blob: 08a6368469429e720e44a5b2407cbd26c0c266b1 [file] [log] [blame]
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
*
* Portions are Copyright (C) 1998 Netscape Communications Corporation.
*
* Other contributors:
* Robert O'Callahan <roc+@cs.cmu.edu>
* David Baron <dbaron@fas.harvard.edu>
* Christian Biesinger <cbiesinger@web.de>
* Randall Jesup <rjesup@wgate.com>
* Roland Mainz <roland.mainz@informatik.med.uni-giessen.de>
* Josh Soref <timeless@mac.com>
* Boris Zbarsky <bzbarsky@mit.edu>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Alternatively, the contents of this file may be used under the terms
* of either the Mozilla Public License Version 1.1, found at
* http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public
* License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html
* (the "GPL"), in which case the provisions of the MPL or the GPL are
* applicable instead of those above. If you wish to allow use of your
* version of this file only under the terms of one of those two
* licenses (the MPL or the GPL) and not to allow others to use your
* version of this file under the LGPL, indicate your decision by
* deletingthe provisions above and replace them with the notice and
* other provisions required by the MPL or the GPL, as the case may be.
* If you do not delete the provisions above, a recipient may use your
* version of this file under any of the LGPL, the MPL or the GPL.
*/
#include "config.h"
#include "core/rendering/RenderLayer.h"
#include "core/CSSPropertyNames.h"
#include "core/HTMLNames.h"
#include "core/css/PseudoStyleRequest.h"
#include "core/dom/Document.h"
#include "core/dom/shadow/ShadowRoot.h"
#include "core/frame/DeprecatedScheduleStyleRecalcDuringLayout.h"
#include "core/frame/FrameView.h"
#include "core/frame/LocalFrame.h"
#include "core/frame/Settings.h"
#include "core/html/HTMLFrameElement.h"
#include "core/page/Page.h"
#include "core/page/scrolling/ScrollingCoordinator.h"
#include "core/rendering/ColumnInfo.h"
#include "core/rendering/FilterEffectRenderer.h"
#include "core/rendering/HitTestRequest.h"
#include "core/rendering/HitTestResult.h"
#include "core/rendering/HitTestingTransformState.h"
#include "core/rendering/RenderFlowThread.h"
#include "core/rendering/RenderGeometryMap.h"
#include "core/rendering/RenderInline.h"
#include "core/rendering/RenderPart.h"
#include "core/rendering/RenderReplica.h"
#include "core/rendering/RenderScrollbar.h"
#include "core/rendering/RenderScrollbarPart.h"
#include "core/rendering/RenderTreeAsText.h"
#include "core/rendering/RenderView.h"
#include "core/rendering/compositing/CompositedLayerMapping.h"
#include "core/rendering/compositing/RenderLayerCompositor.h"
#include "core/rendering/svg/ReferenceFilterBuilder.h"
#include "core/rendering/svg/RenderSVGResourceClipper.h"
#include "platform/LengthFunctions.h"
#include "platform/Partitions.h"
#include "platform/RuntimeEnabledFeatures.h"
#include "platform/TraceEvent.h"
#include "platform/geometry/FloatPoint3D.h"
#include "platform/geometry/FloatRect.h"
#include "platform/geometry/TransformState.h"
#include "platform/graphics/GraphicsContextStateSaver.h"
#include "platform/graphics/filters/ReferenceFilter.h"
#include "platform/graphics/filters/SourceGraphic.h"
#include "platform/transforms/ScaleTransformOperation.h"
#include "platform/transforms/TransformationMatrix.h"
#include "platform/transforms/TranslateTransformOperation.h"
#include "public/platform/Platform.h"
#include "wtf/StdLibExtras.h"
#include "wtf/text/CString.h"
namespace blink {
namespace {
static CompositingQueryMode gCompositingQueryMode =
CompositingQueriesAreOnlyAllowedInCertainDocumentLifecyclePhases;
} // namespace
using namespace HTMLNames;
RenderLayer::RenderLayer(RenderLayerModelObject* renderer, LayerType type)
: m_layerType(type)
, m_hasSelfPaintingLayerDescendant(false)
, m_hasSelfPaintingLayerDescendantDirty(false)
, m_isRootLayer(renderer->isRenderView())
, m_usedTransparency(false)
, m_visibleContentStatusDirty(true)
, m_hasVisibleContent(false)
, m_visibleDescendantStatusDirty(false)
, m_hasVisibleDescendant(false)
, m_hasVisibleNonLayerContent(false)
, m_isPaginated(false)
, m_3DTransformedDescendantStatusDirty(true)
, m_has3DTransformedDescendant(false)
, m_containsDirtyOverlayScrollbars(false)
, m_hasFilterInfo(false)
, m_needsAncestorDependentCompositingInputsUpdate(true)
, m_needsDescendantDependentCompositingInputsUpdate(true)
, m_childNeedsCompositingInputsUpdate(true)
, m_hasCompositingDescendant(false)
, m_hasNonCompositedChild(false)
, m_shouldIsolateCompositedDescendants(false)
, m_lostGroupedMapping(false)
, m_renderer(renderer)
, m_parent(0)
, m_previous(0)
, m_next(0)
, m_first(0)
, m_last(0)
, m_staticInlinePosition(0)
, m_staticBlockPosition(0)
, m_enclosingPaginationLayer(0)
, m_potentialCompositingReasonsFromStyle(CompositingReasonNone)
, m_compositingReasons(CompositingReasonNone)
, m_groupedMapping(0)
, m_repainter(*renderer)
, m_clipper(*renderer)
{
updateStackingNode();
m_isSelfPaintingLayer = shouldBeSelfPaintingLayer();
if (!renderer->slowFirstChild() && renderer->style()) {
m_visibleContentStatusDirty = false;
m_hasVisibleContent = renderer->style()->visibility() == VISIBLE;
}
updateScrollableArea();
}
RenderLayer::~RenderLayer()
{
if (renderer()->frame() && renderer()->frame()->page()) {
if (ScrollingCoordinator* scrollingCoordinator = renderer()->frame()->page()->scrollingCoordinator())
scrollingCoordinator->willDestroyRenderLayer(this);
}
removeFilterInfoIfNeeded();
if (groupedMapping()) {
DisableCompositingQueryAsserts disabler;
groupedMapping()->removeRenderLayerFromSquashingGraphicsLayer(this);
setGroupedMapping(0);
}
// Child layers will be deleted by their corresponding render objects, so
// we don't need to delete them ourselves.
clearCompositedLayerMapping(true);
if (m_reflectionInfo)
m_reflectionInfo->destroy();
}
String RenderLayer::debugName() const
{
if (isReflection()) {
ASSERT(m_reflectionInfo);
return m_reflectionInfo->debugName();
}
return renderer()->debugName();
}
RenderLayerCompositor* RenderLayer::compositor() const
{
if (!renderer()->view())
return 0;
return renderer()->view()->compositor();
}
void RenderLayer::contentChanged(ContentChangeType changeType)
{
// updateLayerCompositingState will query compositingReasons for accelerated overflow scrolling.
// This is tripped by LayoutTests/compositing/content-changed-chicken-egg.html
DisableCompositingQueryAsserts disabler;
if (changeType == CanvasChanged)
compositor()->setNeedsCompositingUpdate(CompositingUpdateAfterCompositingInputChange);
if (changeType == CanvasContextChanged) {
compositor()->setNeedsCompositingUpdate(CompositingUpdateAfterCompositingInputChange);
// Although we're missing test coverage, we need to call
// GraphicsLayer::setContentsToPlatformLayer with the new platform
// layer for this canvas.
// See http://crbug.com/349195
if (hasCompositedLayerMapping())
compositedLayerMapping()->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateSubtree);
}
if (m_compositedLayerMapping)
m_compositedLayerMapping->contentChanged(changeType);
}
bool RenderLayer::paintsWithFilters() const
{
if (!renderer()->hasFilter())
return false;
// https://code.google.com/p/chromium/issues/detail?id=343759
DisableCompositingQueryAsserts disabler;
return !m_compositedLayerMapping || compositingState() != PaintsIntoOwnBacking;
}
bool RenderLayer::requiresFullLayerImageForFilters() const
{
if (!paintsWithFilters())
return false;
FilterEffectRenderer* filter = filterRenderer();
return filter ? filter->hasFilterThatMovesPixels() : false;
}
LayoutSize RenderLayer::subpixelAccumulation() const
{
return m_subpixelAccumulation;
}
void RenderLayer::setSubpixelAccumulation(const LayoutSize& size)
{
m_subpixelAccumulation = size;
}
void RenderLayer::updateLayerPositionsAfterLayout()
{
TRACE_EVENT0("blink", "RenderLayer::updateLayerPositionsAfterLayout");
m_clipper.clearClipRectsIncludingDescendants();
updateLayerPositionRecursive();
{
// FIXME: Remove incremental compositing updates after fixing the chicken/egg issues
// https://code.google.com/p/chromium/issues/detail?id=343756
DisableCompositingQueryAsserts disabler;
bool needsPaginationUpdate = isPaginated() || enclosingPaginationLayer();
updatePaginationRecursive(needsPaginationUpdate);
}
}
void RenderLayer::updateLayerPositionRecursive()
{
if (m_reflectionInfo)
m_reflectionInfo->reflection()->layout();
// FIXME: We should be able to remove this call because we don't care about
// any descendant-dependent flags, but code somewhere else is reading these
// flags and depending on us to update them.
updateDescendantDependentFlags();
for (RenderLayer* child = firstChild(); child; child = child->nextSibling())
child->updateLayerPositionRecursive();
}
void RenderLayer::updateHasSelfPaintingLayerDescendant() const
{
ASSERT(m_hasSelfPaintingLayerDescendantDirty);
m_hasSelfPaintingLayerDescendant = false;
for (RenderLayer* child = firstChild(); child; child = child->nextSibling()) {
if (child->isSelfPaintingLayer() || child->hasSelfPaintingLayerDescendant()) {
m_hasSelfPaintingLayerDescendant = true;
break;
}
}
m_hasSelfPaintingLayerDescendantDirty = false;
}
void RenderLayer::dirtyAncestorChainHasSelfPaintingLayerDescendantStatus()
{
for (RenderLayer* layer = this; layer; layer = layer->parent()) {
layer->m_hasSelfPaintingLayerDescendantDirty = true;
// If we have reached a self-painting layer, we know our parent should have a self-painting descendant
// in this case, there is no need to dirty our ancestors further.
if (layer->isSelfPaintingLayer()) {
ASSERT(!parent() || parent()->m_hasSelfPaintingLayerDescendantDirty || parent()->m_hasSelfPaintingLayerDescendant);
break;
}
}
}
bool RenderLayer::scrollsWithViewport() const
{
return renderer()->style()->position() == FixedPosition && renderer()->containerForFixedPosition() == renderer()->view();
}
bool RenderLayer::scrollsWithRespectTo(const RenderLayer* other) const
{
if (scrollsWithViewport() != other->scrollsWithViewport())
return true;
return ancestorScrollingLayer() != other->ancestorScrollingLayer();
}
void RenderLayer::updateTransformationMatrix()
{
if (m_transform) {
RenderBox* box = renderBox();
ASSERT(box);
m_transform->makeIdentity();
box->style()->applyTransform(*m_transform, box->pixelSnappedBorderBoxRect().size(), RenderStyle::IncludeTransformOrigin);
makeMatrixRenderable(*m_transform, compositor()->hasAcceleratedCompositing());
}
}
void RenderLayer::updateTransform(const RenderStyle* oldStyle, RenderStyle* newStyle)
{
if (oldStyle && newStyle->transformDataEquivalent(*oldStyle))
return;
// hasTransform() on the renderer is also true when there is transform-style: preserve-3d or perspective set,
// so check style too.
bool hasTransform = renderer()->hasTransform() && newStyle->hasTransform();
bool had3DTransform = has3DTransform();
bool hadTransform = m_transform;
if (hasTransform != hadTransform) {
if (hasTransform)
m_transform = adoptPtr(new TransformationMatrix);
else
m_transform.clear();
// Layers with transforms act as clip rects roots, so clear the cached clip rects here.
m_clipper.clearClipRectsIncludingDescendants();
} else if (hasTransform) {
m_clipper.clearClipRectsIncludingDescendants(AbsoluteClipRects);
}
updateTransformationMatrix();
if (had3DTransform != has3DTransform())
dirty3DTransformedDescendantStatus();
}
static RenderLayer* enclosingLayerForContainingBlock(RenderLayer* layer)
{
if (RenderObject* containingBlock = layer->renderer()->containingBlock())
return containingBlock->enclosingLayer();
return 0;
}
RenderLayer* RenderLayer::renderingContextRoot()
{
RenderLayer* renderingContext = 0;
if (shouldPreserve3D())
renderingContext = this;
for (RenderLayer* current = enclosingLayerForContainingBlock(this); current && current->shouldPreserve3D(); current = enclosingLayerForContainingBlock(current))
renderingContext = current;
return renderingContext;
}
TransformationMatrix RenderLayer::currentTransform(RenderStyle::ApplyTransformOrigin applyOrigin) const
{
if (!m_transform)
return TransformationMatrix();
// m_transform includes transform-origin, so we need to recompute the transform here.
