blob: 52b2906becfdcfe3026b9ffbaab3ba5ee5f68678 [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2011, Benjamin Poulain <ikipou@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_ListHashSet_h
#define WTF_ListHashSet_h
#include "wtf/DefaultAllocator.h"
#include "wtf/HashSet.h"
#include "wtf/OwnPtr.h"
#include "wtf/PassOwnPtr.h"
namespace WTF {
// ListHashSet: Just like HashSet, this class provides a Set
// interface - a collection of unique objects with O(1) insertion,
// removal and test for containership. However, it also has an
// order - iterating it will always give back values in the order
// in which they are added.
// Unlike iteration of most WTF Hash data structures, iteration is
// guaranteed safe against mutation of the ListHashSet, except for
// removal of the item currently pointed to by a given iterator.
template<typename Value, size_t inlineCapacity, typename HashFunctions, typename Allocator> class ListHashSet;
template<typename Set> class ListHashSetIterator;
template<typename Set> class ListHashSetConstIterator;
template<typename Set> class ListHashSetReverseIterator;
template<typename Set> class ListHashSetConstReverseIterator;
template<typename ValueArg> class ListHashSetNodeBase;
template<typename ValueArg, typename Allocator> class ListHashSetNode;
template<typename ValueArg, size_t inlineCapacity> struct ListHashSetAllocator;
template<typename HashArg> struct ListHashSetNodeHashFunctions;
template<typename HashArg> struct ListHashSetTranslator;
// Don't declare a destructor for HeapAllocated ListHashSet.
template<typename Derived, typename Allocator, bool isGarbageCollected>
class ListHashSetDestructorBase;
template<typename Derived, typename Allocator>
class ListHashSetDestructorBase<Derived, Allocator, true> {
protected:
typename Allocator::AllocatorProvider m_allocatorProvider;
};
template<typename Derived, typename Allocator>
class ListHashSetDestructorBase<Derived, Allocator, false> {
public:
~ListHashSetDestructorBase() { static_cast<Derived*>(this)->finalize(); }
protected:
typename Allocator::AllocatorProvider m_allocatorProvider;
};
// Note that for a ListHashSet you cannot specify the HashTraits as a
// template argument. It uses the default hash traits for the ValueArg
// type.
template<typename ValueArg, size_t inlineCapacity = 256, typename HashArg = typename DefaultHash<ValueArg>::Hash, typename AllocatorArg = ListHashSetAllocator<ValueArg, inlineCapacity> > class ListHashSet
: public ListHashSetDestructorBase<ListHashSet<ValueArg, inlineCapacity, HashArg, AllocatorArg>, AllocatorArg, AllocatorArg::isGarbageCollected> {
typedef AllocatorArg Allocator;
WTF_USE_ALLOCATOR(ListHashSet, Allocator);
typedef ListHashSetNode<ValueArg, Allocator> Node;
typedef HashTraits<Node*> NodeTraits;
typedef ListHashSetNodeHashFunctions<HashArg> NodeHash;
typedef ListHashSetTranslator<HashArg> BaseTranslator;
typedef HashTable<Node*, Node*, IdentityExtractor, NodeHash, NodeTraits, NodeTraits, typename Allocator::TableAllocator> ImplType;
typedef HashTableIterator<Node*, Node*, IdentityExtractor, NodeHash, NodeTraits, NodeTraits, typename Allocator::TableAllocator> ImplTypeIterator;
typedef HashTableConstIterator<Node*, Node*, IdentityExtractor, NodeHash, NodeTraits, NodeTraits, typename Allocator::TableAllocator> ImplTypeConstIterator;
typedef HashArg HashFunctions;
public:
typedef ValueArg ValueType;
typedef HashTraits<ValueType> ValueTraits;
typedef typename ValueTraits::PeekInType ValuePeekInType;
typedef typename ValueTraits::PassInType ValuePassInType;
typedef typename ValueTraits::PassOutType ValuePassOutType;
typedef ListHashSetIterator<ListHashSet> iterator;
typedef ListHashSetConstIterator<ListHashSet> const_iterator;
friend class ListHashSetIterator<ListHashSet>;
friend class ListHashSetConstIterator<ListHashSet>;
typedef ListHashSetReverseIterator<ListHashSet> reverse_iterator;
typedef ListHashSetConstReverseIterator<ListHashSet> const_reverse_iterator;
friend class ListHashSetReverseIterator<ListHashSet>;
