blob: 9f76aaa51d0d17f61ef74a537339326fcfed73c8 [file] [log] [blame]
/*
* Copyright (C) 2006, 2007, 2008, 2010 Apple Inc. All rights reserved.
* Copyright (C) 2007 Alp Toker <alp@atoker.com>
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/platform/graphics/Gradient.h"
#include "core/platform/graphics/Color.h"
#include "core/platform/graphics/GraphicsContext.h"
#include "core/platform/graphics/skia/SkiaUtils.h"
#include "platform/geometry/FloatRect.h"
#include "third_party/skia/include/core/SkColorShader.h"
#include "third_party/skia/include/core/SkShader.h"
#include "third_party/skia/include/effects/SkGradientShader.h"
#include "wtf/HashFunctions.h"
#include "wtf/StringHasher.h"
using WTF::pairIntHash;
namespace WebCore {
Gradient::Gradient(const FloatPoint& p0, const FloatPoint& p1)
: m_radial(false)
, m_p0(p0)
, m_p1(p1)
, m_r0(0)
, m_r1(0)
, m_aspectRatio(1)
, m_stopsSorted(false)
, m_spreadMethod(SpreadMethodPad)
, m_cachedHash(0)
, m_drawInPMColorSpace(false)
{
}
Gradient::Gradient(const FloatPoint& p0, float r0, const FloatPoint& p1, float r1, float aspectRatio)
: m_radial(true)
, m_p0(p0)
, m_p1(p1)
, m_r0(r0)
, m_r1(r1)
, m_aspectRatio(aspectRatio)
, m_stopsSorted(false)
, m_spreadMethod(SpreadMethodPad)
, m_cachedHash(0)
, m_drawInPMColorSpace(false)
{
}
Gradient::~Gradient()
{
}
void Gradient::adjustParametersForTiledDrawing(IntSize& size, FloatRect& srcRect)
{
if (m_radial)
return;
if (srcRect.isEmpty())
return;
if (m_p0.x() == m_p1.x()) {
size.setWidth(1);
srcRect.setWidth(1);
srcRect.setX(0);
return;
}
if (m_p0.y() != m_p1.y())
return;
size.setHeight(1);
srcRect.setHeight(1);
srcRect.setY(0);
}
void Gradient::addColorStop(float value, const Color& color)
{
float r;
float g;
float b;
float a;
color.getRGBA(r, g, b, a);
m_stops.append(ColorStop(value, r, g, b, a));
m_stopsSorted = false;
m_gradient.clear();
invalidateHash();
}
void Gradient::addColorStop(const Gradient::ColorStop& stop)
{
m_stops.append(stop);
m_stopsSorted = false;
m_gradient.clear();
invalidateHash();
}
static inline bool compareStops(const Gradient::ColorStop& a, const Gradient::ColorStop& b)
{
return a.stop < b.stop;
}
void Gradient::sortStopsIfNecessary()
{
if (m_stopsSorted)
return;
m_stopsSorted = true;
if (!m_stops.size())
return;
std::stable_sort(m_stops.begin(), m_stops.end(), compareStops);
invalidateHash();
}
bool Gradient::hasAlpha() const
{
for (size_t i = 0; i < m_stops.size(); i++) {
if (m_stops[i].alpha < 1)
return true;
}
return false;
}
void Gradient::setSpreadMethod(GradientSpreadMethod spreadMethod)
{
// FIXME: Should it become necessary, allow calls to this method after m_gradient has been set.
ASSERT(!m_gradient);
if (m_spreadMethod == spreadMethod)
return;
m_spreadMethod = spreadMethod;
invalidateHash();
}
void Gradient::setDrawsInPMColorSpace(bool drawInPMColorSpace)
{
if (drawInPMColorSpace == m_drawInPMColorSpace)
return;
m_drawInPMColorSpace = drawInPMColorSpace;
m_gradient.clear();
invalidateHash();
}
void Gradient::setGradientSpaceTransform(const AffineTransform& gradientSpaceTransformation)
{
if (m_gradientSpaceTransformation == gradientSpaceTransformation)
return;
m_gradientSpaceTransformation = gradientSpaceTransformation;
if (m_gradient)
m_gradient->setLocalMatrix(affineTransformToSkMatrix(m_gradientSpaceTransformation));
invalidateHash();
}
unsigned Gradient::hash() const
{
if (m_cachedHash)
return m_cachedHash;
struct {
AffineTransform gradientSpaceTransformation;
FloatPoint p0;
FloatPoint p1;
float r0;
float r1;
float aspectRatio;
GradientSpreadMethod spreadMethod;
bool radial;
bool drawInPMColorSpace;
} parameters;
// StringHasher requires that the memory it hashes be a multiple of two in size.
COMPILE_ASSERT(!(sizeof(parameters) % 2), Gradient_parameters_size_should_be_multiple_of_two);
COMPILE_ASSERT(!(sizeof(ColorStop) % 2), Color_stop_size_should_be_multiple_of_two);
// Ensure that any padding in the struct is zero-filled, so it will not affect the hash value.
memset(&parameters, 0, sizeof(parameters));
parameters.gradientSpaceTransformation = m_gradientSpaceTransformation;
parameters.p0 = m_p0;
parameters.p1 = m_p1;
parameters.r0 = m_r0;
parameters.r1 = m_r1;
parameters.aspectRatio = m_aspectRatio;
parameters.spreadMethod = m_spreadMethod;
parameters.radial = m_radial;
parameters.drawInPMColorSpace = m_drawInPMColorSpace;
unsigned parametersHash = StringHasher::hashMemory(&parameters, sizeof(parameters));
unsigned stopHash = StringHasher::hashMemory(m_stops.data(), m_stops.size() * sizeof(ColorStop));
m_cachedHash = pairIntHash(parametersHash, stopHash);
return m_cachedHash;
}
static inline U8CPU F2B(float x)
{
return static_cast<int>(x * 255);
}
static SkColor makeSkColor(float a, float r, float g, float b)
{
return SkColorSetARGB(F2B(a), F2B(r), F2B(g), F2B(b));
}
// Determine the total number of stops needed, including pseudo-stops at the
// ends as necessary.