if (applyOrigin == RenderStyle::ExcludeTransformOrigin) {
RenderBox* box = renderBox();
TransformationMatrix currTransform;
box->style()->applyTransform(currTransform, box->pixelSnappedBorderBoxRect().size(), RenderStyle::ExcludeTransformOrigin);
makeMatrixRenderable(currTransform, compositor()->hasAcceleratedCompositing());
return currTransform;
}
return *m_transform;
}
TransformationMatrix RenderLayer::renderableTransform(PaintBehavior paintBehavior) const
{
if (!m_transform)
return TransformationMatrix();
if (paintBehavior & PaintBehaviorFlattenCompositingLayers) {
TransformationMatrix matrix = *m_transform;
makeMatrixRenderable(matrix, false /* flatten 3d */);
return matrix;
}
return *m_transform;
}
RenderLayer* RenderLayer::enclosingOverflowClipLayer(IncludeSelfOrNot includeSelf) const
{
const RenderLayer* layer = (includeSelf == IncludeSelf) ? this : parent();
while (layer) {
if (layer->renderer()->hasOverflowClip())
return const_cast<RenderLayer*>(layer);
layer = layer->parent();
}
return 0;
}
static bool checkContainingBlockChainForPagination(RenderLayerModelObject* renderer, RenderBox* ancestorColumnsRenderer)
{
RenderView* view = renderer->view();
RenderLayerModelObject* prevBlock = renderer;
RenderBlock* containingBlock;
for (containingBlock = renderer->containingBlock();
containingBlock && containingBlock != view && containingBlock != ancestorColumnsRenderer;
containingBlock = containingBlock->containingBlock())
prevBlock = containingBlock;
// If the columns block wasn't in our containing block chain, then we aren't paginated by it.
if (containingBlock != ancestorColumnsRenderer)
return false;
// If the previous block is absolutely positioned, then we can't be paginated by the columns block.
if (prevBlock->isOutOfFlowPositioned())
return false;
// Otherwise we are paginated by the columns block.
return true;
}
bool RenderLayer::useRegionBasedColumns() const
{
return renderer()->document().regionBasedColumnsEnabled();
}
void RenderLayer::updatePaginationRecursive(bool needsPaginationUpdate)
{
m_isPaginated = false;
m_enclosingPaginationLayer = 0;
if (useRegionBasedColumns() && renderer()->isRenderFlowThread())
needsPaginationUpdate = true;
if (needsPaginationUpdate)
updatePagination();
if (renderer()->hasColumns())
needsPaginationUpdate = true;
for (RenderLayer* child = firstChild(); child; child = child->nextSibling())
child->updatePaginationRecursive(needsPaginationUpdate);
}
void RenderLayer::updatePagination()
{
if (compositingState() != NotComposited || !parent())
return; // FIXME: We will have to deal with paginated compositing layers someday.
// FIXME: For now the RenderView can't be paginated. Eventually printing will move to a model where it is though.
// The main difference between the paginated booleans for the old column code and the new column code
// is that each paginated layer has to paint on its own with the new code. There is no
// recurring into child layers. This means that the m_isPaginated bits for the new column code can't just be set on
// "roots" that get split and paint all their descendants. Instead each layer has to be checked individually and
// genuinely know if it is going to have to split itself up when painting only its contents (and not any other descendant
// layers). We track an enclosingPaginationLayer instead of using a simple bit, since we want to be able to get back
// to that layer easily.
bool regionBasedColumnsUsed = useRegionBasedColumns();
if (regionBasedColumnsUsed && renderer()->isRenderFlowThread()) {
m_enclosingPaginationLayer = this;
return;
}
if (m_stackingNode->isNormalFlowOnly()) {
if (regionBasedColumnsUsed) {
// Content inside a transform is not considered to be paginated, since we simply
// paint the transform multiple times in each column, so we don't have to use
// fragments for the transformed content.
m_enclosingPaginationLayer = parent()->enclosingPaginationLayer();
if (m_enclosingPaginationLayer && m_enclosingPaginationLayer->hasTransform())
m_enclosingPaginationLayer = 0;
} else {
m_isPaginated = parent()->renderer()->hasColumns();
}
return;
}
// For the new columns code, we want to walk up our containing block chain looking for an enclosing layer. Once
// we find one, then we just check its pagination status.
if (regionBasedColumnsUsed) {
RenderView* view = renderer()->view();
RenderBlock* containingBlock;
for (containingBlock = renderer()->containingBlock();
containingBlock && containingBlock != view;
containingBlock = containingBlock->containingBlock()) {
if (containingBlock->hasLayer()) {
// Content inside a transform is not considered to be paginated, since we simply
// paint the transform multiple times in each column, so we don't have to use
// fragments for the transformed content.
m_enclosingPaginationLayer = containingBlock->layer()->enclosingPaginationLayer();
if (m_enclosingPaginationLayer && m_enclosingPaginationLayer->hasTransform())
m_enclosingPaginationLayer = 0;
return;
}
}
return;
}
// If we're not normal flow, then we need to look for a multi-column object between us and our stacking container.
RenderLayerStackingNode* ancestorStackingContextNode = m_stackingNode->ancestorStackingContextNode();
for (RenderLayer* curr = parent(); curr; curr = curr->parent()) {
if (curr->renderer()->hasColumns()) {
m_isPaginated = checkContainingBlockChainForPagination(renderer(), curr->renderBox());
return;
}
if (curr->stackingNode() == ancestorStackingContextNode)
return;
}
}
LayoutPoint RenderLayer::positionFromPaintInvalidationContainer(const RenderObject* renderObject, const RenderLayerModelObject* paintInvalidationContainer, const PaintInvalidationState* paintInvalidationState)
{
if (!paintInvalidationContainer || !paintInvalidationContainer->layer()->groupedMapping())
return renderObject->positionFromPaintInvalidationContainer(paintInvalidationContainer, paintInvalidationState);
RenderLayerModelObject* transformedAncestor = paintInvalidationContainer->layer()->enclosingTransformedAncestor()->renderer();
LayoutPoint point = renderObject->positionFromPaintInvalidationContainer(paintInvalidationContainer, paintInvalidationState);
if (!transformedAncestor)
return point;
point = LayoutPoint(paintInvalidationContainer->localToContainerPoint(point, transformedAncestor));
point.moveBy(-paintInvalidationContainer->layer()->groupedMapping()->squashingOffsetFromTransformedAncestor());
return point;
}
void RenderLayer::mapRectToPaintBackingCoordinates(const RenderLayerModelObject* paintInvalidationContainer, LayoutRect& rect)
{
RenderLayer* paintInvalidationLayer = paintInvalidationContainer->layer();
if (!paintInvalidationLayer->groupedMapping()) {
rect.move(paintInvalidationLayer->compositedLayerMapping()->contentOffsetInCompositingLayer());
return;
}
RenderLayerModelObject* transformedAncestor = paintInvalidationLayer->enclosingTransformedAncestor()->renderer();
if (!transformedAncestor)
return;
// |repaintContainer| may have a local 2D transform on it, so take that into account when mapping into the space of the
// transformed ancestor.
rect = LayoutRect(paintInvalidationContainer->localToContainerQuad(FloatRect(rect), transformedAncestor).boundingBox());
rect.moveBy(-paintInvalidationLayer->groupedMapping()->squashingOffsetFromTransformedAncestor());
}
void RenderLayer::mapRectToPaintInvalidationBacking(const RenderObject* renderObject, const RenderLayerModelObject* paintInvalidationContainer, LayoutRect& rect, const PaintInvalidationState* paintInvalidationState)
{
// FIXME: Passing paintInvalidationState directly to mapRectToPaintInvalidationBacking causes incorrect invalidations.
// Should avoid slowRectMapping by correctly adjusting paintInvalidationState. crbug.com/402983.
ForceHorriblySlowRectMapping slowRectMapping(paintInvalidationState);
ViewportConstrainedPosition viewportConstraint = renderObject->isRenderView() ? IsNotFixedPosition : ViewportConstraintDoesNotMatter;
if (!paintInvalidationContainer->layer()->groupedMapping()) {
renderObject->mapRectToPaintInvalidationBacking(paintInvalidationContainer, rect, viewportConstraint, paintInvalidationState);
return;
}
// This code adjusts the repaint rectangle to be in the space of the transformed ancestor of the grouped (i.e. squashed)
// layer. This is because all layers that squash together need to repaint w.r.t. a single container that is
// an ancestor of all of them, in order to properly take into account any local transforms etc.
// FIXME: remove this special-case code that works around the repainting code structure.
renderObject->mapRectToPaintInvalidationBacking(paintInvalidationContainer, rect, viewportConstraint, paintInvalidationState);
RenderLayer::mapRectToPaintBackingCoordinates(paintInvalidationContainer, rect);
}
LayoutRect RenderLayer::computePaintInvalidationRect(const RenderObject* renderObject, const RenderLayer* paintInvalidationContainer, const PaintInvalidationState* paintInvalidationState)
{
if (!paintInvalidationContainer->groupedMapping())
return renderObject->computePaintInvalidationRect(paintInvalidationContainer->renderer(), paintInvalidationState);
LayoutRect rect = renderObject->clippedOverflowRectForPaintInvalidation(paintInvalidationContainer->renderer());
mapRectToPaintInvalidationBacking(paintInvalidationContainer->renderer(), paintInvalidationContainer->renderer(), rect, paintInvalidationState);
return rect;
}
void RenderLayer::dirtyVisibleContentStatus()
{
m_visibleContentStatusDirty = true;
if (parent())
parent()->dirtyAncestorChainVisibleDescendantStatus();
}
void RenderLayer::potentiallyDirtyVisibleContentStatus(EVisibility visibility)
{
if (m_visibleContentStatusDirty)
return;
if (hasVisibleContent() == (visibility == VISIBLE))
return;
dirtyVisibleContentStatus();
}
void RenderLayer::dirtyAncestorChainVisibleDescendantStatus()
{
for (RenderLayer* layer = this; layer; layer = layer->parent()) {
if (layer->m_visibleDescendantStatusDirty)
break;
layer->m_visibleDescendantStatusDirty = true;
}
}
// FIXME: this is quite brute-force. We could be more efficient if we were to
// track state and update it as appropriate as changes are made in the Render tree.
void RenderLayer::updateScrollingStateAfterCompositingChange()
{
TRACE_EVENT0("blink", "RenderLayer::updateScrollingStateAfterCompositingChange");
m_hasVisibleNonLayerContent = false;
for (RenderObject* r = renderer()->slowFirstChild(); r; r = r->nextSibling()) {
if (!r->hasLayer()) {
m_hasVisibleNonLayerContent = true;
break;
}
}
m_hasNonCompositedChild = false;
for (RenderLayer* child = firstChild(); child; child = child->nextSibling()) {
if (child->compositingState() == NotComposited || child->compositingState() == HasOwnBackingButPaintsIntoAncestor) {
m_hasNonCompositedChild = true;
return;
}
}
}
// The descendant-dependent flags system is badly broken because we clean dirty
// bits in upward tree walks, which means we need to call updateDescendantDependentFlags
// at every node in the tree to fully clean all the dirty bits. While we'll in
// the process of fixing this issue, updateDescendantDependentFlagsForEntireSubtree
// provides a big hammer for actually cleaning all the dirty bits in a subtree.
//
// FIXME: Remove this function once the descendant-dependent flags system keeps
// its dirty bits scoped to subtrees.
void RenderLayer::updateDescendantDependentFlagsForEntireSubtree()
{
updateDescendantDependentFlags();
for (RenderLayer* child = firstChild(); child; child = child->nextSibling())
child->updateDescendantDependentFlagsForEntireSubtree();
}
void RenderLayer::updateDescendantDependentFlags()
{
if (m_visibleDescendantStatusDirty) {
m_hasVisibleDescendant = false;
for (RenderLayer* child = firstChild(); child; child = child->nextSibling()) {
child->updateDescendantDependentFlags();
if (child->m_hasVisibleContent || child->m_hasVisibleDescendant) {
m_hasVisibleDescendant = true;
break;
}
}
m_visibleDescendantStatusDirty = false;
}
if (m_visibleContentStatusDirty) {
bool previouslyHasVisibleContent = m_hasVisibleContent;
if (renderer()->style()->visibility() == VISIBLE)
m_hasVisibleContent = true;
else {
// layer may be hidden but still have some visible content, check for this
m_hasVisibleContent = false;
RenderObject* r = renderer()->slowFirstChild();
while (r) {
if (r->style()->visibility() == VISIBLE && !r->hasLayer()) {
m_hasVisibleContent = true;
break;
}
RenderObject* rendererFirstChild = r->slowFirstChild();
if (rendererFirstChild && !r->hasLayer())
r = rendererFirstChild;
else if (r->nextSibling())
r = r->nextSibling();
else {
do {
r = r->parent();
if (r == renderer())
r = 0;
} while (r && !r->nextSibling());
if (r)
r = r->nextSibling();
}
}
}
m_visibleContentStatusDirty = false;
if (hasVisibleContent() != previouslyHasVisibleContent) {
setNeedsCompositingInputsUpdate();
// We need to tell m_renderer to recheck its rect because we
// pretend that invisible RenderObjects have 0x0 rects. Changing
// visibility therefore changes our rect and we need to visit
// this RenderObject during the invalidateTreeIfNeeded walk.
m_renderer->setMayNeedPaintInvalidation(true);
}
}
}
void RenderLayer::dirty3DTransformedDescendantStatus()
{
RenderLayerStackingNode* stackingNode = m_stackingNode->ancestorStackingContextNode();
if (!stackingNode)
return;
stackingNode->layer()->m_3DTransformedDescendantStatusDirty = true;
// This propagates up through preserve-3d hierarchies to the enclosing flattening layer.
// Note that preserves3D() creates stacking context, so we can just run up the stacking containers.
while (stackingNode && stackingNode->layer()->preserves3D()) {
stackingNode->layer()->m_3DTransformedDescendantStatusDirty = true;
stackingNode = stackingNode->ancestorStackingContextNode();
}
}
// Return true if this layer or any preserve-3d descendants have 3d.
bool RenderLayer::update3DTransformedDescendantStatus()
{
if (m_3DTransformedDescendantStatusDirty) {
m_has3DTransformedDescendant = false;
m_stackingNode->updateZOrderLists();
// Transformed or preserve-3d descendants can only be in the z-order lists, not
// in the normal flow list, so we only need to check those.