friend class ListHashSetConstReverseIterator<ListHashSet>;
template<typename ValueType> struct HashTableAddResult {
HashTableAddResult(Node* storedValue, bool isNewEntry) : storedValue(storedValue), isNewEntry(isNewEntry) { }
Node* storedValue;
bool isNewEntry;
};
typedef HashTableAddResult<ValueType> AddResult;
ListHashSet();
ListHashSet(const ListHashSet&);
ListHashSet& operator=(const ListHashSet&);
void finalize();
void swap(ListHashSet&);
unsigned size() const { return m_impl.size(); }
unsigned capacity() const { return m_impl.capacity(); }
bool isEmpty() const { return m_impl.isEmpty(); }
iterator begin() { return makeIterator(m_head); }
iterator end() { return makeIterator(0); }
const_iterator begin() const { return makeConstIterator(m_head); }
const_iterator end() const { return makeConstIterator(0); }
reverse_iterator rbegin() { return makeReverseIterator(m_tail); }
reverse_iterator rend() { return makeReverseIterator(0); }
const_reverse_iterator rbegin() const { return makeConstReverseIterator(m_tail); }
const_reverse_iterator rend() const { return makeConstReverseIterator(0); }
ValueType& first();
const ValueType& first() const;
void removeFirst();
ValueType& last();
const ValueType& last() const;
void removeLast();
iterator find(ValuePeekInType);
const_iterator find(ValuePeekInType) const;
bool contains(ValuePeekInType) const;
// An alternate version of find() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion.
// The HashTranslator interface is defined in HashSet.
template<typename HashTranslator, typename T> iterator find(const T&);
template<typename HashTranslator, typename T> const_iterator find(const T&) const;
template<typename HashTranslator, typename T> bool contains(const T&) const;
// The return value of add is a pair of a pointer to the stored value,
// and a bool that is true if an new entry was added.
AddResult add(ValuePassInType);
// Same as add() except that the return value is an
// iterator. Useful in cases where it's needed to have the
// same return value as find() and where it's not possible to
// use a pointer to the storedValue.
iterator addReturnIterator(ValuePassInType);
// Add the value to the end of the collection. If the value was already in
// the list, it is moved to the end.
AddResult appendOrMoveToLast(ValuePassInType);
// Add the value to the beginning of the collection. If the value was already in
// the list, it is moved to the beginning.
AddResult prependOrMoveToFirst(ValuePassInType);
AddResult insertBefore(ValuePeekInType beforeValue, ValuePassInType newValue);
AddResult insertBefore(iterator, ValuePassInType);
void remove(ValuePeekInType value) { return remove(find(value)); }
void remove(iterator);
void clear();
template<typename Collection>
void removeAll(const Collection& other) { WTF::removeAll(*this, other); }
ValuePassOutType take(iterator);
ValuePassOutType take(ValuePeekInType);
ValuePassOutType takeFirst();
void trace(typename Allocator::Visitor*);
private:
void unlink(Node*);
void unlinkAndDelete(Node*);
void appendNode(Node*);
void prependNode(Node*);
void insertNodeBefore(Node* beforeNode, Node* newNode);
void deleteAllNodes();
Allocator* allocator() const { return this->m_allocatorProvider.get(); }
void createAllocatorIfNeeded() { this->m_allocatorProvider.createAllocatorIfNeeded(); }
void deallocate(Node* node) const { this->m_allocatorProvider.deallocate(node); }
iterator makeIterator(Node* position) { return iterator(this, position); }
const_iterator makeConstIterator(Node* position) const { return const_iterator(this, position); }
reverse_iterator makeReverseIterator(Node* position) { return reverse_iterator(this, position); }
const_reverse_iterator makeConstReverseIterator(Node* position) const { return const_reverse_iterator(this, position); }
ImplType m_impl;
Node* m_head;
Node* m_tail;
};
// ListHashSetNode has this base class to hold the members because the MSVC
// compiler otherwise gets into circular template dependencies when trying
// to do sizeof on a node.
