blob: ce0b8d01f13cdb9f026dbaf2c1cda405dbf1b985 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/blockfile/backend_impl_v3.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/file_util.h"
#include "base/files/file_path.h"
#include "base/hash.h"
#include "base/message_loop/message_loop.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/histogram.h"
#include "base/metrics/stats_counters.h"
#include "base/rand_util.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/sys_info.h"
#include "base/threading/thread_restrictions.h"
#include "base/time/time.h"
#include "base/timer/timer.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/blockfile/disk_format_v3.h"
#include "net/disk_cache/blockfile/entry_impl_v3.h"
#include "net/disk_cache/blockfile/errors.h"
#include "net/disk_cache/blockfile/experiments.h"
#include "net/disk_cache/blockfile/file.h"
#include "net/disk_cache/blockfile/histogram_macros_v3.h"
#include "net/disk_cache/blockfile/index_table_v3.h"
#include "net/disk_cache/blockfile/storage_block-inl.h"
#include "net/disk_cache/cache_util.h"
// Provide a BackendImpl object to macros from histogram_macros.h.
#define CACHE_UMA_BACKEND_IMPL_OBJ this
using base::Time;
using base::TimeDelta;
using base::TimeTicks;
namespace {
#if defined(V3_NOT_JUST_YET_READY)
const int kDefaultCacheSize = 80 * 1024 * 1024;
// Avoid trimming the cache for the first 5 minutes (10 timer ticks).
const int kTrimDelay = 10;
#endif // defined(V3_NOT_JUST_YET_READY).
} // namespace
// ------------------------------------------------------------------------
namespace disk_cache {
BackendImplV3::BackendImplV3(const base::FilePath& path,
base::MessageLoopProxy* cache_thread,
net::NetLog* net_log)
: index_(NULL),
path_(path),
block_files_(),
max_size_(0),
up_ticks_(0),
cache_type_(net::DISK_CACHE),
uma_report_(0),
user_flags_(0),
init_(false),
restarted_(false),
read_only_(false),
disabled_(false),
lru_eviction_(true),
first_timer_(true),
user_load_(false),
net_log_(net_log),
ptr_factory_(this) {
}
BackendImplV3::~BackendImplV3() {
CleanupCache();
}
int BackendImplV3::Init(const CompletionCallback& callback) {
DCHECK(!init_);
if (init_)
return net::ERR_FAILED;
return net::ERR_IO_PENDING;
}
// ------------------------------------------------------------------------
#if defined(V3_NOT_JUST_YET_READY)
int BackendImplV3::OpenPrevEntry(void** iter, Entry** prev_entry,
const CompletionCallback& callback) {
DCHECK(!callback.is_null());
return OpenFollowingEntry(true, iter, prev_entry, callback);
}
#endif // defined(V3_NOT_JUST_YET_READY).
bool BackendImplV3::SetMaxSize(int max_bytes) {
COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model);
if (max_bytes < 0)
return false;
// Zero size means use the default.
if (!max_bytes)
return true;
// Avoid a DCHECK later on.
if (max_bytes >= kint32max - kint32max / 10)
max_bytes = kint32max - kint32max / 10 - 1;
user_flags_ |= MAX_SIZE;
max_size_ = max_bytes;
return true;
}
void BackendImplV3::SetType(net::CacheType type) {
DCHECK_NE(net::MEMORY_CACHE, type);
cache_type_ = type;
}
bool BackendImplV3::CreateBlock(FileType block_type, int block_count,
Addr* block_address) {
return block_files_.CreateBlock(block_type, block_count, block_address);
}
#if defined(V3_NOT_JUST_YET_READY)
void BackendImplV3::UpdateRank(EntryImplV3* entry, bool modified) {
if (read_only_ || (!modified && cache_type() == net::SHADER_CACHE))
return;
eviction_.UpdateRank(entry, modified);
}
void BackendImplV3::InternalDoomEntry(EntryImplV3* entry) {
uint32 hash = entry->GetHash();
std::string key = entry->GetKey();
Addr entry_addr = entry->entry()->address();
bool error;
EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error);
CacheAddr child(entry->GetNextAddress());
Trace("Doom entry 0x%p", entry);
if (!entry->doomed()) {
// We may have doomed this entry from within MatchEntry.
eviction_.OnDoomEntry(entry);
entry->InternalDoom();
if (!new_eviction_) {
DecreaseNumEntries();
}
stats_.OnEvent(Stats::DOOM_ENTRY);
}
if (parent_entry) {
parent_entry->SetNextAddress(Addr(child));
parent_entry->Release();
} else if (!error) {
data_->table[hash & mask_] = child;
}
FlushIndex();
}
void BackendImplV3::OnEntryDestroyBegin(Addr address) {
EntriesMap::iterator it = open_entries_.find(address.value());
if (it != open_entries_.end())
open_entries_.erase(it);
}
void BackendImplV3::OnEntryDestroyEnd() {
DecreaseNumRefs();
if (data_->header.num_bytes > max_size_ && !read_only_ &&
(up_ticks_ > kTrimDelay || user_flags_ & kNoRandom))
eviction_.TrimCache(false);
}
EntryImplV3* BackendImplV3::GetOpenEntry(Addr address) const {
DCHECK(rankings->HasData());
EntriesMap::const_iterator it =
open_entries_.find(rankings->Data()->contents);
if (it != open_entries_.end()) {
// We have this entry in memory.
return it->second;
}
return NULL;
}
int BackendImplV3::MaxFileSize() const {
return max_size_ / 8;
}
void BackendImplV3::ModifyStorageSize(int32 old_size, int32 new_size) {
if (disabled_ || old_size == new_size)
return;
if (old_size > new_size)
SubstractStorageSize(old_size - new_size);
else
AddStorageSize(new_size - old_size);
// Update the usage statistics.