RenderLayerStackingNodeIterator iterator(*m_stackingNode.get(), PositiveZOrderChildren | NegativeZOrderChildren);
while (RenderLayerStackingNode* node = iterator.next())
m_has3DTransformedDescendant |= node->layer()->update3DTransformedDescendantStatus();
m_3DTransformedDescendantStatusDirty = false;
}
// If we live in a 3d hierarchy, then the layer at the root of that hierarchy needs
// the m_has3DTransformedDescendant set.
if (preserves3D())
return has3DTransform() || m_has3DTransformedDescendant;
return has3DTransform();
}
IntSize RenderLayer::size() const
{
if (renderer()->isInline() && renderer()->isRenderInline())
return toRenderInline(renderer())->linesBoundingBox().size();
// FIXME: Is snapping the size really needed here?
if (RenderBox* box = renderBox())
return pixelSnappedIntSize(box->size(), box->location());
return IntSize();
}
LayoutPoint RenderLayer::location() const
{
LayoutPoint localPoint;
LayoutSize inlineBoundingBoxOffset; // We don't put this into the RenderLayer x/y for inlines, so we need to subtract it out when done.
if (renderer()->isInline() && renderer()->isRenderInline()) {
RenderInline* inlineFlow = toRenderInline(renderer());
IntRect lineBox = inlineFlow->linesBoundingBox();
inlineBoundingBoxOffset = toSize(lineBox.location());
localPoint += inlineBoundingBoxOffset;
} else if (RenderBox* box = renderBox()) {
localPoint += box->topLeftLocationOffset();
}
if (!renderer()->isOutOfFlowPositioned() && renderer()->parent()) {
// We must adjust our position by walking up the render tree looking for the
// nearest enclosing object with a layer.
RenderObject* curr = renderer()->parent();
while (curr && !curr->hasLayer()) {
if (curr->isBox() && !curr->isTableRow()) {
// Rows and cells share the same coordinate space (that of the section).
// Omit them when computing our xpos/ypos.
localPoint += toRenderBox(curr)->topLeftLocationOffset();
}
curr = curr->parent();
}
if (curr->isBox() && curr->isTableRow()) {
// Put ourselves into the row coordinate space.
localPoint -= toRenderBox(curr)->topLeftLocationOffset();
}
}
// Subtract our parent's scroll offset.
if (renderer()->isOutOfFlowPositioned() && enclosingPositionedAncestor()) {
RenderLayer* positionedParent = enclosingPositionedAncestor();
// For positioned layers, we subtract out the enclosing positioned layer's scroll offset.
if (positionedParent->renderer()->hasOverflowClip()) {
LayoutSize offset = positionedParent->renderBox()->scrolledContentOffset();
localPoint -= offset;
}
if (positionedParent->renderer()->isRelPositioned() && positionedParent->renderer()->isRenderInline()) {
LayoutSize offset = toRenderInline(positionedParent->renderer())->offsetForInFlowPositionedInline(*toRenderBox(renderer()));
localPoint += offset;
}
} else if (parent()) {
// FIXME: This code is very wrong. The compositing system doesn't
// understand columns and we're hacking around that fact by faking
// the position of the RenderLayers when we think we'll end up being
// composited. Hopefully we'll be able to unwind this hack when we
// implement multi-column using regions.
if (hasStyleDeterminedDirectCompositingReasons()) {
// FIXME: Composited layers ignore pagination, so about the best we can do is make sure they're offset into the appropriate column.
// They won't split across columns properly.
if (!parent()->renderer()->hasColumns() && parent()->renderer()->isDocumentElement() && renderer()->view()->hasColumns())
localPoint += renderer()->view()->columnOffset(localPoint);
else
localPoint += parent()->renderer()->columnOffset(localPoint);
}
if (parent()->renderer()->hasOverflowClip()) {
IntSize scrollOffset = parent()->renderBox()->scrolledContentOffset();
localPoint -= scrollOffset;
}
}
localPoint.move(offsetForInFlowPosition());
// FIXME: We'd really like to just get rid of the concept of a layer rectangle and rely on the renderers.
localPoint -= inlineBoundingBoxOffset;
return localPoint;
}
const LayoutSize RenderLayer::offsetForInFlowPosition() const
{
return renderer()->isRelPositioned() ? toRenderBoxModelObject(renderer())->offsetForInFlowPosition() : LayoutSize();
}
TransformationMatrix RenderLayer::perspectiveTransform() const
{
if (!renderer()->hasTransform())
return TransformationMatrix();
RenderStyle* style = renderer()->style();
if (!style->hasPerspective())
return TransformationMatrix();
// Maybe fetch the perspective from the backing?
const IntRect borderBox = toRenderBox(renderer())->pixelSnappedBorderBoxRect();
const float boxWidth = borderBox.width();
const float boxHeight = borderBox.height();
float perspectiveOriginX = floatValueForLength(style->perspectiveOriginX(), boxWidth);
float perspectiveOriginY = floatValueForLength(style->perspectiveOriginY(), boxHeight);
// A perspective origin of 0,0 makes the vanishing point in the center of the element.
// We want it to be in the top-left, so subtract half the height and width.
perspectiveOriginX -= boxWidth / 2.0f;
perspectiveOriginY -= boxHeight / 2.0f;
TransformationMatrix t;
t.translate(perspectiveOriginX, perspectiveOriginY);
t.applyPerspective(style->perspective());
t.translate(-perspectiveOriginX, -perspectiveOriginY);
return t;
}
FloatPoint RenderLayer::perspectiveOrigin() const
{
if (!renderer()->hasTransform())
return FloatPoint();
const LayoutRect borderBox = toRenderBox(renderer())->borderBoxRect();
RenderStyle* style = renderer()->style();
return FloatPoint(floatValueForLength(style->perspectiveOriginX(), borderBox.width().toFloat()), floatValueForLength(style->perspectiveOriginY(), borderBox.height().toFloat()));
}
static inline bool isFixedPositionedContainer(RenderLayer* layer)
{
return layer->isRootLayer() || layer->hasTransform();
}
RenderLayer* RenderLayer::enclosingPositionedAncestor() const
{
RenderLayer* curr = parent();
while (curr && !curr->isPositionedContainer())
curr = curr->parent();
return curr;
}
RenderLayer* RenderLayer::enclosingTransformedAncestor() const
{
RenderLayer* curr = parent();
while (curr && !curr->isRootLayer() && !curr->renderer()->hasTransform())
curr = curr->parent();
return curr;
}
LayoutPoint RenderLayer::computeOffsetFromTransformedAncestor() const
{
const AncestorDependentCompositingInputs& properties = ancestorDependentCompositingInputs();
TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint());
// FIXME: add a test that checks flipped writing mode and ApplyContainerFlip are correct.
renderer()->mapLocalToContainer(properties.transformAncestor ? properties.transformAncestor->renderer() : 0, transformState, ApplyContainerFlip);
transformState.flatten();
return LayoutPoint(transformState.lastPlanarPoint());
}
const RenderLayer* RenderLayer::compositingContainer() const
{
if (stackingNode()->isNormalFlowOnly())
return parent();
if (RenderLayerStackingNode* ancestorStackingNode = stackingNode()->ancestorStackingContextNode())
return ancestorStackingNode->layer();
return 0;
}
bool RenderLayer::isPaintInvalidationContainer() const
{
return compositingState() == PaintsIntoOwnBacking || compositingState() == PaintsIntoGroupedBacking;
}
// Note: enclosingCompositingLayer does not include squashed layers. Compositing stacking children of squashed layers
// receive graphics layers that are parented to the compositing ancestor of the squashed layer.
RenderLayer* RenderLayer::enclosingLayerWithCompositedLayerMapping(IncludeSelfOrNot includeSelf) const
{
ASSERT(isAllowedToQueryCompositingState());
if ((includeSelf == IncludeSelf) && compositingState() != NotComposited && compositingState() != PaintsIntoGroupedBacking)
return const_cast<RenderLayer*>(this);
for (const RenderLayer* curr = compositingContainer(); curr; curr = curr->compositingContainer()) {
if (curr->compositingState() != NotComposited && curr->compositingState() != PaintsIntoGroupedBacking)
return const_cast<RenderLayer*>(curr);
}
return 0;
}
// Return the enclosingCompositedLayerForPaintInvalidation for the given RenderLayer
// including crossing frame boundaries.
RenderLayer* RenderLayer::enclosingLayerForPaintInvalidationCrossingFrameBoundaries() const
{
const RenderLayer* layer = this;
RenderLayer* compositedLayer = 0;
while (!compositedLayer) {
compositedLayer = layer->enclosingLayerForPaintInvalidation();
if (!compositedLayer) {
RenderObject* owner = layer->renderer()->frame()->ownerRenderer();
if (!owner)
break;
layer = owner->enclosingLayer();
}
}
return compositedLayer;
}
RenderLayer* RenderLayer::enclosingLayerForPaintInvalidation() const
{
ASSERT(isAllowedToQueryCompositingState());
if (isPaintInvalidationContainer())
return const_cast<RenderLayer*>(this);
for (const RenderLayer* curr = parent(); curr; curr = curr->parent()) {
if (curr->isPaintInvalidationContainer())
return const_cast<RenderLayer*>(curr);
}
return 0;
}
RenderLayer* RenderLayer::enclosingFilterLayer(IncludeSelfOrNot includeSelf) const
{
const RenderLayer* curr = (includeSelf == IncludeSelf) ? this : parent();
for (; curr; curr = curr->parent()) {
if (curr->requiresFullLayerImageForFilters())
return const_cast<RenderLayer*>(curr);
}
return 0;
}
void RenderLayer::setNeedsCompositingInputsUpdate()
{
m_needsAncestorDependentCompositingInputsUpdate = true;
m_needsDescendantDependentCompositingInputsUpdate = true;
for (RenderLayer* current = this; current && !current->m_childNeedsCompositingInputsUpdate; current = current->parent())
current->m_childNeedsCompositingInputsUpdate = true;
compositor()->setNeedsCompositingUpdate(CompositingUpdateAfterCompositingInputChange);
}
void RenderLayer::updateAncestorDependentCompositingInputs(const AncestorDependentCompositingInputs& compositingInputs)
{
m_ancestorDependentCompositingInputs = compositingInputs;
m_needsAncestorDependentCompositingInputsUpdate = false;
}
void RenderLayer::updateDescendantDependentCompositingInputs(const DescendantDependentCompositingInputs& compositingInputs)
{
m_descendantDependentCompositingInputs = compositingInputs;
m_needsDescendantDependentCompositingInputsUpdate = false;
}
void RenderLayer::didUpdateCompositingInputs()
{
ASSERT(!needsCompositingInputsUpdate());
m_childNeedsCompositingInputsUpdate = false;
if (m_scrollableArea)
m_scrollableArea->updateNeedsCompositedScrolling();
}
void RenderLayer::setCompositingReasons(CompositingReasons reasons, CompositingReasons mask)
{
if ((compositingReasons() & mask) == (reasons & mask))
return;
m_compositingReasons = (reasons & mask) | (compositingReasons() & ~mask);
}
void RenderLayer::setHasCompositingDescendant(bool hasCompositingDescendant)
{
if (m_hasCompositingDescendant == static_cast<unsigned>(hasCompositingDescendant))
return;
m_hasCompositingDescendant = hasCompositingDescendant;
if (hasCompositedLayerMapping())
compositedLayerMapping()->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateLocal);
}
void RenderLayer::setShouldIsolateCompositedDescendants(bool shouldIsolateCompositedDescendants)
{
if (m_shouldIsolateCompositedDescendants == static_cast<unsigned>(shouldIsolateCompositedDescendants))
return;
m_shouldIsolateCompositedDescendants = shouldIsolateCompositedDescendants;
if (hasCompositedLayerMapping())
compositedLayerMapping()->setNeedsGraphicsLayerUpdate(GraphicsLayerUpdateLocal);
}
bool RenderLayer::hasAncestorWithFilterOutsets() const
{
for (const RenderLayer* curr = this; curr; curr = curr->parent()) {
RenderLayerModelObject* renderer = curr->renderer();
if (renderer->style()->hasFilterOutsets())
return true;
}
return false;
}
RenderLayer* RenderLayer::transparentPaintingAncestor()
{
if (hasCompositedLayerMapping())
return 0;
for (RenderLayer* curr = parent(); curr; curr = curr->parent()) {
if (curr->hasCompositedLayerMapping())
return 0;
if (curr->isTransparent())
return curr;
}
return 0;
}
enum TransparencyClipBoxBehavior {
PaintingTransparencyClipBox,
HitTestingTransparencyClipBox
};
enum TransparencyClipBoxMode {
DescendantsOfTransparencyClipBox,
RootOfTransparencyClipBox
};
static LayoutRect transparencyClipBox(const RenderLayer*, const RenderLayer* rootLayer, TransparencyClipBoxBehavior, TransparencyClipBoxMode, const LayoutSize& subPixelAccumulation, PaintBehavior = 0);
static void expandClipRectForDescendantsAndReflection(LayoutRect& clipRect, const RenderLayer* layer, const RenderLayer* rootLayer,
TransparencyClipBoxBehavior transparencyBehavior, const LayoutSize& subPixelAccumulation, PaintBehavior paintBehavior)
{
// If we have a mask, then the clip is limited to the border box area (and there is
// no need to examine child layers).
if (!layer->renderer()->hasMask()) {
// Note: we don't have to walk z-order lists since transparent elements always establish
// a stacking container. This means we can just walk the layer tree directly.
for (RenderLayer* curr = layer->firstChild(); curr; curr = curr->nextSibling()) {
if (!layer->reflectionInfo() || layer->reflectionInfo()->reflectionLayer() != curr)
clipRect.unite(transparencyClipBox(curr, rootLayer, transparencyBehavior, DescendantsOfTransparencyClipBox, subPixelAccumulation, paintBehavior));
}
}
// If we have a reflection, then we need to account for that when we push the clip. Reflect our entire
// current transparencyClipBox to catch all child layers.