template<typename ValueArg> class ListHashSetNodeBase {
protected:
ListHashSetNodeBase(const ValueArg& value)
: m_value(value)
, m_prev(0)
, m_next(0)
#if ENABLE(ASSERT)
, m_isAllocated(true)
#endif
{
}
template <typename U>
ListHashSetNodeBase(const U& value)
: m_value(value)
, m_prev(0)
, m_next(0)
#if ENABLE(ASSERT)
, m_isAllocated(true)
#endif
{
}
public:
ValueArg m_value;
ListHashSetNodeBase* m_prev;
ListHashSetNodeBase* m_next;
#if ENABLE(ASSERT)
bool m_isAllocated;
#endif
};
// This allocator is only used for non-Heap ListHashSets.
template<typename ValueArg, size_t inlineCapacity>
struct ListHashSetAllocator : public DefaultAllocator {
typedef DefaultAllocator TableAllocator;
typedef ListHashSetNode<ValueArg, ListHashSetAllocator> Node;
typedef ListHashSetNodeBase<ValueArg> NodeBase;
class AllocatorProvider {
public:
void createAllocatorIfNeeded()
{
if (!m_allocator)
m_allocator = adoptPtr(new ListHashSetAllocator);
}
void swap(AllocatorProvider& other)
{
m_allocator.swap(other.m_allocator);
}
void deallocate(Node* node) const
{
ASSERT(m_allocator);
m_allocator->deallocate(node);
}
ListHashSetAllocator* get() const
{
ASSERT(m_allocator);
return m_allocator.get();
}
private:
OwnPtr<ListHashSetAllocator> m_allocator;
};
ListHashSetAllocator()
: m_freeList(pool())
, m_isDoneWithInitialFreeList(false)
{
memset(m_pool.buffer, 0, sizeof(m_pool.buffer));
}
Node* allocateNode()
{
Node* result = m_freeList;
if (!result)
return static_cast<Node*>(fastMalloc(sizeof(NodeBase)));
ASSERT(!result->m_isAllocated);
Node* next = result->next();
ASSERT(!next || !next->m_isAllocated);
if (!next && !m_isDoneWithInitialFreeList) {
next = result + 1;
if (next == pastPool()) {
m_isDoneWithInitialFreeList = true;
next = 0;
} else {
ASSERT(inPool(next));
ASSERT(!next->m_isAllocated);
}
}
m_freeList = next;
return result;
}
void deallocate(Node* node)
{
if (inPool(node)) {
#if ENABLE(ASSERT)
node->m_isAllocated = false;
#endif
node->m_next = m_freeList;
m_freeList = node;
return;
}
fastFree(node);
}
bool inPool(Node* node)
{
return node >= pool() && node < pastPool();
}
static void traceValue(typename DefaultAllocator::Visitor* visitor, Node* node) { }
private:
Node* pool() { return reinterpret_cast_ptr<Node*>(m_pool.buffer); }
Node* pastPool() { return pool() + m_poolSize; }
Node* m_freeList;
bool m_isDoneWithInitialFreeList;
#if defined(MEMORY_SANITIZER_INITIAL_SIZE)
// The allocation pool for nodes is one big chunk that ASAN has no
// insight into, so it can cloak errors. Make it as small as possible
// to force nodes to be allocated individually where ASAN can see them.
static const size_t m_poolSize = 1;
#else
static const size_t m_poolSize = inlineCapacity;
#endif
AlignedBuffer<sizeof(NodeBase) * m_poolSize, WTF_ALIGN_OF(NodeBase)> m_pool;
};
template<typename ValueArg, typename AllocatorArg> class ListHashSetNode : public ListHashSetNodeBase<ValueArg> {
public:
typedef AllocatorArg NodeAllocator;
typedef ValueArg Value;
template <typename U>
ListHashSetNode(U value)
: ListHashSetNodeBase<ValueArg>(value) { }
void* operator new(size_t, NodeAllocator* allocator)
{
COMPILE_ASSERT(sizeof(ListHashSetNode) == sizeof(ListHashSetNodeBase<ValueArg>), PleaseAddAnyFieldsToTheBase);
return allocator->allocateNode();
}
void setWasAlreadyDestructed()
{
if (NodeAllocator::isGarbageCollected && HashTraits<ValueArg>::needsDestruction)
this->m_prev = unlinkedNodePointer();
}
bool wasAlreadyDestructed() const
{
ASSERT(NodeAllocator::isGarbageCollected);
return this->m_prev == unlinkedNodePointer();
}
static void finalize(void* pointer)
{
ASSERT(HashTraits<ValueArg>::needsDestruction); // No need to waste time calling finalize if it's not needed.
