blob: fa25a9f60aa749805c217094273e5f314bc5fbb3 [file] [log] [blame]
/*
* Copyright (C) 2011 Google Inc. All rights reserved.
* Copyright (C) 2012 Intel Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// FFTFrame implementation using Intel IPP's DFT algorithm,
// suitable for use on Linux.
#include "config.h"
#if ENABLE(WEB_AUDIO)
#if USE(WEBAUDIO_IPP)
#include "core/platform/audio/FFTFrame.h"
#include "core/platform/audio/VectorMath.h"
#include "wtf/MathExtras.h"
namespace WebCore {
const unsigned maximumFFTPower2Size = 24;
// Normal constructor: allocates for a given fftSize.
FFTFrame::FFTFrame(unsigned fftSize)
: m_FFTSize(fftSize)
, m_log2FFTSize(static_cast<unsigned>(log2(fftSize)))
, m_complexData(fftSize)
, m_realData(fftSize / 2)
, m_imagData(fftSize / 2)
{
// We only allow power of two.
ASSERT(1UL << m_log2FFTSize == m_FFTSize);
ASSERT(m_log2FFTSize <= maximumFFTPower2Size);
ippsDFTInitAlloc_R_32f(&m_DFTSpec, m_FFTSize, IPP_FFT_NODIV_BY_ANY, ippAlgHintFast);
int bufferSize = 0;
ippsDFTGetBufSize_R_32f(m_DFTSpec, &bufferSize);
m_buffer = ippsMalloc_8u(bufferSize);
}
// Creates a blank/empty frame (interpolate() must later be called).
FFTFrame::FFTFrame()
: m_FFTSize(0)
, m_log2FFTSize(0)
{
}
// Copy constructor.
FFTFrame::FFTFrame(const FFTFrame& frame)
: m_FFTSize(frame.m_FFTSize)
, m_log2FFTSize(frame.m_log2FFTSize)
, m_complexData(frame.m_FFTSize)
, m_realData(frame.m_FFTSize / 2)
, m_imagData(frame.m_FFTSize / 2)
{
ippsDFTInitAlloc_R_32f(&m_DFTSpec, m_FFTSize, IPP_FFT_NODIV_BY_ANY, ippAlgHintFast);
int bufferSize = 0;
ippsDFTGetBufSize_R_32f(m_DFTSpec, &bufferSize);
m_buffer = ippsMalloc_8u(bufferSize);
// Copy/setup frame data.
unsigned numberOfBytes = sizeof(float) * m_FFTSize;
memcpy(realData(), frame.realData(), numberOfBytes);
memcpy(imagData(), frame.imagData(), numberOfBytes);
}
void FFTFrame::initialize()
{
}
void FFTFrame::cleanup()
{
}
FFTFrame::~FFTFrame()
{
ippsFree(m_buffer);
ippsDFTFree_R_32f(m_DFTSpec);
}
void FFTFrame::multiply(const FFTFrame& frame)
{
FFTFrame& frame1 = *this;
FFTFrame& frame2 = const_cast<FFTFrame&>(frame);
float* realP1 = frame1.realData();
float* imagP1 = frame1.imagData();
const float* realP2 = frame2.realData();
const float* imagP2 = frame2.imagData();
unsigned halfSize = fftSize() / 2;
float real0 = realP1[0];
float imag0 = imagP1[0];
VectorMath::zvmul(realP1, imagP1, realP2, imagP2, realP1, imagP1, halfSize);
// Multiply the packed DC/nyquist component
realP1[0] = real0 * realP2[0];
imagP1[0] = imag0 * imagP2[0];
// Scale accounts the peculiar scaling of vecLib on the Mac.
// This ensures the right scaling all the way back to inverse FFT.
// FIXME: if we change the scaling on the Mac then this scale
// factor will need to change too.
float scale = 0.5f;
VectorMath::vsmul(realP1, 1, &scale, realP1, 1, halfSize);
VectorMath::vsmul(imagP1, 1, &scale, imagP1, 1, halfSize);
}
void FFTFrame::doFFT(const float* data)
{
Ipp32f* complexP = m_complexData.data();
// Compute Forward transform to perm format.
ippsDFTFwd_RToPerm_32f(reinterpret_cast<Ipp32f*>(const_cast<float*>(data)), complexP, m_DFTSpec, m_buffer);
const Ipp32f scale = 2.0f;
ippsMulC_32f_I(scale, complexP, m_FFTSize);
Ipp32f* realP = m_realData.data();
Ipp32f* imagP = m_imagData.data();
ippsCplxToReal_32fc(reinterpret_cast<Ipp32fc*>(complexP), realP, imagP, m_FFTSize >> 1);
}
void FFTFrame::doInverseFFT(float* data)
{
Ipp32f* complexP = getUpToDateComplexData();
// Compute inverse transform.
ippsDFTInv_PermToR_32f(complexP, reinterpret_cast<Ipp32f*>(data), m_DFTSpec, m_buffer);
// Scale so that a forward then inverse FFT yields exactly the original data.
const float scale = 1.0 / (2 * m_FFTSize);
ippsMulC_32f_I(scale, reinterpret_cast<Ipp32f*>(data), m_FFTSize);
}
float* FFTFrame::realData() const
{
return const_cast<float*>(m_realData.data());
}
float* FFTFrame::imagData() const
{
return const_cast<float*>(m_imagData.data());
}
float* FFTFrame::getUpToDateComplexData()
{
int len = m_FFTSize >> 1;
// Merge the real and imagimary vectors to complex vector.
Ipp32f* realP = m_realData.data();
Ipp32f* imagP = m_imagData.data();
Ipp32fc* complexP = reinterpret_cast<Ipp32fc*>(m_complexData.data());
ippsRealToCplx_32f(realP, imagP, complexP, len);
return const_cast<float*>(m_complexData.data());
}
} // namespace WebCore
#endif // USE(WEBAUDIO_IPP)
#endif // ENABLE(WEB_AUDIO)