// FIXME: Accelerated compositing will eventually want to do something smart here to avoid incorporating this
// size into the parent layer.
if (layer->renderer()->hasReflection()) {
LayoutPoint delta;
layer->convertToLayerCoords(rootLayer, delta);
clipRect.move(-delta.x(), -delta.y());
clipRect.unite(layer->renderBox()->reflectedRect(clipRect));
clipRect.moveBy(delta);
}
}
static LayoutRect transparencyClipBox(const RenderLayer* layer, const RenderLayer* rootLayer, TransparencyClipBoxBehavior transparencyBehavior,
TransparencyClipBoxMode transparencyMode, const LayoutSize& subPixelAccumulation, PaintBehavior paintBehavior)
{
// FIXME: Although this function completely ignores CSS-imposed clipping, we did already intersect with the
// paintDirtyRect, and that should cut down on the amount we have to paint. Still it
// would be better to respect clips.
if (rootLayer != layer && ((transparencyBehavior == PaintingTransparencyClipBox && layer->paintsWithTransform(paintBehavior))
|| (transparencyBehavior == HitTestingTransparencyClipBox && layer->hasTransform()))) {
// The best we can do here is to use enclosed bounding boxes to establish a "fuzzy" enough clip to encompass
// the transformed layer and all of its children.
const RenderLayer* paginationLayer = transparencyMode == DescendantsOfTransparencyClipBox ? layer->enclosingPaginationLayer() : 0;
const RenderLayer* rootLayerForTransform = paginationLayer ? paginationLayer : rootLayer;
LayoutPoint delta;
layer->convertToLayerCoords(rootLayerForTransform, delta);
delta.move(subPixelAccumulation);
IntPoint pixelSnappedDelta = roundedIntPoint(delta);
TransformationMatrix transform;
transform.translate(pixelSnappedDelta.x(), pixelSnappedDelta.y());
transform = transform * *layer->transform();
// We don't use fragment boxes when collecting a transformed layer's bounding box, since it always
// paints unfragmented.
LayoutRect clipRect = layer->physicalBoundingBox(layer);
expandClipRectForDescendantsAndReflection(clipRect, layer, layer, transparencyBehavior, subPixelAccumulation, paintBehavior);
layer->renderer()->style()->filterOutsets().expandRect(clipRect);
LayoutRect result = transform.mapRect(clipRect);
if (!paginationLayer)
return result;
// We have to break up the transformed extent across our columns.
// Split our box up into the actual fragment boxes that render in the columns/pages and unite those together to
// get our true bounding box.
RenderFlowThread* enclosingFlowThread = toRenderFlowThread(paginationLayer->renderer());
result = enclosingFlowThread->fragmentsBoundingBox(result);
LayoutPoint rootLayerDelta;
paginationLayer->convertToLayerCoords(rootLayer, rootLayerDelta);
result.moveBy(rootLayerDelta);
return result;
}
LayoutRect clipRect = layer->physicalBoundingBox(rootLayer);
expandClipRectForDescendantsAndReflection(clipRect, layer, rootLayer, transparencyBehavior, subPixelAccumulation, paintBehavior);
layer->renderer()->style()->filterOutsets().expandRect(clipRect);
clipRect.move(subPixelAccumulation);
return clipRect;
}
LayoutRect RenderLayer::paintingExtent(const RenderLayer* rootLayer, const LayoutRect& paintDirtyRect, const LayoutSize& subPixelAccumulation, PaintBehavior paintBehavior)
{
return intersection(transparencyClipBox(this, rootLayer, PaintingTransparencyClipBox, RootOfTransparencyClipBox, subPixelAccumulation, paintBehavior), paintDirtyRect);
}
void RenderLayer::beginTransparencyLayers(GraphicsContext* context, const RenderLayer* rootLayer, const LayoutRect& paintDirtyRect, const LayoutSize& subPixelAccumulation, PaintBehavior paintBehavior)
{
bool createTransparencyLayerForBlendMode = m_stackingNode->isStackingContext() && hasDescendantWithBlendMode();
if ((paintsWithTransparency(paintBehavior) || paintsWithBlendMode() || createTransparencyLayerForBlendMode) && m_usedTransparency)
return;
RenderLayer* ancestor = transparentPaintingAncestor();
if (ancestor)
ancestor->beginTransparencyLayers(context, rootLayer, paintDirtyRect, subPixelAccumulation, paintBehavior);
if (paintsWithTransparency(paintBehavior) || paintsWithBlendMode() || createTransparencyLayerForBlendMode) {
m_usedTransparency = true;
context->save();
LayoutRect clipRect = paintingExtent(rootLayer, paintDirtyRect, subPixelAccumulation, paintBehavior);
context->clip(clipRect);
if (paintsWithBlendMode())
context->setCompositeOperation(context->compositeOperation(), m_renderer->style()->blendMode());
context->beginTransparencyLayer(renderer()->opacity());
if (paintsWithBlendMode())
context->setCompositeOperation(context->compositeOperation(), WebBlendModeNormal);
#ifdef REVEAL_TRANSPARENCY_LAYERS
context->setFillColor(Color(0.0f, 0.0f, 0.5f, 0.2f));
context->fillRect(clipRect);
#endif
}
}
void* RenderLayer::operator new(size_t sz)
{
return partitionAlloc(Partitions::getRenderingPartition(), sz);
}
void RenderLayer::operator delete(void* ptr)
{
partitionFree(ptr);
}
void RenderLayer::addChild(RenderLayer* child, RenderLayer* beforeChild)
{
RenderLayer* prevSibling = beforeChild ? beforeChild->previousSibling() : lastChild();
if (prevSibling) {
child->setPreviousSibling(prevSibling);
prevSibling->setNextSibling(child);
ASSERT(prevSibling != child);
} else
setFirstChild(child);
if (beforeChild) {
beforeChild->setPreviousSibling(child);
child->setNextSibling(beforeChild);
ASSERT(beforeChild != child);
} else
setLastChild(child);
child->m_parent = this;
setNeedsCompositingInputsUpdate();
if (child->stackingNode()->isNormalFlowOnly())
m_stackingNode->dirtyNormalFlowList();
if (!child->stackingNode()->isNormalFlowOnly() || child->firstChild()) {
// Dirty the z-order list in which we are contained. The ancestorStackingContextNode() can be null in the
// case where we're building up generated content layers. This is ok, since the lists will start
// off dirty in that case anyway.
child->stackingNode()->dirtyStackingContextZOrderLists();
}
dirtyAncestorChainVisibleDescendantStatus();
dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
child->updateDescendantDependentFlags();
}
RenderLayer* RenderLayer::removeChild(RenderLayer* oldChild)
{
if (oldChild->previousSibling())
oldChild->previousSibling()->setNextSibling(oldChild->nextSibling());
if (oldChild->nextSibling())
oldChild->nextSibling()->setPreviousSibling(oldChild->previousSibling());
if (m_first == oldChild)
m_first = oldChild->nextSibling();
if (m_last == oldChild)
m_last = oldChild->previousSibling();
if (oldChild->stackingNode()->isNormalFlowOnly())
m_stackingNode->dirtyNormalFlowList();
if (!oldChild->stackingNode()->isNormalFlowOnly() || oldChild->firstChild()) {
// Dirty the z-order list in which we are contained. When called via the
// reattachment process in removeOnlyThisLayer, the layer may already be disconnected
// from the main layer tree, so we need to null-check the
// |stackingContext| value.
oldChild->stackingNode()->dirtyStackingContextZOrderLists();
}
if (renderer()->style()->visibility() != VISIBLE)
dirtyVisibleContentStatus();
oldChild->setPreviousSibling(0);
oldChild->setNextSibling(0);
oldChild->m_parent = 0;
dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
oldChild->updateDescendantDependentFlags();
if (oldChild->m_hasVisibleContent || oldChild->m_hasVisibleDescendant)
dirtyAncestorChainVisibleDescendantStatus();
return oldChild;
}
void RenderLayer::removeOnlyThisLayer()
{
if (!m_parent)
return;
m_clipper.clearClipRectsIncludingDescendants();
paintInvalidator().paintInvalidationIncludingNonCompositingDescendants();
RenderLayer* nextSib = nextSibling();
// Remove the child reflection layer before moving other child layers.
// The reflection layer should not be moved to the parent.
if (m_reflectionInfo)
removeChild(m_reflectionInfo->reflectionLayer());
// Now walk our kids and reattach them to our parent.
RenderLayer* current = m_first;
while (current) {
RenderLayer* next = current->nextSibling();
removeChild(current);
m_parent->addChild(current, nextSib);
current->renderer()->setShouldDoFullPaintInvalidation(true);
// FIXME: We should call a specialized version of this function.
current->updateLayerPositionsAfterLayout();
current = next;
}
// Remove us from the parent.
m_parent->removeChild(this);
m_renderer->destroyLayer();
}
void RenderLayer::insertOnlyThisLayer()
{
if (!m_parent && renderer()->parent()) {
// We need to connect ourselves when our renderer() has a parent.
// Find our enclosingLayer and add ourselves.
RenderLayer* parentLayer = renderer()->parent()->enclosingLayer();
ASSERT(parentLayer);
RenderLayer* beforeChild = !parentLayer->reflectionInfo() || parentLayer->reflectionInfo()->reflectionLayer() != this ? renderer()->parent()->findNextLayer(parentLayer, renderer()) : 0;
parentLayer->addChild(this, beforeChild);
}
// Remove all descendant layers from the hierarchy and add them to the new position.
for (RenderObject* curr = renderer()->slowFirstChild(); curr; curr = curr->nextSibling())
curr->moveLayers(m_parent, this);
// Clear out all the clip rects.
m_clipper.clearClipRectsIncludingDescendants();
}
// Returns the layer reached on the walk up towards the ancestor.
static inline const RenderLayer* accumulateOffsetTowardsAncestor(const RenderLayer* layer, const RenderLayer* ancestorLayer, LayoutPoint& location)
{
ASSERT(ancestorLayer != layer);
const RenderLayerModelObject* renderer = layer->renderer();
EPosition position = renderer->style()->position();
// FIXME: Special casing RenderFlowThread so much for fixed positioning here is not great.
RenderFlowThread* fixedFlowThreadContainer = position == FixedPosition ? renderer->flowThreadContainingBlock() : 0;
if (fixedFlowThreadContainer && !fixedFlowThreadContainer->isOutOfFlowPositioned())
fixedFlowThreadContainer = 0;
// FIXME: Positioning of out-of-flow(fixed, absolute) elements collected in a RenderFlowThread
// may need to be revisited in a future patch.
// If the fixed renderer is inside a RenderFlowThread, we should not compute location using localToAbsolute,
// since localToAbsolute maps the coordinates from flow thread to regions coordinates and regions can be
// positioned in a completely different place in the viewport (RenderView).
if (position == FixedPosition && !fixedFlowThreadContainer && (!ancestorLayer || ancestorLayer == renderer->view()->layer())) {
// If the fixed layer's container is the root, just add in the offset of the view. We can obtain this by calling
// localToAbsolute() on the RenderView.
FloatPoint absPos = renderer->localToAbsolute(FloatPoint(), IsFixed);
location += LayoutSize(absPos.x(), absPos.y());
return ancestorLayer;
}
// For the fixed positioned elements inside a render flow thread, we should also skip the code path below
// Otherwise, for the case of ancestorLayer == rootLayer and fixed positioned element child of a transformed
// element in render flow thread, we will hit the fixed positioned container before hitting the ancestor layer.
if (position == FixedPosition && !fixedFlowThreadContainer) {
// For a fixed layers, we need to walk up to the root to see if there's a fixed position container
// (e.g. a transformed layer). It's an error to call convertToLayerCoords() across a layer with a transform,
// so we should always find the ancestor at or before we find the fixed position container.
RenderLayer* fixedPositionContainerLayer = 0;
bool foundAncestor = false;
for (RenderLayer* currLayer = layer->parent(); currLayer; currLayer = currLayer->parent()) {
if (currLayer == ancestorLayer)
foundAncestor = true;
if (isFixedPositionedContainer(currLayer)) {
fixedPositionContainerLayer = currLayer;
ASSERT_UNUSED(foundAncestor, foundAncestor);
break;
}
}
ASSERT(fixedPositionContainerLayer); // We should have hit the RenderView's layer at least.
if (fixedPositionContainerLayer != ancestorLayer) {
LayoutPoint fixedContainerCoords;
layer->convertToLayerCoords(fixedPositionContainerLayer, fixedContainerCoords);
LayoutPoint ancestorCoords;
ancestorLayer->convertToLayerCoords(fixedPositionContainerLayer, ancestorCoords);
location += (fixedContainerCoords - ancestorCoords);
} else {
location += toSize(layer->location());
}
return ancestorLayer;
}
RenderLayer* parentLayer;
if (position == AbsolutePosition || position == FixedPosition) {
// Do what enclosingPositionedAncestor() does, but check for ancestorLayer along the way.
parentLayer = layer->parent();
bool foundAncestorFirst = false;
while (parentLayer) {
// RenderFlowThread is a positioned container, child of RenderView, positioned at (0,0).
// This implies that, for out-of-flow positioned elements inside a RenderFlowThread,
// we are bailing out before reaching root layer.
if (parentLayer->isPositionedContainer())
break;
if (parentLayer == ancestorLayer) {
foundAncestorFirst = true;
break;
}
parentLayer = parentLayer->parent();
}
// We should not reach RenderView layer past the RenderFlowThread layer for any
// children of the RenderFlowThread.