ListHashSetNode* self = reinterpret_cast_ptr<ListHashSetNode*>(pointer);
// Check whether this node was already destructed before being
// unlinked from the collection.
if (self->wasAlreadyDestructed())
return;
self->m_value.~ValueArg();
}
void destroy(NodeAllocator* allocator)
{
this->~ListHashSetNode();
setWasAlreadyDestructed();
allocator->deallocate(this);
}
// This is not called in normal tracing, but it is called if we find a
// pointer to a node on the stack using conservative scanning. Since
// the original ListHashSet may no longer exist we make sure to mark
// the neighbours in the chain too.
void trace(typename NodeAllocator::Visitor* visitor)
{
// The conservative stack scan can find nodes that have been
// removed from the set and destructed. We don't need to trace
// these, and it would be wrong to do so, because the class will
// not expect the trace method to be called after the destructor.
// It's an error to remove a node from the ListHashSet while an
// iterator is positioned at that node, so there should be no valid
// pointers from the stack to a destructed node.
if (wasAlreadyDestructed())
return;
NodeAllocator::traceValue(visitor, this);
visitor->mark(next());
visitor->mark(prev());
}
ListHashSetNode* next() const { return reinterpret_cast<ListHashSetNode*>(this->m_next); }
ListHashSetNode* prev() const { return reinterpret_cast<ListHashSetNode*>(this->m_prev); }
// Don't add fields here, the ListHashSetNodeBase and this should have
// the same size.
static ListHashSetNode* unlinkedNodePointer() { return reinterpret_cast<ListHashSetNode*>(-1); }
template<typename HashArg>
friend struct ListHashSetNodeHashFunctions;
};
template<typename HashArg> struct ListHashSetNodeHashFunctions {
template<typename T> static unsigned hash(const T& key) { return HashArg::hash(key->m_value); }
template<typename T> static bool equal(const T& a, const T& b) { return HashArg::equal(a->m_value, b->m_value); }
static const bool safeToCompareToEmptyOrDeleted = false;
};
template<typename Set> class ListHashSetIterator {
private:
typedef typename Set::const_iterator const_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef ValueType& ReferenceType;
typedef ValueType* PointerType;
ListHashSetIterator(const Set* set, Node* position) : m_iterator(set, position) { }
public:
ListHashSetIterator() { }
// default copy, assignment and destructor are OK
PointerType get() const { return const_cast<PointerType>(m_iterator.get()); }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetIterator& operator++() { ++m_iterator; return *this; }
ListHashSetIterator& operator--() { --m_iterator; return *this; }
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetIterator& other) const { return m_iterator == other.m_iterator; }
bool operator!=(const ListHashSetIterator& other) const { return m_iterator != other.m_iterator; }
operator const_iterator() const { return m_iterator; }
private:
Node* node() { return m_iterator.node(); }
const_iterator m_iterator;
template<typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template<typename Set>
class ListHashSetConstIterator {
private:
typedef typename Set::const_iterator const_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef const ValueType& ReferenceType;
typedef const ValueType* PointerType;
friend class ListHashSetIterator<Set>;
ListHashSetConstIterator(const Set* set, Node* position)
: m_set(set)
, m_position(position)
{
}
public:
ListHashSetConstIterator()
{
}
PointerType get() const
{
return &m_position->m_value;
}
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetConstIterator& operator++()
{
ASSERT(m_position != 0);
m_position = m_position->next();
return *this;
}
ListHashSetConstIterator& operator--()
{
ASSERT(m_position != m_set->m_head);
if (!m_position)
m_position = m_set->m_tail;
else
m_position = m_position->prev();
