logicalBottomForFloat(floatingObject);
ShapeOutsideInfo* shapeOutside = floatingObject->renderer()->shapeOutsideInfo();
if (shapeOutside && (offsetMode == ShapeOutsideFloatShapeOffset)) {
LayoutUnit shapeLogicalBottom = logicalTopForFloat(floatingObject) + marginBeforeForChild(floatingObject->renderer()) + shapeOutside->shapeLogicalBottom();
// Use the shapeLogicalBottom unless it extends outside of the margin box, in which case it is clipped.
if (shapeLogicalBottom < floatLogicalBottom)
floatLogicalBottom = shapeLogicalBottom;
}
if (floatLogicalBottom > logicalHeight)
logicalBottom = logicalBottom ? std::min(floatLogicalBottom, logicalBottom) : floatLogicalBottom;
}
return logicalBottom;
}
bool RenderBlockFlow::hitTestFloats(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset)
{
if (!m_floatingObjects)
return false;
LayoutPoint adjustedLocation = accumulatedOffset;
if (isRenderView()) {
adjustedLocation += toLayoutSize(toRenderView(this)->frameView()->scrollPosition());
}
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator begin = floatingObjectSet.begin();
for (FloatingObjectSetIterator it = floatingObjectSet.end(); it != begin;) {
--it;
FloatingObject* floatingObject = it->get();
if (floatingObject->shouldPaint() && !floatingObject->renderer()->hasSelfPaintingLayer()) {
LayoutUnit xOffset = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->x();
LayoutUnit yOffset = yPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->y();
LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, adjustedLocation + LayoutSize(xOffset, yOffset));
if (floatingObject->renderer()->hitTest(request, result, locationInContainer, childPoint)) {
updateHitTestResult(result, locationInContainer.point() - toLayoutSize(childPoint));
return true;
}
}
}
return false;
}
void RenderBlockFlow::adjustForBorderFit(LayoutUnit x, LayoutUnit& left, LayoutUnit& right) const
{
if (style()->visibility() != VISIBLE)
return;
// We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting
// for either overflow or translations via relative positioning.
if (childrenInline()) {
for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) {
if (box->firstChild())
left = std::min(left, x + static_cast<LayoutUnit>(box->firstChild()->x()));
if (box->lastChild())
right = std::max(right, x + static_cast<LayoutUnit>(ceilf(box->lastChild()->logicalRight())));
}
} else {
for (RenderBox* obj = firstChildBox(); obj; obj = obj->nextSiblingBox()) {
if (!obj->isFloatingOrOutOfFlowPositioned()) {
if (obj->isRenderBlockFlow() && !obj->hasOverflowClip()) {
toRenderBlockFlow(obj)->adjustForBorderFit(x + obj->x(), left, right);
} else if (obj->style()->visibility() == VISIBLE) {
// We are a replaced element or some kind of non-block-flow object.
left = std::min(left, x + obj->x());
right = std::max(right, x + obj->x() + obj->width());
}
}
}
}
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
FloatingObject* floatingObject = it->get();
// Only examine the object if our m_shouldPaint flag is set.
if (floatingObject->shouldPaint()) {
LayoutUnit floatLeft = xPositionForFloatIncludingMargin(floatingObject) - floatingObject->renderer()->x();
LayoutUnit floatRight = floatLeft + floatingObject->renderer()->width();
left = std::min(left, floatLeft);
right = std::max(right, floatRight);
}
}
}
}
void RenderBlockFlow::fitBorderToLinesIfNeeded()
{
if (style()->borderFit() == BorderFitBorder || hasOverrideWidth())
return;
// Walk any normal flow lines to snugly fit.
LayoutUnit left = LayoutUnit::max();
LayoutUnit right = LayoutUnit::min();
LayoutUnit oldWidth = contentWidth();
adjustForBorderFit(0, left, right);
// Clamp to our existing edges. We can never grow. We only shrink.
LayoutUnit leftEdge = borderLeft() + paddingLeft();
LayoutUnit rightEdge = leftEdge + oldWidth;
left = std::min(rightEdge, std::max(leftEdge, left));
right = std::max(left, std::min(rightEdge, right));
LayoutUnit newContentWidth = right - left;
if (newContentWidth == oldWidth)
return;
setOverrideLogicalContentWidth(newContentWidth);
layoutBlock(false);
clearOverrideLogicalContentWidth();
}
LayoutUnit RenderBlockFlow::logicalLeftFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const
{
if (m_floatingObjects && m_floatingObjects->hasLeftObjects())
return m_floatingObjects->logicalLeftOffset(fixedOffset, logicalTop, logicalHeight);
return fixedOffset;
}
LayoutUnit RenderBlockFlow::logicalRightFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const
{
if (m_floatingObjects && m_floatingObjects->hasRightObjects())
return m_floatingObjects->logicalRightOffset(fixedOffset, logicalTop, logicalHeight);
return fixedOffset;
}
GapRects RenderBlockFlow::inlineSelectionGaps(RenderBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const PaintInfo* paintInfo)
{
GapRects result;
bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth;
if (!firstLineBox()) {
if (containsStart) {
// Go ahead and update our lastLogicalTop to be the bottom of the block. <hr>s or empty blocks with height can trip this
// case.
lastLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + logicalHeight();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight());
}
return result;
}
RootInlineBox* lastSelectedLine = 0;
RootInlineBox* curr;
for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { }
// Now paint the gaps for the lines.