ASSERT(!renderer->flowThreadContainingBlock() || parentLayer != renderer->view()->layer());
if (foundAncestorFirst) {
// Found ancestorLayer before the abs. positioned container, so compute offset of both relative
// to enclosingPositionedAncestor and subtract.
RenderLayer* positionedAncestor = parentLayer->enclosingPositionedAncestor();
LayoutPoint thisCoords;
layer->convertToLayerCoords(positionedAncestor, thisCoords);
LayoutPoint ancestorCoords;
ancestorLayer->convertToLayerCoords(positionedAncestor, ancestorCoords);
location += (thisCoords - ancestorCoords);
return ancestorLayer;
}
} else
parentLayer = layer->parent();
if (!parentLayer)
return 0;
location += toSize(layer->location());
return parentLayer;
}
void RenderLayer::convertToLayerCoords(const RenderLayer* ancestorLayer, LayoutPoint& location) const
{
if (ancestorLayer == this)
return;
const RenderLayer* currLayer = this;
while (currLayer && currLayer != ancestorLayer)
currLayer = accumulateOffsetTowardsAncestor(currLayer, ancestorLayer, location);
}
void RenderLayer::convertToLayerCoords(const RenderLayer* ancestorLayer, LayoutRect& rect) const
{
LayoutPoint delta;
convertToLayerCoords(ancestorLayer, delta);
rect.move(-delta.x(), -delta.y());
}
void RenderLayer::didUpdateNeedsCompositedScrolling()
{
updateSelfPaintingLayer();
}
void RenderLayer::updateReflectionInfo(const RenderStyle* oldStyle)
{
ASSERT(!oldStyle || !renderer()->style()->reflectionDataEquivalent(oldStyle));
if (renderer()->hasReflection()) {
if (!m_reflectionInfo)
m_reflectionInfo = adoptPtrWillBeNoop(new RenderLayerReflectionInfo(*renderBox()));
m_reflectionInfo->updateAfterStyleChange(oldStyle);
} else if (m_reflectionInfo) {
m_reflectionInfo->destroy();
m_reflectionInfo = nullptr;
}
}
void RenderLayer::updateStackingNode()
{
if (requiresStackingNode())
m_stackingNode = adoptPtr(new RenderLayerStackingNode(this));
else
m_stackingNode = nullptr;
}
void RenderLayer::updateScrollableArea()
{
if (requiresScrollableArea())
m_scrollableArea = adoptPtr(new RenderLayerScrollableArea(*this));
else
m_scrollableArea = nullptr;
}
bool RenderLayer::hasOverflowControls() const
{
return m_scrollableArea && (m_scrollableArea->hasScrollbar() || m_scrollableArea->hasScrollCorner() || renderer()->style()->resize() != RESIZE_NONE);
}
void RenderLayer::paint(GraphicsContext* context, const LayoutRect& damageRect, PaintBehavior paintBehavior, RenderObject* paintingRoot, PaintLayerFlags paintFlags)
{
LayerPaintingInfo paintingInfo(this, enclosingIntRect(damageRect), paintBehavior, LayoutSize(), paintingRoot);
if (shouldPaintLayerInSoftwareMode(paintingInfo, paintFlags))
paintLayer(context, paintingInfo, paintFlags);
}
void RenderLayer::paintOverlayScrollbars(GraphicsContext* context, const LayoutRect& damageRect, PaintBehavior paintBehavior, RenderObject* paintingRoot)
{
if (!m_containsDirtyOverlayScrollbars)
return;
LayerPaintingInfo paintingInfo(this, enclosingIntRect(damageRect), paintBehavior, LayoutSize(), paintingRoot);
paintLayer(context, paintingInfo, PaintLayerPaintingOverlayScrollbars);
m_containsDirtyOverlayScrollbars = false;
}
static bool inContainingBlockChain(RenderLayer* startLayer, RenderLayer* endLayer)
{
if (startLayer == endLayer)
return true;
RenderView* view = startLayer->renderer()->view();
for (RenderBlock* currentBlock = startLayer->renderer()->containingBlock(); currentBlock && currentBlock != view; currentBlock = currentBlock->containingBlock()) {
if (currentBlock->layer() == endLayer)
return true;
}
return false;
}
void RenderLayer::clipToRect(const LayerPaintingInfo& localPaintingInfo, GraphicsContext* context, const ClipRect& clipRect,
PaintLayerFlags paintFlags, BorderRadiusClippingRule rule)
{
if (clipRect.rect() == localPaintingInfo.paintDirtyRect && !clipRect.hasRadius())
return;
context->save();
context->clip(pixelSnappedIntRect(clipRect.rect()));
if (!clipRect.hasRadius())
return;
// If the clip rect has been tainted by a border radius, then we have to walk up our layer chain applying the clips from
// any layers with overflow. The condition for being able to apply these clips is that the overflow object be in our
// containing block chain so we check that also.
for (RenderLayer* layer = rule == IncludeSelfForBorderRadius ? this : parent(); layer; layer = layer->parent()) {
// Composited scrolling layers handle border-radius clip in the compositor via a mask layer. We do not
// want to apply a border-radius clip to the layer contents itself, because that would require re-rastering
// every frame to update the clip. We only want to make sure that the mask layer is properly clipped so
// that it can in turn clip the scrolled contents in the compositor.
if (layer->needsCompositedScrolling() && !(paintFlags & PaintLayerPaintingChildClippingMaskPhase))
break;
if (layer->renderer()->hasOverflowClip() && layer->renderer()->style()->hasBorderRadius() && inContainingBlockChain(this, layer)) {
LayoutPoint delta;
layer->convertToLayerCoords(localPaintingInfo.rootLayer, delta);
context->clipRoundedRect(layer->renderer()->style()->getRoundedInnerBorderFor(LayoutRect(delta, layer->size())));
}
if (layer == localPaintingInfo.rootLayer)
break;
}
}
void RenderLayer::restoreClip(GraphicsContext* context, const LayoutRect& paintDirtyRect, const ClipRect& clipRect)
{
if (clipRect.rect() == paintDirtyRect && !clipRect.hasRadius())
return;
context->restore();
}
static inline bool shouldSuppressPaintingLayer(RenderLayer* layer)
{
// Avoid painting descendants of the root layer when stylesheets haven't loaded. This eliminates FOUC.
// It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document
// will do a full repaint().
if (layer->renderer()->document().didLayoutWithPendingStylesheets() && !layer->isRootLayer() && !layer->renderer()->isDocumentElement())
return true;
return false;
}
static bool paintForFixedRootBackground(const RenderLayer* layer, PaintLayerFlags paintFlags)
{
return layer->renderer()->isDocumentElement() && (paintFlags & PaintLayerPaintingRootBackgroundOnly);
}
static ShouldRespectOverflowClip shouldRespectOverflowClip(PaintLayerFlags paintFlags, const RenderObject* renderer)
{
return (paintFlags & PaintLayerPaintingOverflowContents || (paintFlags & PaintLayerPaintingChildClippingMaskPhase && renderer->hasClipPath())) ? IgnoreOverflowClip : RespectOverflowClip;
}
void RenderLayer::paintLayer(GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
// https://code.google.com/p/chromium/issues/detail?id=343772
DisableCompositingQueryAsserts disabler;
if (compositingState() != NotComposited) {
if (paintingInfo.paintBehavior & PaintBehaviorFlattenCompositingLayers) {
// FIXME: ok, but what about PaintBehaviorFlattenCompositingLayers? That's for printing.
// FIXME: why isn't the code here global, as opposed to being set on each paintLayer() call?
paintFlags |= PaintLayerUncachedClipRects;
}
}
// Non self-painting leaf layers don't need to be painted as their renderer() should properly paint itself.
if (!isSelfPaintingLayer() && !hasSelfPaintingLayerDescendant())
return;
if (shouldSuppressPaintingLayer(this))
return;
// If this layer is totally invisible then there is nothing to paint.
if (!renderer()->opacity())
return;
if (paintsWithTransparency(paintingInfo.paintBehavior))
paintFlags |= PaintLayerHaveTransparency;
// PaintLayerAppliedTransform is used in RenderReplica, to avoid applying the transform twice.
if (paintsWithTransform(paintingInfo.paintBehavior) && !(paintFlags & PaintLayerAppliedTransform)) {
TransformationMatrix layerTransform = renderableTransform(paintingInfo.paintBehavior);
// If the transform can't be inverted, then don't paint anything.
if (!layerTransform.isInvertible())
return;
// If we have a transparency layer enclosing us and we are the root of a transform, then we need to establish the transparency
// layer from the parent now, assuming there is a parent
if (paintFlags & PaintLayerHaveTransparency) {
if (parent())
parent()->beginTransparencyLayers(context, paintingInfo.rootLayer, paintingInfo.paintDirtyRect, paintingInfo.subPixelAccumulation, paintingInfo.paintBehavior);
else
beginTransparencyLayers(context, paintingInfo.rootLayer, paintingInfo.paintDirtyRect, paintingInfo.subPixelAccumulation, paintingInfo.paintBehavior);
}
if (enclosingPaginationLayer()) {
paintTransformedLayerIntoFragments(context, paintingInfo, paintFlags);
return;
}
// Make sure the parent's clip rects have been calculated.
ClipRect clipRect = paintingInfo.paintDirtyRect;
if (parent()) {
ClipRectsContext clipRectsContext(paintingInfo.rootLayer, (paintFlags & PaintLayerUncachedClipRects) ? UncachedClipRects : PaintingClipRects, IgnoreOverlayScrollbarSize);
if (shouldRespectOverflowClip(paintFlags, renderer()) == IgnoreOverflowClip)
clipRectsContext.setIgnoreOverflowClip();
clipRect = clipper().backgroundClipRect(clipRectsContext);
clipRect.intersect(paintingInfo.paintDirtyRect);
// Push the parent coordinate space's clip.
parent()->clipToRect(paintingInfo, context, clipRect, paintFlags);
}
paintLayerByApplyingTransform(context, paintingInfo, paintFlags);
// Restore the clip.
if (parent())
parent()->restoreClip(context, paintingInfo.paintDirtyRect, clipRect);
return;
}
paintLayerContentsAndReflection(context, paintingInfo, paintFlags);
}
void RenderLayer::paintLayerContentsAndReflection(GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
ASSERT(isSelfPaintingLayer() || hasSelfPaintingLayerDescendant());
PaintLayerFlags localPaintFlags = paintFlags & ~(PaintLayerAppliedTransform);
// Paint the reflection first if we have one.
if (m_reflectionInfo)
m_reflectionInfo->paint(context, paintingInfo, localPaintFlags | PaintLayerPaintingReflection);
localPaintFlags |= PaintLayerPaintingCompositingAllPhases;
paintLayerContents(context, paintingInfo, localPaintFlags);
}
void RenderLayer::paintLayerContents(GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
ASSERT(isSelfPaintingLayer() || hasSelfPaintingLayerDescendant());
ASSERT(!(paintFlags & PaintLayerAppliedTransform));
bool haveTransparency = paintFlags & PaintLayerHaveTransparency;
bool isSelfPaintingLayer = this->isSelfPaintingLayer();
bool isPaintingOverlayScrollbars = paintFlags & PaintLayerPaintingOverlayScrollbars;
bool isPaintingScrollingContent = paintFlags & PaintLayerPaintingCompositingScrollingPhase;
bool isPaintingCompositedForeground = paintFlags & PaintLayerPaintingCompositingForegroundPhase;
bool isPaintingCompositedBackground = paintFlags & PaintLayerPaintingCompositingBackgroundPhase;
bool isPaintingOverflowContents = paintFlags & PaintLayerPaintingOverflowContents;
// Outline always needs to be painted even if we have no visible content. Also,
// the outline is painted in the background phase during composited scrolling.
// If it were painted in the foreground phase, it would move with the scrolled
// content. When not composited scrolling, the outline is painted in the
// foreground phase. Since scrolled contents are moved by repainting in this
// case, the outline won't get 'dragged along'.
bool shouldPaintOutline = isSelfPaintingLayer && !isPaintingOverlayScrollbars
&& ((isPaintingScrollingContent && isPaintingCompositedBackground)
|| (!isPaintingScrollingContent && isPaintingCompositedForeground));
bool shouldPaintContent = m_hasVisibleContent && isSelfPaintingLayer && !isPaintingOverlayScrollbars;
float deviceScaleFactor = blink::deviceScaleFactor(renderer()->frame());
context->setDeviceScaleFactor(deviceScaleFactor);
GraphicsContext* transparencyLayerContext = context;
if (paintFlags & PaintLayerPaintingRootBackgroundOnly && !renderer()->isRenderView() && !renderer()->isDocumentElement())
return;
// Ensure our lists are up-to-date.
m_stackingNode->updateLayerListsIfNeeded();
LayoutPoint offsetFromRoot;
convertToLayerCoords(paintingInfo.rootLayer, offsetFromRoot);
if (compositingState() == PaintsIntoOwnBacking)
offsetFromRoot.move(subpixelAccumulation());
LayoutRect rootRelativeBounds;
bool rootRelativeBoundsComputed = false;
// Apply clip-path to context.
GraphicsContextStateSaver clipStateSaver(*context, false);
RenderStyle* style = renderer()->style();
RenderSVGResourceClipper* resourceClipper = 0;
ClipperContext clipperContext;
// Clip-path, like border radius, must not be applied to the contents of a composited-scrolling container.