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetConstIterator& other) const
{
return m_position == other.m_position;
}
bool operator!=(const ListHashSetConstIterator& other) const
{
return m_position != other.m_position;
}
private:
Node* node() { return m_position; }
const Set* m_set;
Node* m_position;
template<typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template<typename Set>
class ListHashSetReverseIterator {
private:
typedef typename Set::const_reverse_iterator const_reverse_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef ValueType& ReferenceType;
typedef ValueType* PointerType;
ListHashSetReverseIterator(const Set* set, Node* position) : m_iterator(set, position) { }
public:
ListHashSetReverseIterator() { }
// default copy, assignment and destructor are OK
PointerType get() const { return const_cast<PointerType>(m_iterator.get()); }
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetReverseIterator& operator++() { ++m_iterator; return *this; }
ListHashSetReverseIterator& operator--() { --m_iterator; return *this; }
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetReverseIterator& other) const { return m_iterator == other.m_iterator; }
bool operator!=(const ListHashSetReverseIterator& other) const { return m_iterator != other.m_iterator; }
operator const_reverse_iterator() const { return m_iterator; }
private:
Node* node() { return m_iterator.node(); }
const_reverse_iterator m_iterator;
template<typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template<typename Set> class ListHashSetConstReverseIterator {
private:
typedef typename Set::reverse_iterator reverse_iterator;
typedef typename Set::Node Node;
typedef typename Set::ValueType ValueType;
typedef const ValueType& ReferenceType;
typedef const ValueType* PointerType;
friend class ListHashSetReverseIterator<Set>;
ListHashSetConstReverseIterator(const Set* set, Node* position)
: m_set(set)
, m_position(position)
{
}
public:
ListHashSetConstReverseIterator()
{
}
PointerType get() const
{
return &m_position->m_value;
}
ReferenceType operator*() const { return *get(); }
PointerType operator->() const { return get(); }
ListHashSetConstReverseIterator& operator++()
{
ASSERT(m_position != 0);
m_position = m_position->prev();
return *this;
}
ListHashSetConstReverseIterator& operator--()
{
ASSERT(m_position != m_set->m_tail);
if (!m_position)
m_position = m_set->m_head;
else
m_position = m_position->next();
return *this;
}
// Postfix ++ and -- intentionally omitted.
// Comparison.
bool operator==(const ListHashSetConstReverseIterator& other) const
{
return m_position == other.m_position;
}
bool operator!=(const ListHashSetConstReverseIterator& other) const
{
return m_position != other.m_position;
}
private:
Node* node() { return m_position; }
const Set* m_set;
Node* m_position;
template<typename T, size_t inlineCapacity, typename U, typename V>
friend class ListHashSet;
};
template<typename HashFunctions>
struct ListHashSetTranslator {
template<typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a->m_value, b); }
template<typename T, typename U, typename V> static void translate(T*& location, const U& key, const V& allocator)
{
location = new (const_cast<V*>(&allocator)) T(key);
}
};
template<typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>::ListHashSet()
: m_head(0)
, m_tail(0)
{
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>::ListHashSet(const ListHashSet& other)
: m_head(0)
, m_tail(0)
{
const_iterator end = other.end();
for (const_iterator it = other.begin(); it != end; ++it)
add(*it);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline ListHashSet<T, inlineCapacity, U, V>& ListHashSet<T, inlineCapacity, U, V>::operator=(const ListHashSet& other)
{
ListHashSet tmp(other);
swap(tmp);
return *this;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::swap(ListHashSet& other)
{
m_impl.swap(other.m_impl);