for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) {
LayoutUnit selTop = curr->selectionTopAdjustedForPrecedingBlock();
LayoutUnit selHeight = curr->selectionHeightAdjustedForPrecedingBlock();
if (!containsStart && !lastSelectedLine && selectionState() != SelectionStart && selectionState() != SelectionBoth) {
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop,
lastLogicalLeft, lastLogicalRight, selTop, paintInfo));
}
LayoutRect logicalRect(curr->logicalLeft(), selTop, curr->logicalWidth(), selTop + selHeight);
logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : offsetFromRootBlock.transposedSize());
LayoutRect physicalRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect);
if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y())
|| (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x()))
result.unite(curr->lineSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, selTop, selHeight, paintInfo));
lastSelectedLine = curr;
}
if (containsStart && !lastSelectedLine) {
// VisibleSelection must start just after our last line.
lastSelectedLine = lastRootBox();
}
if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) {
// Go ahead and update our lastY to be the bottom of the last selected line.
lastLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + lastSelectedLine->selectionBottom();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom());
}
return result;
}
void RenderBlockFlow::setPaginationStrut(LayoutUnit strut)
{
if (!m_rareData) {
if (!strut)
return;
m_rareData = adoptPtrWillBeNoop(new RenderBlockFlowRareData(this));
}
m_rareData->m_paginationStrut = strut;
}
bool RenderBlockFlow::avoidsFloats() const
{
// Floats can't intrude into our box if we have a non-auto column count or width.
// Note: we need to use RenderBox::avoidsFloats here since RenderBlock::avoidsFloats is always true.
return RenderBox::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth();
}
LayoutUnit RenderBlockFlow::logicalLeftSelectionOffset(RenderBlock* rootBlock, LayoutUnit position)
{
LayoutUnit logicalLeft = logicalLeftOffsetForLine(position, false);
if (logicalLeft == logicalLeftOffsetForContent())
return RenderBlock::logicalLeftSelectionOffset(rootBlock, position);
RenderBlock* cb = this;
while (cb != rootBlock) {
logicalLeft += cb->logicalLeft();
cb = cb->containingBlock();
}
return logicalLeft;
}
LayoutUnit RenderBlockFlow::logicalRightSelectionOffset(RenderBlock* rootBlock, LayoutUnit position)
{
LayoutUnit logicalRight = logicalRightOffsetForLine(position, false);
if (logicalRight == logicalRightOffsetForContent())
return RenderBlock::logicalRightSelectionOffset(rootBlock, position);
RenderBlock* cb = this;
while (cb != rootBlock) {
logicalRight += cb->logicalLeft();
cb = cb->containingBlock();
}
return logicalRight;
}
RootInlineBox* RenderBlockFlow::createRootInlineBox()
{
return new RootInlineBox(*this);
}
bool RenderBlockFlow::isPagedOverflow(const RenderStyle* style)
{
return style->isOverflowPaged() && node() != document().viewportDefiningElement();
}
RenderBlockFlow::FlowThreadType RenderBlockFlow::flowThreadType(const RenderStyle* style)
{
if (isPagedOverflow(style))
return PagedFlowThread;
if (style->specifiesColumns())
return MultiColumnFlowThread;
return NoFlowThread;
}
RenderMultiColumnFlowThread* RenderBlockFlow::createMultiColumnFlowThread(FlowThreadType type)
{
switch (type) {
case MultiColumnFlowThread:
return RenderMultiColumnFlowThread::createAnonymous(document(), style());
case PagedFlowThread:
// Paged overflow is currently done using the multicol implementation.
return RenderPagedFlowThread::createAnonymous(document(), style());
default:
ASSERT_NOT_REACHED();
return nullptr;
}
}
void RenderBlockFlow::createOrDestroyMultiColumnFlowThreadIfNeeded(const RenderStyle* oldStyle)
{
if (!document().regionBasedColumnsEnabled())
return;
// Paged overflow trumps multicol in this implementation. Ideally, it should be possible to have
// both paged overflow and multicol on the same element, but then we need two flow
// threads. Anyway, this is nothing to worry about until we can actually nest multicol properly
// inside other fragmentation contexts.
FlowThreadType type = flowThreadType(style());
if (multiColumnFlowThread()) {
ASSERT(oldStyle);
if (type != flowThreadType(oldStyle)) {
// If we're no longer to be multicol/paged, destroy the flow thread. Also destroy it
// when switching between multicol and paged, since that affects the column set
// structure (multicol containers may have spanners, paged containers may not).
multiColumnFlowThread()->evacuateAndDestroy();
ASSERT(!multiColumnFlowThread());
}
}
if (type == NoFlowThread || multiColumnFlowThread())
return;
RenderMultiColumnFlowThread* flowThread = createMultiColumnFlowThread(type);
addChild(flowThread);
flowThread->populate();
RenderBlockFlowRareData& rareData = ensureRareData();
ASSERT(!rareData.m_multiColumnFlowThread);
rareData.m_multiColumnFlowThread = flowThread;
}
RenderBlockFlow::RenderBlockFlowRareData& RenderBlockFlow::ensureRareData()
{
if (m_rareData)
return *m_rareData;
m_rareData = adoptPtrWillBeNoop(new RenderBlockFlowRareData(this));
return *m_rareData;
}
} // namespace blink