// It must, however, still be applied to the mask layer, so that the compositor can properly mask the
// scrolling contents and scrollbars.
if (renderer()->hasClipPath() && style && (!needsCompositedScrolling() || paintFlags & PaintLayerPaintingChildClippingMaskPhase)) {
ASSERT(style->clipPath());
if (style->clipPath()->type() == ClipPathOperation::SHAPE) {
ShapeClipPathOperation* clipPath = toShapeClipPathOperation(style->clipPath());
if (clipPath->isValid()) {
clipStateSaver.save();
if (!rootRelativeBoundsComputed) {
rootRelativeBounds = physicalBoundingBoxIncludingReflectionAndStackingChildren(paintingInfo.rootLayer, offsetFromRoot);
rootRelativeBoundsComputed = true;
}
context->clipPath(clipPath->path(rootRelativeBounds), clipPath->windRule());
}
} else if (style->clipPath()->type() == ClipPathOperation::REFERENCE) {
ReferenceClipPathOperation* referenceClipPathOperation = toReferenceClipPathOperation(style->clipPath());
Document& document = renderer()->document();
// FIXME: It doesn't work with forward or external SVG references (https://bugs.webkit.org/show_bug.cgi?id=90405)
Element* element = document.getElementById(referenceClipPathOperation->fragment());
if (isSVGClipPathElement(element) && element->renderer()) {
// FIXME: Saving at this point is not required in the 'mask'-
// case, or if the clip ends up empty.
clipStateSaver.save();
if (!rootRelativeBoundsComputed) {
rootRelativeBounds = physicalBoundingBoxIncludingReflectionAndStackingChildren(paintingInfo.rootLayer, offsetFromRoot);
rootRelativeBoundsComputed = true;
}
resourceClipper = toRenderSVGResourceClipper(toRenderSVGResourceContainer(element->renderer()));
if (!resourceClipper->applyClippingToContext(renderer(), rootRelativeBounds,
paintingInfo.paintDirtyRect, context, clipperContext)) {
// No need to post-apply the clipper if this failed.
resourceClipper = 0;
}
}
}
}
// Blending operations must be performed only with the nearest ancestor stacking context.
// Note that there is no need to create a transparency layer if we're painting the root.
bool createTransparencyLayerForBlendMode = !renderer()->isDocumentElement() && m_stackingNode->isStackingContext() && hasDescendantWithBlendMode();
if (createTransparencyLayerForBlendMode)
beginTransparencyLayers(context, paintingInfo.rootLayer, paintingInfo.paintDirtyRect, paintingInfo.subPixelAccumulation, paintingInfo.paintBehavior);
LayerPaintingInfo localPaintingInfo(paintingInfo);
FilterEffectRendererHelper filterPainter(filterRenderer() && paintsWithFilters());
if (filterPainter.haveFilterEffect()) {
ASSERT(this->filterInfo());
if (!rootRelativeBoundsComputed)
rootRelativeBounds = physicalBoundingBoxIncludingReflectionAndStackingChildren(paintingInfo.rootLayer, offsetFromRoot);
if (filterPainter.prepareFilterEffect(this, rootRelativeBounds, paintingInfo.paintDirtyRect)) {
// Rewire the old context to a memory buffer, so that we can capture the contents of the layer.
// NOTE: We saved the old context in the "transparencyLayerContext" local variable, to be able to start a transparency layer
// on the original context and avoid duplicating "beginFilterEffect" after each transparency layer call. Also, note that
// beginTransparencyLayers will only create a single lazy transparency layer, even though it is called twice in this method.
context = filterPainter.beginFilterEffect(context);
// Check that we didn't fail to allocate the graphics context for the offscreen buffer.
if (filterPainter.hasStartedFilterEffect()) {
localPaintingInfo.paintDirtyRect = filterPainter.repaintRect();
// If the filter needs the full source image, we need to avoid using the clip rectangles.
// Otherwise, if for example this layer has overflow:hidden, a drop shadow will not compute correctly.
// Note that we will still apply the clipping on the final rendering of the filter.
localPaintingInfo.clipToDirtyRect = !filterRenderer()->hasFilterThatMovesPixels();
}
}
}
if (filterPainter.hasStartedFilterEffect() && haveTransparency) {
// If we have a filter and transparency, we have to eagerly start a transparency layer here, rather than risk a child layer lazily starts one with the wrong context.
beginTransparencyLayers(transparencyLayerContext, localPaintingInfo.rootLayer, paintingInfo.paintDirtyRect, paintingInfo.subPixelAccumulation, localPaintingInfo.paintBehavior);
}
// If this layer's renderer is a child of the paintingRoot, we render unconditionally, which
// is done by passing a nil paintingRoot down to our renderer (as if no paintingRoot was ever set).
// Else, our renderer tree may or may not contain the painting root, so we pass that root along
// so it will be tested against as we descend through the renderers.
RenderObject* paintingRootForRenderer = 0;
if (localPaintingInfo.paintingRoot && !renderer()->isDescendantOf(localPaintingInfo.paintingRoot))
paintingRootForRenderer = localPaintingInfo.paintingRoot;
ASSERT(!(localPaintingInfo.paintBehavior & PaintBehaviorForceBlackText));
bool selectionOnly = localPaintingInfo.paintBehavior & PaintBehaviorSelectionOnly;
bool shouldPaintBackground = isPaintingCompositedBackground && shouldPaintContent && !selectionOnly;
bool shouldPaintNegZOrderList = (isPaintingScrollingContent && isPaintingOverflowContents) || (!isPaintingScrollingContent && isPaintingCompositedBackground);
bool shouldPaintOwnContents = isPaintingCompositedForeground && shouldPaintContent;
bool shouldPaintNormalFlowAndPosZOrderLists = isPaintingCompositedForeground;
bool shouldPaintOverlayScrollbars = isPaintingOverlayScrollbars;
bool shouldPaintMask = (paintFlags & PaintLayerPaintingCompositingMaskPhase) && shouldPaintContent && renderer()->hasMask() && !selectionOnly;
bool shouldPaintClippingMask = (paintFlags & PaintLayerPaintingChildClippingMaskPhase) && shouldPaintContent && !selectionOnly;
PaintBehavior paintBehavior = PaintBehaviorNormal;
if (paintFlags & PaintLayerPaintingSkipRootBackground)
paintBehavior |= PaintBehaviorSkipRootBackground;
else if (paintFlags & PaintLayerPaintingRootBackgroundOnly)
paintBehavior |= PaintBehaviorRootBackgroundOnly;
LayerFragments layerFragments;
if (shouldPaintContent || shouldPaintOutline || isPaintingOverlayScrollbars) {
// Collect the fragments. This will compute the clip rectangles and paint offsets for each layer fragment, as well as whether or not the content of each
// fragment should paint.
collectFragments(layerFragments, localPaintingInfo.rootLayer, localPaintingInfo.paintDirtyRect,
(paintFlags & PaintLayerUncachedClipRects) ? UncachedClipRects : PaintingClipRects, IgnoreOverlayScrollbarSize,
shouldRespectOverflowClip(paintFlags, renderer()), &offsetFromRoot, localPaintingInfo.subPixelAccumulation);
updatePaintingInfoForFragments(layerFragments, localPaintingInfo, paintFlags, shouldPaintContent, &offsetFromRoot);
}
if (shouldPaintBackground) {
paintBackgroundForFragments(layerFragments, context, transparencyLayerContext, paintingInfo.paintDirtyRect, haveTransparency,
localPaintingInfo, paintBehavior, paintingRootForRenderer, paintFlags);
}
if (shouldPaintNegZOrderList)
paintChildren(NegativeZOrderChildren, context, paintingInfo, paintFlags);
if (shouldPaintOwnContents) {
paintForegroundForFragments(layerFragments, context, transparencyLayerContext, paintingInfo.paintDirtyRect, haveTransparency,
localPaintingInfo, paintBehavior, paintingRootForRenderer, selectionOnly, paintFlags);
}
if (shouldPaintOutline)
paintOutlineForFragments(layerFragments, context, localPaintingInfo, paintBehavior, paintingRootForRenderer, paintFlags);
if (shouldPaintNormalFlowAndPosZOrderLists)
paintChildren(NormalFlowChildren | PositiveZOrderChildren, context, paintingInfo, paintFlags);
if (shouldPaintOverlayScrollbars)
paintOverflowControlsForFragments(layerFragments, context, localPaintingInfo, paintFlags);
if (filterPainter.hasStartedFilterEffect()) {
// Apply the correct clipping (ie. overflow: hidden).
// FIXME: It is incorrect to just clip to the damageRect here once multiple fragments are involved.
ClipRect backgroundRect = layerFragments.isEmpty() ? ClipRect() : layerFragments[0].backgroundRect;
clipToRect(localPaintingInfo, transparencyLayerContext, backgroundRect, paintFlags);
context = filterPainter.applyFilterEffect();
restoreClip(transparencyLayerContext, localPaintingInfo.paintDirtyRect, backgroundRect);
}
// Make sure that we now use the original transparency context.
ASSERT(transparencyLayerContext == context);
if (shouldPaintMask)
paintMaskForFragments(layerFragments, context, localPaintingInfo, paintingRootForRenderer, paintFlags);
if (shouldPaintClippingMask) {
// Paint the border radius mask for the fragments.
paintChildClippingMaskForFragments(layerFragments, context, localPaintingInfo, paintingRootForRenderer, paintFlags);
}
// End our transparency layer
if ((haveTransparency || paintsWithBlendMode() || createTransparencyLayerForBlendMode) && m_usedTransparency && !(m_reflectionInfo && m_reflectionInfo->isPaintingInsideReflection())) {
context->endLayer();
context->restore();
m_usedTransparency = false;
}
if (resourceClipper)
resourceClipper->postApplyStatefulResource(renderer(), context, clipperContext);
}
void RenderLayer::paintLayerByApplyingTransform(GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags, const LayoutPoint& translationOffset)
{
// This involves subtracting out the position of the layer in our current coordinate space, but preserving
// the accumulated error for sub-pixel layout.
LayoutPoint delta;
convertToLayerCoords(paintingInfo.rootLayer, delta);
delta.moveBy(translationOffset);
TransformationMatrix transform(renderableTransform(paintingInfo.paintBehavior));
IntPoint roundedDelta = roundedIntPoint(delta);
transform.translateRight(roundedDelta.x(), roundedDelta.y());
LayoutSize adjustedSubPixelAccumulation = paintingInfo.subPixelAccumulation + (delta - roundedDelta);
// Apply the transform.
GraphicsContextStateSaver stateSaver(*context, false);
if (!transform.isIdentity()) {
stateSaver.save();
context->concatCTM(transform.toAffineTransform());
}
// Now do a paint with the root layer shifted to be us.
LayerPaintingInfo transformedPaintingInfo(this, enclosingIntRect(transform.inverse().mapRect(paintingInfo.paintDirtyRect)), paintingInfo.paintBehavior,
adjustedSubPixelAccumulation, paintingInfo.paintingRoot);
paintLayerContentsAndReflection(context, transformedPaintingInfo, paintFlags);
}
bool RenderLayer::shouldPaintLayerInSoftwareMode(const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
DisableCompositingQueryAsserts disabler;
return compositingState() == NotComposited
|| compositingState() == HasOwnBackingButPaintsIntoAncestor
|| (paintingInfo.paintBehavior & PaintBehaviorFlattenCompositingLayers)
|| ((paintFlags & PaintLayerPaintingReflection) && !has3DTransform())
|| paintForFixedRootBackground(this, paintFlags);
}
void RenderLayer::paintChildren(unsigned childrenToVisit, GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
if (!hasSelfPaintingLayerDescendant())
return;
#if ENABLE(ASSERT)
LayerListMutationDetector mutationChecker(m_stackingNode.get());
#endif
RenderLayerStackingNodeIterator iterator(*m_stackingNode, childrenToVisit);
while (RenderLayerStackingNode* child = iterator.next()) {
RenderLayer* childLayer = child->layer();
// If this RenderLayer should paint into its own backing or a grouped backing, that will be done via CompositedLayerMapping::paintContents()
// and CompositedLayerMapping::doPaintTask().
if (!childLayer->shouldPaintLayerInSoftwareMode(paintingInfo, paintFlags))
continue;
if (!childLayer->isPaginated())
childLayer->paintLayer(context, paintingInfo, paintFlags);
else
paintPaginatedChildLayer(childLayer, context, paintingInfo, paintFlags);
}
}
void RenderLayer::collectFragments(LayerFragments& fragments, const RenderLayer* rootLayer, const LayoutRect& dirtyRect,
ClipRectsCacheSlot clipRectsCacheSlot, OverlayScrollbarSizeRelevancy inOverlayScrollbarSizeRelevancy, ShouldRespectOverflowClip respectOverflowClip, const LayoutPoint* offsetFromRoot,
const LayoutSize& subPixelAccumulation, const LayoutRect* layerBoundingBox)
{
if (!enclosingPaginationLayer() || hasTransform()) {
// For unpaginated layers, there is only one fragment.
LayerFragment fragment;
ClipRectsContext clipRectsContext(rootLayer, clipRectsCacheSlot, inOverlayScrollbarSizeRelevancy, subPixelAccumulation);
if (respectOverflowClip == IgnoreOverflowClip)
clipRectsContext.setIgnoreOverflowClip();
clipper().calculateRects(clipRectsContext, dirtyRect, fragment.layerBounds, fragment.backgroundRect, fragment.foregroundRect, fragment.outlineRect, offsetFromRoot);
fragments.append(fragment);
return;
}
// Compute our offset within the enclosing pagination layer.
LayoutPoint offsetWithinPaginatedLayer;
convertToLayerCoords(enclosingPaginationLayer(), offsetWithinPaginatedLayer);
// Calculate clip rects relative to the enclosingPaginationLayer. The purpose of this call is to determine our bounds clipped to intermediate
// layers between us and the pagination context. It's important to minimize the number of fragments we need to create and this helps with that.