std::swap(m_head, other.m_head);
std::swap(m_tail, other.m_tail);
this->m_allocatorProvider.swap(other.m_allocatorProvider);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::finalize()
{
COMPILE_ASSERT(!Allocator::isGarbageCollected, FinalizeOnHeapAllocatedListHashSetShouldNeverBeCalled);
deleteAllNodes();
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline T& ListHashSet<T, inlineCapacity, U, V>::first()
{
ASSERT(!isEmpty());
return m_head->m_value;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::removeFirst()
{
ASSERT(!isEmpty());
m_impl.remove(m_head);
unlinkAndDelete(m_head);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline const T& ListHashSet<T, inlineCapacity, U, V>::first() const
{
ASSERT(!isEmpty());
return m_head->m_value;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline T& ListHashSet<T, inlineCapacity, U, V>::last()
{
ASSERT(!isEmpty());
return m_tail->m_value;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline const T& ListHashSet<T, inlineCapacity, U, V>::last() const
{
ASSERT(!isEmpty());
return m_tail->m_value;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::removeLast()
{
ASSERT(!isEmpty());
m_impl.remove(m_tail);
unlinkAndDelete(m_tail);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline typename ListHashSet<T, inlineCapacity, U, V>::iterator ListHashSet<T, inlineCapacity, U, V>::find(ValuePeekInType value)
{
ImplTypeIterator it = m_impl.template find<BaseTranslator>(value);
if (it == m_impl.end())
return end();
return makeIterator(*it);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline typename ListHashSet<T, inlineCapacity, U, V>::const_iterator ListHashSet<T, inlineCapacity, U, V>::find(ValuePeekInType value) const
{
ImplTypeConstIterator it = m_impl.template find<BaseTranslator>(value);
if (it == m_impl.end())
return end();
return makeConstIterator(*it);
}
template<typename Translator>
struct ListHashSetTranslatorAdapter {
template<typename T> static unsigned hash(const T& key) { return Translator::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return Translator::equal(a->m_value, b); }
};
template<typename ValueType, size_t inlineCapacity, typename U, typename V>
template<typename HashTranslator, typename T>
inline typename ListHashSet<ValueType, inlineCapacity, U, V>::iterator ListHashSet<ValueType, inlineCapacity, U, V>::find(const T& value)
{
ImplTypeConstIterator it = m_impl.template find<ListHashSetTranslatorAdapter<HashTranslator> >(value);
if (it == m_impl.end())
return end();
return makeIterator(*it);
}
template<typename ValueType, size_t inlineCapacity, typename U, typename V>
template<typename HashTranslator, typename T>
inline typename ListHashSet<ValueType, inlineCapacity, U, V>::const_iterator ListHashSet<ValueType, inlineCapacity, U, V>::find(const T& value) const
{
ImplTypeConstIterator it = m_impl.template find<ListHashSetTranslatorAdapter<HashTranslator> >(value);
if (it == m_impl.end())
return end();
return makeConstIterator(*it);
}
template<typename ValueType, size_t inlineCapacity, typename U, typename V>
template<typename HashTranslator, typename T>
inline bool ListHashSet<ValueType, inlineCapacity, U, V>::contains(const T& value) const
{
return m_impl.template contains<ListHashSetTranslatorAdapter<HashTranslator> >(value);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline bool ListHashSet<T, inlineCapacity, U, V>::contains(ValuePeekInType value) const
{
return m_impl.template contains<BaseTranslator>(value);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::add(ValuePassInType value)
{
createAllocatorIfNeeded();
// The second argument is a const ref. This is useful for the HashTable
// because it lets it take lvalues by reference, but for our purposes
// it's inconvenient, since it constrains us to be const, whereas the
// allocator actually changes when it does allocations.