static size_t totalStopsNeeded(const Gradient::ColorStop* stopData, size_t count)
{
// N.B.: The tests in this function should kept in sync with the ones in
// fillStops(), or badness happens.
const Gradient::ColorStop* stop = stopData;
size_t countUsed = count;
if (count < 1 || stop->stop > 0.0)
countUsed++;
stop += count - 1;
if (count < 1 || stop->stop < 1.0)
countUsed++;
return countUsed;
}
// Collect sorted stop position and color information into the pos and colors
// buffers, ensuring stops at both 0.0 and 1.0. The buffers must be large
// enough to hold information for all stops, including the new endpoints if
// stops at 0.0 and 1.0 aren't already included.
static void fillStops(const Gradient::ColorStop* stopData,
size_t count, SkScalar* pos, SkColor* colors)
{
const Gradient::ColorStop* stop = stopData;
size_t start = 0;
if (count < 1) {
// A gradient with no stops must be transparent black.
pos[0] = WebCoreFloatToSkScalar(0.0);
colors[0] = makeSkColor(0.0, 0.0, 0.0, 0.0);
start = 1;
} else if (stop->stop > 0.0) {
// Copy the first stop to 0.0. The first stop position may have a slight
// rounding error, but we don't care in this float comparison, since
// 0.0 comes through cleanly and people aren't likely to want a gradient
// with a stop at (0 + epsilon).
pos[0] = WebCoreFloatToSkScalar(0.0);
colors[0] = makeSkColor(stop->alpha, stop->red, stop->green, stop->blue);
start = 1;
}
for (size_t i = start; i < start + count; i++) {
pos[i] = WebCoreFloatToSkScalar(stop->stop);
colors[i] = makeSkColor(stop->alpha, stop->red, stop->green, stop->blue);
++stop;
}
// Copy the last stop to 1.0 if needed. See comment above about this float
// comparison.
if (count < 1 || (--stop)->stop < 1.0) {
pos[start + count] = WebCoreFloatToSkScalar(1.0);
colors[start + count] = colors[start + count - 1];
}
}
SkShader* Gradient::shader()
{
if (m_gradient)
return m_gradient.get();
sortStopsIfNecessary();
ASSERT(m_stopsSorted);
size_t countUsed = totalStopsNeeded(m_stops.data(), m_stops.size());
ASSERT(countUsed >= 2);
ASSERT(countUsed >= m_stops.size());
// FIXME: Why is all this manual pointer math needed?!
SkAutoMalloc storage(countUsed * (sizeof(SkColor) + sizeof(SkScalar)));
SkColor* colors = (SkColor*)storage.get();
SkScalar* pos = (SkScalar*)(colors + countUsed);
fillStops(m_stops.data(), m_stops.size(), pos, colors);
SkShader::TileMode tile = SkShader::kClamp_TileMode;
switch (m_spreadMethod) {
case SpreadMethodReflect:
tile = SkShader::kMirror_TileMode;
break;
case SpreadMethodRepeat:
tile = SkShader::kRepeat_TileMode;
break;
case SpreadMethodPad:
tile = SkShader::kClamp_TileMode;
break;
}
uint32_t shouldDrawInPMColorSpace = m_drawInPMColorSpace ? SkGradientShader::kInterpolateColorsInPremul_Flag : 0;
if (m_radial) {
// Since the two-point radial gradient is slower than the plain radial,
// only use it if we have to.
if (m_p0 == m_p1 && m_r0 <= 0.0f) {
m_gradient = adoptRef(SkGradientShader::CreateRadial(m_p1, m_r1, colors, pos, static_cast<int>(countUsed), tile, 0, shouldDrawInPMColorSpace));
} else {
// The radii we give to Skia must be positive. If we're given a
// negative radius, ask for zero instead.
SkScalar radius0 = m_r0 >= 0.0f ? WebCoreFloatToSkScalar(m_r0) : 0;
SkScalar radius1 = m_r1 >= 0.0f ? WebCoreFloatToSkScalar(m_r1) : 0;
m_gradient = adoptRef(SkGradientShader::CreateTwoPointConical(m_p0, radius0, m_p1, radius1, colors, pos, static_cast<int>(countUsed), tile, 0, shouldDrawInPMColorSpace));
}
if (aspectRatio() != 1) {
// CSS3 elliptical gradients: apply the elliptical scaling at the
// gradient center point.
m_gradientSpaceTransformation.translate(m_p0.x(), m_p0.y());
m_gradientSpaceTransformation.scale(1, 1 / aspectRatio());
m_gradientSpaceTransformation.translate(-m_p0.x(), -m_p0.y());
ASSERT(m_p0 == m_p1);
}
} else {
SkPoint pts[2] = { m_p0, m_p1 };
m_gradient = adoptRef(SkGradientShader::CreateLinear(pts, colors, pos, static_cast<int>(countUsed), tile, 0, shouldDrawInPMColorSpace));
}
if (!m_gradient) {
// use last color, since our "geometry" was degenerate (e.g. radius==0)
m_gradient = adoptRef(new SkColorShader(colors[countUsed - 1]));
} else {
m_gradient->setLocalMatrix(affineTransformToSkMatrix(m_gradientSpaceTransformation));
}
return m_gradient.get();
}
} //namespace