ClipRectsContext paginationClipRectsContext(enclosingPaginationLayer(), clipRectsCacheSlot, inOverlayScrollbarSizeRelevancy);
if (respectOverflowClip == IgnoreOverflowClip)
paginationClipRectsContext.setIgnoreOverflowClip();
LayoutRect layerBoundsInFlowThread;
ClipRect backgroundRectInFlowThread;
ClipRect foregroundRectInFlowThread;
ClipRect outlineRectInFlowThread;
clipper().calculateRects(paginationClipRectsContext, PaintInfo::infiniteRect(), layerBoundsInFlowThread, backgroundRectInFlowThread, foregroundRectInFlowThread,
outlineRectInFlowThread, &offsetWithinPaginatedLayer);
// Take our bounding box within the flow thread and clip it.
LayoutRect layerBoundingBoxInFlowThread = layerBoundingBox ? *layerBoundingBox : physicalBoundingBox(enclosingPaginationLayer(), &offsetWithinPaginatedLayer);
layerBoundingBoxInFlowThread.intersect(backgroundRectInFlowThread.rect());
// Shift the dirty rect into flow thread coordinates.
LayoutPoint offsetOfPaginationLayerFromRoot;
enclosingPaginationLayer()->convertToLayerCoords(rootLayer, offsetOfPaginationLayerFromRoot);
LayoutRect dirtyRectInFlowThread(dirtyRect);
dirtyRectInFlowThread.moveBy(-offsetOfPaginationLayerFromRoot);
// Tell the flow thread to collect the fragments. We pass enough information to create a minimal number of fragments based off the pages/columns
// that intersect the actual dirtyRect as well as the pages/columns that intersect our layer's bounding box.
RenderFlowThread* enclosingFlowThread = toRenderFlowThread(enclosingPaginationLayer()->renderer());
enclosingFlowThread->collectLayerFragments(fragments, layerBoundingBoxInFlowThread, dirtyRectInFlowThread);
if (fragments.isEmpty())
return;
// Get the parent clip rects of the pagination layer, since we need to intersect with that when painting column contents.
ClipRect ancestorClipRect = dirtyRect;
if (enclosingPaginationLayer()->parent()) {
ClipRectsContext clipRectsContext(rootLayer, clipRectsCacheSlot, inOverlayScrollbarSizeRelevancy);
if (respectOverflowClip == IgnoreOverflowClip)
clipRectsContext.setIgnoreOverflowClip();
ancestorClipRect = enclosingPaginationLayer()->clipper().backgroundClipRect(clipRectsContext);
ancestorClipRect.intersect(dirtyRect);
}
for (size_t i = 0; i < fragments.size(); ++i) {
LayerFragment& fragment = fragments.at(i);
// Set our four rects with all clipping applied that was internal to the flow thread.
fragment.setRects(layerBoundsInFlowThread, backgroundRectInFlowThread, foregroundRectInFlowThread, outlineRectInFlowThread);
// Shift to the root-relative physical position used when painting the flow thread in this fragment.
fragment.moveBy(fragment.paginationOffset + offsetOfPaginationLayerFromRoot);
// Intersect the fragment with our ancestor's background clip so that e.g., columns in an overflow:hidden block are
// properly clipped by the overflow.
fragment.intersect(ancestorClipRect.rect());
// Now intersect with our pagination clip. This will typically mean we're just intersecting the dirty rect with the column
// clip, so the column clip ends up being all we apply.
fragment.intersect(fragment.paginationClip);
}
}
void RenderLayer::updatePaintingInfoForFragments(LayerFragments& fragments, const LayerPaintingInfo& localPaintingInfo, PaintLayerFlags localPaintFlags,
bool shouldPaintContent, const LayoutPoint* offsetFromRoot)
{
ASSERT(offsetFromRoot);
for (size_t i = 0; i < fragments.size(); ++i) {
LayerFragment& fragment = fragments.at(i);
fragment.shouldPaintContent = shouldPaintContent;
if (this != localPaintingInfo.rootLayer || !(localPaintFlags & PaintLayerPaintingOverflowContents)) {
LayoutPoint newOffsetFromRoot = *offsetFromRoot + fragment.paginationOffset;
fragment.shouldPaintContent &= intersectsDamageRect(fragment.layerBounds, fragment.backgroundRect.rect(), localPaintingInfo.rootLayer, &newOffsetFromRoot);
}
}
}
void RenderLayer::paintTransformedLayerIntoFragments(GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
LayerFragments enclosingPaginationFragments;
LayoutPoint offsetOfPaginationLayerFromRoot;
LayoutRect transformedExtent = transparencyClipBox(this, enclosingPaginationLayer(), PaintingTransparencyClipBox, RootOfTransparencyClipBox, paintingInfo.subPixelAccumulation, paintingInfo.paintBehavior);
enclosingPaginationLayer()->collectFragments(enclosingPaginationFragments, paintingInfo.rootLayer, paintingInfo.paintDirtyRect,
(paintFlags & PaintLayerUncachedClipRects) ? UncachedClipRects : PaintingClipRects, IgnoreOverlayScrollbarSize,
shouldRespectOverflowClip(paintFlags, renderer()), &offsetOfPaginationLayerFromRoot, paintingInfo.subPixelAccumulation, &transformedExtent);
for (size_t i = 0; i < enclosingPaginationFragments.size(); ++i) {
const LayerFragment& fragment = enclosingPaginationFragments.at(i);
// Apply the page/column clip for this fragment, as well as any clips established by layers in between us and
// the enclosing pagination layer.
LayoutRect clipRect = fragment.backgroundRect.rect();
// Now compute the clips within a given fragment
if (parent() != enclosingPaginationLayer()) {
enclosingPaginationLayer()->convertToLayerCoords(paintingInfo.rootLayer, offsetOfPaginationLayerFromRoot);
ClipRectsContext clipRectsContext(enclosingPaginationLayer(), (paintFlags & PaintLayerUncachedClipRects) ? UncachedClipRects : PaintingClipRects, IgnoreOverlayScrollbarSize);
if (shouldRespectOverflowClip(paintFlags, renderer()) == IgnoreOverflowClip)
clipRectsContext.setIgnoreOverflowClip();
LayoutRect parentClipRect = clipper().backgroundClipRect(clipRectsContext).rect();
parentClipRect.moveBy(fragment.paginationOffset + offsetOfPaginationLayerFromRoot);
clipRect.intersect(parentClipRect);
}
parent()->clipToRect(paintingInfo, context, clipRect, paintFlags);
paintLayerByApplyingTransform(context, paintingInfo, paintFlags, fragment.paginationOffset);
parent()->restoreClip(context, paintingInfo.paintDirtyRect, clipRect);
}
}
static inline LayoutSize subPixelAccumulationIfNeeded(const LayoutSize& subPixelAccumulation, CompositingState compositingState)
{
// Only apply the sub-pixel accumulation if we don't paint into our own backing layer, otherwise the position
// of the renderer already includes any sub-pixel offset.
if (compositingState == PaintsIntoOwnBacking)
return LayoutSize();
return subPixelAccumulation;
}
void RenderLayer::paintBackgroundForFragments(const LayerFragments& layerFragments, GraphicsContext* context, GraphicsContext* transparencyLayerContext,
const LayoutRect& transparencyPaintDirtyRect, bool haveTransparency, const LayerPaintingInfo& localPaintingInfo, PaintBehavior paintBehavior,
RenderObject* paintingRootForRenderer, PaintLayerFlags paintFlags)
{
for (size_t i = 0; i < layerFragments.size(); ++i) {
const LayerFragment& fragment = layerFragments.at(i);
if (!fragment.shouldPaintContent)
continue;
// Begin transparency layers lazily now that we know we have to paint something.
if (haveTransparency || paintsWithBlendMode())
beginTransparencyLayers(transparencyLayerContext, localPaintingInfo.rootLayer, transparencyPaintDirtyRect, localPaintingInfo.subPixelAccumulation, localPaintingInfo.paintBehavior);
if (localPaintingInfo.clipToDirtyRect) {
// Paint our background first, before painting any child layers.
// Establish the clip used to paint our background.
clipToRect(localPaintingInfo, context, fragment.backgroundRect, paintFlags, DoNotIncludeSelfForBorderRadius); // Background painting will handle clipping to self.
}
// Paint the background.
// FIXME: Eventually we will collect the region from the fragment itself instead of just from the paint info.
PaintInfo paintInfo(context, pixelSnappedIntRect(fragment.backgroundRect.rect()), PaintPhaseBlockBackground, paintBehavior, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
renderer()->paint(paintInfo, toPoint(fragment.layerBounds.location() - renderBoxLocation() + subPixelAccumulationIfNeeded(localPaintingInfo.subPixelAccumulation, compositingState())));
if (localPaintingInfo.clipToDirtyRect)
restoreClip(context, localPaintingInfo.paintDirtyRect, fragment.backgroundRect);
}
}
void RenderLayer::paintForegroundForFragments(const LayerFragments& layerFragments, GraphicsContext* context, GraphicsContext* transparencyLayerContext,
const LayoutRect& transparencyPaintDirtyRect, bool haveTransparency, const LayerPaintingInfo& localPaintingInfo, PaintBehavior paintBehavior,
RenderObject* paintingRootForRenderer, bool selectionOnly, PaintLayerFlags paintFlags)
{
// Begin transparency if we have something to paint.
if (haveTransparency || paintsWithBlendMode()) {
for (size_t i = 0; i < layerFragments.size(); ++i) {
const LayerFragment& fragment = layerFragments.at(i);
if (fragment.shouldPaintContent && !fragment.foregroundRect.isEmpty()) {
beginTransparencyLayers(transparencyLayerContext, localPaintingInfo.rootLayer, transparencyPaintDirtyRect, localPaintingInfo.subPixelAccumulation, localPaintingInfo.paintBehavior);
break;
}
}
}
// Optimize clipping for the single fragment case.
bool shouldClip = localPaintingInfo.clipToDirtyRect && layerFragments.size() == 1 && layerFragments[0].shouldPaintContent && !layerFragments[0].foregroundRect.isEmpty();
if (shouldClip)
clipToRect(localPaintingInfo, context, layerFragments[0].foregroundRect, paintFlags);
// We have to loop through every fragment multiple times, since we have to repaint in each specific phase in order for
// interleaving of the fragments to work properly.
paintForegroundForFragmentsWithPhase(selectionOnly ? PaintPhaseSelection : PaintPhaseChildBlockBackgrounds, layerFragments,
context, localPaintingInfo, paintBehavior, paintingRootForRenderer, paintFlags);
if (!selectionOnly) {
paintForegroundForFragmentsWithPhase(PaintPhaseFloat, layerFragments, context, localPaintingInfo, paintBehavior, paintingRootForRenderer, paintFlags);
paintForegroundForFragmentsWithPhase(PaintPhaseForeground, layerFragments, context, localPaintingInfo, paintBehavior, paintingRootForRenderer, paintFlags);
paintForegroundForFragmentsWithPhase(PaintPhaseChildOutlines, layerFragments, context, localPaintingInfo, paintBehavior, paintingRootForRenderer, paintFlags);
}
if (shouldClip)
restoreClip(context, localPaintingInfo.paintDirtyRect, layerFragments[0].foregroundRect);
}
void RenderLayer::paintForegroundForFragmentsWithPhase(PaintPhase phase, const LayerFragments& layerFragments, GraphicsContext* context,
const LayerPaintingInfo& localPaintingInfo, PaintBehavior paintBehavior, RenderObject* paintingRootForRenderer, PaintLayerFlags paintFlags)
{
bool shouldClip = localPaintingInfo.clipToDirtyRect && layerFragments.size() > 1;
for (size_t i = 0; i < layerFragments.size(); ++i) {
const LayerFragment& fragment = layerFragments.at(i);
if (!fragment.shouldPaintContent || fragment.foregroundRect.isEmpty())
continue;
if (shouldClip)
clipToRect(localPaintingInfo, context, fragment.foregroundRect, paintFlags);
PaintInfo paintInfo(context, pixelSnappedIntRect(fragment.foregroundRect.rect()), phase, paintBehavior, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
renderer()->paint(paintInfo, toPoint(fragment.layerBounds.location() - renderBoxLocation() + subPixelAccumulationIfNeeded(localPaintingInfo.subPixelAccumulation, compositingState())));
if (shouldClip)
restoreClip(context, localPaintingInfo.paintDirtyRect, fragment.foregroundRect);
}
}
void RenderLayer::paintOutlineForFragments(const LayerFragments& layerFragments, GraphicsContext* context, const LayerPaintingInfo& localPaintingInfo,
PaintBehavior paintBehavior, RenderObject* paintingRootForRenderer, PaintLayerFlags paintFlags)
{
for (size_t i = 0; i < layerFragments.size(); ++i) {
const LayerFragment& fragment = layerFragments.at(i);
if (fragment.outlineRect.isEmpty())
continue;
// Paint our own outline
PaintInfo paintInfo(context, pixelSnappedIntRect(fragment.outlineRect.rect()), PaintPhaseSelfOutline, paintBehavior, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
clipToRect(localPaintingInfo, context, fragment.outlineRect, paintFlags, DoNotIncludeSelfForBorderRadius);
renderer()->paint(paintInfo, toPoint(fragment.layerBounds.location() - renderBoxLocation() + subPixelAccumulationIfNeeded(localPaintingInfo.subPixelAccumulation, compositingState())));
restoreClip(context, localPaintingInfo.paintDirtyRect, fragment.outlineRect);
}
}
void RenderLayer::paintMaskForFragments(const LayerFragments& layerFragments, GraphicsContext* context, const LayerPaintingInfo& localPaintingInfo,
RenderObject* paintingRootForRenderer, PaintLayerFlags paintFlags)
{
for (size_t i = 0; i < layerFragments.size(); ++i) {
const LayerFragment& fragment = layerFragments.at(i);
if (!fragment.shouldPaintContent)
continue;
if (localPaintingInfo.clipToDirtyRect)
clipToRect(localPaintingInfo, context, fragment.backgroundRect, paintFlags, DoNotIncludeSelfForBorderRadius); // Mask painting will handle clipping to self.