typename ImplType::AddResult result = m_impl.template add<BaseTranslator>(value, *this->allocator());
if (result.isNewEntry)
appendNode(*result.storedValue);
return AddResult(*result.storedValue, result.isNewEntry);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::iterator ListHashSet<T, inlineCapacity, U, V>::addReturnIterator(ValuePassInType value)
{
return makeIterator(add(value).storedValue);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::appendOrMoveToLast(ValuePassInType value)
{
createAllocatorIfNeeded();
typename ImplType::AddResult result = m_impl.template add<BaseTranslator>(value, *this->allocator());
Node* node = *result.storedValue;
if (!result.isNewEntry)
unlink(node);
appendNode(node);
return AddResult(*result.storedValue, result.isNewEntry);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::prependOrMoveToFirst(ValuePassInType value)
{
createAllocatorIfNeeded();
typename ImplType::AddResult result = m_impl.template add<BaseTranslator>(value, *this->allocator());
Node* node = *result.storedValue;
if (!result.isNewEntry)
unlink(node);
prependNode(node);
return AddResult(*result.storedValue, result.isNewEntry);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::insertBefore(iterator it, ValuePassInType newValue)
{
createAllocatorIfNeeded();
typename ImplType::AddResult result = m_impl.template add<BaseTranslator>(newValue, *this->allocator());
if (result.isNewEntry)
insertNodeBefore(it.node(), *result.storedValue);
return AddResult(*result.storedValue, result.isNewEntry);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::AddResult ListHashSet<T, inlineCapacity, U, V>::insertBefore(ValuePeekInType beforeValue, ValuePassInType newValue)
{
createAllocatorIfNeeded();
return insertBefore(find(beforeValue), newValue);
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::remove(iterator it)
{
if (it == end())
return;
m_impl.remove(it.node());
unlinkAndDelete(it.node());
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void ListHashSet<T, inlineCapacity, U, V>::clear()
{
deleteAllNodes();
m_impl.clear();
m_head = 0;
m_tail = 0;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::ValuePassOutType ListHashSet<T, inlineCapacity, U, V>::take(iterator it)
{
if (it == end())
return ValueTraits::emptyValue();
m_impl.remove(it.node());
ValuePassOutType result = ValueTraits::passOut(it.node()->m_value);
unlinkAndDelete(it.node());
return result;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::ValuePassOutType ListHashSet<T, inlineCapacity, U, V>::take(ValuePeekInType value)
{
return take(find(value));
}
template<typename T, size_t inlineCapacity, typename U, typename V>
typename ListHashSet<T, inlineCapacity, U, V>::ValuePassOutType ListHashSet<T, inlineCapacity, U, V>::takeFirst()
{
ASSERT(!isEmpty());
m_impl.remove(m_head);
ValuePassOutType result = ValueTraits::passOut(m_head->m_value);
unlinkAndDelete(m_head);
return result;
}
template<typename T, size_t inlineCapacity, typename U, typename Allocator>
void ListHashSet<T, inlineCapacity, U, Allocator>::unlink(Node* node)
{
if (!node->m_prev) {
ASSERT(node == m_head);
m_head = node->next();
} else {
ASSERT(node != m_head);
node->m_prev->m_next = node->m_next;
}
if (!node->m_next) {
ASSERT(node == m_tail);
m_tail = node->prev();
} else {
ASSERT(node != m_tail);
node->m_next->m_prev = node->m_prev;
}
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::unlinkAndDelete(Node* node)
{
unlink(node);
node->destroy(this->allocator());
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::appendNode(Node* node)
{
node->m_prev = m_tail;
node->m_next = 0;
if (m_tail) {
ASSERT(m_head);
m_tail->m_next = node;
} else {
ASSERT(!m_head);
m_head = node;
}
m_tail = node;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::prependNode(Node* node)
{
node->m_prev = 0;
node->m_next = m_head;
if (m_head)
m_head->m_prev = node;
else
m_tail = node;
m_head = node;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::insertNodeBefore(Node* beforeNode, Node* newNode)
{
if (!beforeNode)
return appendNode(newNode);
newNode->m_next = beforeNode;
newNode->m_prev = beforeNode->m_prev;
if (beforeNode->m_prev)
beforeNode->m_prev->m_next = newNode;
beforeNode->m_prev = newNode;
if (!newNode->m_prev)
m_head = newNode;
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::deleteAllNodes()
{
if (!m_head)
return;
for (Node* node = m_head, *next = m_head->next(); node; node = next, next = node ? node->next() : 0)
node->destroy(this->allocator());
}
template<typename T, size_t inlineCapacity, typename U, typename V>
void ListHashSet<T, inlineCapacity, U, V>::trace(typename Allocator::Visitor* visitor)
{
COMPILE_ASSERT(HashTraits<T>::weakHandlingFlag == NoWeakHandlingInCollections, ListHashSetDoesNotSupportWeakness);
// This marks all the nodes and their contents live that can be
// accessed through the HashTable. That includes m_head and m_tail
// so we do not have to explicitly trace them here.
m_impl.trace(visitor);
}
#if !ENABLE(OILPAN)
template<typename T, size_t U, typename V>
struct NeedsTracing<ListHashSet<T, U, V> > {
static const bool value = false;
};
#endif
} // namespace WTF
using WTF::ListHashSet;
#endif /* WTF_ListHashSet_h */