// Paint the mask.
// FIXME: Eventually we will collect the region from the fragment itself instead of just from the paint info.
PaintInfo paintInfo(context, pixelSnappedIntRect(fragment.backgroundRect.rect()), PaintPhaseMask, PaintBehaviorNormal, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
renderer()->paint(paintInfo, toPoint(fragment.layerBounds.location() - renderBoxLocation() + subPixelAccumulationIfNeeded(localPaintingInfo.subPixelAccumulation, compositingState())));
if (localPaintingInfo.clipToDirtyRect)
restoreClip(context, localPaintingInfo.paintDirtyRect, fragment.backgroundRect);
}
}
void RenderLayer::paintChildClippingMaskForFragments(const LayerFragments& layerFragments, GraphicsContext* context, const LayerPaintingInfo& localPaintingInfo,
RenderObject* paintingRootForRenderer, PaintLayerFlags paintFlags)
{
for (size_t i = 0; i < layerFragments.size(); ++i) {
const LayerFragment& fragment = layerFragments.at(i);
if (!fragment.shouldPaintContent)
continue;
if (localPaintingInfo.clipToDirtyRect)
clipToRect(localPaintingInfo, context, fragment.foregroundRect, paintFlags, IncludeSelfForBorderRadius); // Child clipping mask painting will handle clipping to self.
// Paint the the clipped mask.
PaintInfo paintInfo(context, pixelSnappedIntRect(fragment.backgroundRect.rect()), PaintPhaseClippingMask, PaintBehaviorNormal, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
renderer()->paint(paintInfo, toPoint(fragment.layerBounds.location() - renderBoxLocation() + subPixelAccumulationIfNeeded(localPaintingInfo.subPixelAccumulation, compositingState())));
if (localPaintingInfo.clipToDirtyRect)
restoreClip(context, localPaintingInfo.paintDirtyRect, fragment.foregroundRect);
}
}
void RenderLayer::paintOverflowControlsForFragments(const LayerFragments& layerFragments, GraphicsContext* context, const LayerPaintingInfo& localPaintingInfo, PaintLayerFlags paintFlags)
{
for (size_t i = 0; i < layerFragments.size(); ++i) {
const LayerFragment& fragment = layerFragments.at(i);
clipToRect(localPaintingInfo, context, fragment.backgroundRect, paintFlags);
if (RenderLayerScrollableArea* scrollableArea = this->scrollableArea())
scrollableArea->paintOverflowControls(context, roundedIntPoint(toPoint(fragment.layerBounds.location() - renderBoxLocation() + subPixelAccumulationIfNeeded(localPaintingInfo.subPixelAccumulation, compositingState()))), pixelSnappedIntRect(fragment.backgroundRect.rect()), true);
restoreClip(context, localPaintingInfo.paintDirtyRect, fragment.backgroundRect);
}
}
void RenderLayer::paintPaginatedChildLayer(RenderLayer* childLayer, GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
// We need to do multiple passes, breaking up our child layer into strips.
Vector<RenderLayer*> columnLayers;
RenderLayerStackingNode* ancestorNode = m_stackingNode->isNormalFlowOnly() ? parent()->stackingNode() : m_stackingNode->ancestorStackingContextNode();
for (RenderLayer* curr = childLayer->parent(); curr; curr = curr->parent()) {
if (curr->renderer()->hasColumns() && checkContainingBlockChainForPagination(childLayer->renderer(), curr->renderBox()))
columnLayers.append(curr);
if (curr->stackingNode() == ancestorNode)
break;
}
// It is possible for paintLayer() to be called after the child layer ceases to be paginated but before
// updatePaginationRecusive() is called and resets the isPaginated() flag, see <rdar://problem/10098679>.
// If this is the case, just bail out, since the upcoming call to updatePaginationRecusive() will repaint the layer.
// FIXME: Is this true anymore? This seems very suspicious.
if (!columnLayers.size())
return;
paintChildLayerIntoColumns(childLayer, context, paintingInfo, paintFlags, columnLayers, columnLayers.size() - 1);
}
void RenderLayer::paintChildLayerIntoColumns(RenderLayer* childLayer, GraphicsContext* context, const LayerPaintingInfo& paintingInfo,
PaintLayerFlags paintFlags, const Vector<RenderLayer*>& columnLayers, size_t colIndex)
{
RenderBlock* columnBlock = toRenderBlock(columnLayers[colIndex]->renderer());
ASSERT(columnBlock && columnBlock->hasColumns());
if (!columnBlock || !columnBlock->hasColumns())
return;
LayoutPoint layerOffset;
// FIXME: It looks suspicious to call convertToLayerCoords here
// as canUseConvertToLayerCoords is true for this layer.
columnBlock->layer()->convertToLayerCoords(paintingInfo.rootLayer, layerOffset);
bool isHorizontal = columnBlock->style()->isHorizontalWritingMode();
ColumnInfo* colInfo = columnBlock->columnInfo();
unsigned colCount = columnBlock->columnCount(colInfo);
LayoutUnit currLogicalTopOffset = 0;
for (unsigned i = 0; i < colCount; i++) {
// For each rect, we clip to the rect, and then we adjust our coords.
LayoutRect colRect = columnBlock->columnRectAt(colInfo, i);
columnBlock->flipForWritingMode(colRect);
LayoutUnit logicalLeftOffset = (isHorizontal ? colRect.x() : colRect.y()) - columnBlock->logicalLeftOffsetForContent();
LayoutSize offset;
if (isHorizontal) {
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis)
offset = LayoutSize(logicalLeftOffset, currLogicalTopOffset);
else
offset = LayoutSize(0, colRect.y() + currLogicalTopOffset - columnBlock->borderTop() - columnBlock->paddingTop());
} else {
if (colInfo->progressionAxis() == ColumnInfo::InlineAxis)
offset = LayoutSize(currLogicalTopOffset, logicalLeftOffset);
else
offset = LayoutSize(colRect.x() + currLogicalTopOffset - columnBlock->borderLeft() - columnBlock->paddingLeft(), 0);
}
colRect.moveBy(layerOffset);
LayoutRect localDirtyRect(paintingInfo.paintDirtyRect);
localDirtyRect.intersect(colRect);
if (!localDirtyRect.isEmpty()) {
GraphicsContextStateSaver stateSaver(*context);
// Each strip pushes a clip, since column boxes are specified as being
// like overflow:hidden.
context->clip(enclosingIntRect(colRect));
if (!colIndex) {
// Apply a translation transform to change where the layer paints.
TransformationMatrix oldTransform;
bool oldHasTransform = childLayer->transform();
if (oldHasTransform)
oldTransform = *childLayer->transform();
TransformationMatrix newTransform(oldTransform);
newTransform.translateRight(roundToInt(offset.width()), roundToInt(offset.height()));
childLayer->m_transform = adoptPtr(new TransformationMatrix(newTransform));
LayerPaintingInfo localPaintingInfo(paintingInfo);
localPaintingInfo.paintDirtyRect = localDirtyRect;
childLayer->paintLayer(context, localPaintingInfo, paintFlags);
if (oldHasTransform)
childLayer->m_transform = adoptPtr(new TransformationMatrix(oldTransform));
else
childLayer->m_transform.clear();
} else {
// Adjust the transform such that the renderer's upper left corner will paint at (0,0) in user space.
// This involves subtracting out the position of the layer in our current coordinate space.
LayoutPoint childOffset;
columnLayers[colIndex - 1]->convertToLayerCoords(paintingInfo.rootLayer, childOffset);
TransformationMatrix transform;
transform.translateRight(roundToInt(childOffset.x() + offset.width()), roundToInt(childOffset.y() + offset.height()));
// Apply the transform.
context->concatCTM(transform.toAffineTransform());
// Now do a paint with the root layer shifted to be the next multicol block.
LayerPaintingInfo columnPaintingInfo(paintingInfo);
columnPaintingInfo.rootLayer = columnLayers[colIndex - 1];
columnPaintingInfo.paintDirtyRect = transform.inverse().mapRect(localDirtyRect);
paintChildLayerIntoColumns(childLayer, context, columnPaintingInfo, paintFlags, columnLayers, colIndex - 1);
}
}
// Move to the next position.
LayoutUnit blockDelta = isHorizontal ? colRect.height() : colRect.width();
if (columnBlock->style()->isFlippedBlocksWritingMode())
currLogicalTopOffset += blockDelta;
else
currLogicalTopOffset -= blockDelta;
}
}
static inline LayoutRect frameVisibleRect(RenderObject* renderer)
{
FrameView* frameView = renderer->document().view();
if (!frameView)
return LayoutRect();
return frameView->visibleContentRect();
}
bool RenderLayer::hitTest(const HitTestRequest& request, HitTestResult& result)
{
return hitTest(request, result.hitTestLocation(), result);
}
bool RenderLayer::hitTest(const HitTestRequest& request, const HitTestLocation& hitTestLocation, HitTestResult& result)
{
ASSERT(isSelfPaintingLayer() || hasSelfPaintingLayerDescendant());
// RenderView should make sure to update layout before entering hit testing
ASSERT(!renderer()->frame()->view()->layoutPending());
ASSERT(!renderer()->document().renderView()->needsLayout());
LayoutRect hitTestArea = renderer()->view()->documentRect();
if (!request.ignoreClipping())
hitTestArea.intersect(frameVisibleRect(renderer()));
RenderLayer* insideLayer = hitTestLayer(this, 0, request, result, hitTestArea, hitTestLocation, false);
if (!insideLayer) {
// We didn't hit any layer. If we are the root layer and the mouse is -- or just was -- down,
// return ourselves. We do this so mouse events continue getting delivered after a drag has
// exited the WebView, and so hit testing over a scrollbar hits the content document.
if (!request.isChildFrameHitTest() && (request.active() || request.release()) && isRootLayer()) {
renderer()->updateHitTestResult(result, toRenderView(renderer())->flipForWritingMode(hitTestLocation.point()));
insideLayer = this;
}
}
// Now determine if the result is inside an anchor - if the urlElement isn't already set.
Node* node = result.innerNode();
if (node && !result.URLElement())
result.setURLElement(node->enclosingLinkEventParentOrSelf());
// Now return whether we were inside this layer (this will always be true for the root
// layer).
return insideLayer;
}
Node* RenderLayer::enclosingElement() const
{
for (RenderObject* r = renderer(); r; r = r->parent()) {
if (Node* e = r->node())
return e;
}
ASSERT_NOT_REACHED();
return 0;
}
bool RenderLayer::isInTopLayer() const
{
Node* node = renderer()->node();
return node && node->isElementNode() && toElement(node)->isInTopLayer();
}
// Compute the z-offset of the point in the transformState.
// This is effectively projecting a ray normal to the plane of ancestor, finding where that
// ray intersects target, and computing the z delta between those two points.
static double computeZOffset(const HitTestingTransformState& transformState)
{
// We got an affine transform, so no z-offset
if (transformState.m_accumulatedTransform.isAffine())
return 0;
// Flatten the point into the target plane
FloatPoint targetPoint = transformState.mappedPoint();
// Now map the point back through the transform, which computes Z.
FloatPoint3D backmappedPoint = transformState.m_accumulatedTransform.mapPoint(FloatPoint3D(targetPoint));
return backmappedPoint.z();
}
PassRefPtr<HitTestingTransformState> RenderLayer::createLocalTransformState(RenderLayer* rootLayer, RenderLayer* containerLayer,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation,
const HitTestingTransformState* containerTransformState,
const LayoutPoint& translationOffset) const
{
RefPtr<HitTestingTransformState> transformState;
LayoutPoint offset;
if (containerTransformState) {
// If we're already computing transform state, then it's relative to the container (which we know is non-null).
transformState = HitTestingTransformState::create(*containerTransformState);
convertToLayerCoords(containerLayer, offset);
} else {
// If this is the first time we need to make transform state, then base it off of hitTestLocation,
// which is relative to rootLayer.
transformState = HitTestingTransformState::create(hitTestLocation.transformedPoint(), hitTestLocation.transformedRect(), FloatQuad(hitTestRect));
convertToLayerCoords(rootLayer, offset);
}
offset.moveBy(translationOffset);
RenderObject* containerRenderer = containerLayer ? containerLayer->renderer() : 0;
if (renderer()->shouldUseTransformFromContainer(containerRenderer)) {
TransformationMatrix containerTransform;
renderer()->getTransformFromContainer(containerRenderer, toLayoutSize(offset), containerTransform);
transformState->applyTransform(containerTransform, HitTestingTransformState::AccumulateTransform);
} else {
transformState->translate(offset.x(), offset.y(), HitTestingTransformState::AccumulateTransform);
}
return transformState;
}
static bool isHitCandidate(const RenderLayer* hitLayer, bool canDepthSort, double* zOffset, const HitTestingTransformState* transformState)
{
if (!hitLayer)
return false;
// The hit layer is depth-sorting with other layers, so just say that it was hit.
if (canDepthSort)
return true;
// We need to look at z-depth to decide if this layer was hit.
if (zOffset) {
ASSERT(transformState);
// This is actually computing our z, but that's OK because the hitLayer is coplanar with us.
double childZOffset = computeZOffset(*transformState);
if (childZOffset > *zOffset) {
*zOffset = childZOffset;
return true;
}
return false;
}
return true;
}
// hitTestLocation and hitTestRect are relative to rootLayer.
// A 'flattening' layer is one preserves3D() == false.
// transformState.m_accumulatedTransform holds the transform from the containing flattening layer.
// transformState.m_lastPlanarPoint is the hitTestLocation in the plane of the containing flattening layer.
// transformState.m_lastPlanarQuad is the hitTestRect as a quad in the plane of the containing flattening layer.
//