stats_.ModifyStorageStats(old_size, new_size);
}
void BackendImplV3::TooMuchStorageRequested(int32 size) {
stats_.ModifyStorageStats(0, size);
}
bool BackendImplV3::IsAllocAllowed(int current_size, int new_size) {
DCHECK_GT(new_size, current_size);
if (user_flags_ & NO_BUFFERING)
return false;
int to_add = new_size - current_size;
if (buffer_bytes_ + to_add > MaxBuffersSize())
return false;
buffer_bytes_ += to_add;
CACHE_UMA(COUNTS_50000, "BufferBytes", buffer_bytes_ / 1024);
return true;
}
#endif // defined(V3_NOT_JUST_YET_READY).
void BackendImplV3::BufferDeleted(int size) {
DCHECK_GE(size, 0);
buffer_bytes_ -= size;
DCHECK_GE(buffer_bytes_, 0);
}
bool BackendImplV3::IsLoaded() const {
if (user_flags_ & NO_LOAD_PROTECTION)
return false;
return user_load_;
}
std::string BackendImplV3::HistogramName(const char* name) const {
static const char* names[] = { "Http", "", "Media", "AppCache", "Shader" };
DCHECK_NE(cache_type_, net::MEMORY_CACHE);
return base::StringPrintf("DiskCache3.%s_%s", name, names[cache_type_]);
}
base::WeakPtr<BackendImplV3> BackendImplV3::GetWeakPtr() {
return ptr_factory_.GetWeakPtr();
}
#if defined(V3_NOT_JUST_YET_READY)
// We want to remove biases from some histograms so we only send data once per
// week.
bool BackendImplV3::ShouldReportAgain() {
if (uma_report_)
return uma_report_ == 2;
uma_report_++;
int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
Time last_time = Time::FromInternalValue(last_report);
if (!last_report || (Time::Now() - last_time).InDays() >= 7) {
stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue());
uma_report_++;
return true;
}
return false;
}
void BackendImplV3::FirstEviction() {
IndexHeaderV3* header = index_.header();
header->flags |= CACHE_EVICTED;
DCHECK(header->create_time);
if (!GetEntryCount())
return; // This is just for unit tests.
Time create_time = Time::FromInternalValue(header->create_time);
CACHE_UMA(AGE, "FillupAge", create_time);
int64 use_time = stats_.GetCounter(Stats::TIMER);
CACHE_UMA(HOURS, "FillupTime", static_cast<int>(use_time / 120));
CACHE_UMA(PERCENTAGE, "FirstHitRatio", stats_.GetHitRatio());
if (!use_time)
use_time = 1;
CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate",
static_cast<int>(header->num_entries / use_time));
CACHE_UMA(COUNTS, "FirstByteIORate",
static_cast<int>((header->num_bytes / 1024) / use_time));
int avg_size = header->num_bytes / GetEntryCount();
CACHE_UMA(COUNTS, "FirstEntrySize", avg_size);
int large_entries_bytes = stats_.GetLargeEntriesSize();
int large_ratio = large_entries_bytes * 100 / header->num_bytes;
CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", large_ratio);
if (!lru_eviction_) {
CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", stats_.GetResurrectRatio());
CACHE_UMA(PERCENTAGE, "FirstNoUseRatio",
header->num_no_use_entries * 100 / header->num_entries);
CACHE_UMA(PERCENTAGE, "FirstLowUseRatio",
header->num_low_use_entries * 100 / header->num_entries);
CACHE_UMA(PERCENTAGE, "FirstHighUseRatio",
header->num_high_use_entries * 100 / header->num_entries);
}
stats_.ResetRatios();
}
void BackendImplV3::OnEvent(Stats::Counters an_event) {
stats_.OnEvent(an_event);
}
void BackendImplV3::OnRead(int32 bytes) {
DCHECK_GE(bytes, 0);
byte_count_ += bytes;
if (byte_count_ < 0)
byte_count_ = kint32max;
}
void BackendImplV3::OnWrite(int32 bytes) {
// We use the same implementation as OnRead... just log the number of bytes.
OnRead(bytes);
}
void BackendImplV3::OnTimerTick() {
stats_.OnEvent(Stats::TIMER);
int64 time = stats_.GetCounter(Stats::TIMER);
int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES);
// OPEN_ENTRIES is a sampled average of the number of open entries, avoiding
// the bias towards 0.
if (num_refs_ && (current != num_refs_)) {
int64 diff = (num_refs_ - current) / 50;
if (!diff)
diff = num_refs_ > current ? 1 : -1;
current = current + diff;
stats_.SetCounter(Stats::OPEN_ENTRIES, current);
stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_);
}
CACHE_UMA(COUNTS, "NumberOfReferences", num_refs_);
CACHE_UMA(COUNTS_10000, "EntryAccessRate", entry_count_);
CACHE_UMA(COUNTS, "ByteIORate", byte_count_ / 1024);
// These values cover about 99.5% of the population (Oct 2011).
user_load_ = (entry_count_ > 300 || byte_count_ > 7 * 1024 * 1024);
entry_count_ = 0;
byte_count_ = 0;
up_ticks_++;
if (!data_)
first_timer_ = false;
if (first_timer_) {
first_timer_ = false;
if (ShouldReportAgain())
ReportStats();
}
// Save stats to disk at 5 min intervals.
if (time % 10 == 0)
StoreStats();
}
void BackendImplV3::SetUnitTestMode() {
user_flags_ |= UNIT_TEST_MODE;
}
void BackendImplV3::SetUpgradeMode() {
user_flags_ |= UPGRADE_MODE;
read_only_ = true;
}
void BackendImplV3::SetNewEviction() {
user_flags_ |= EVICTION_V2;
lru_eviction_ = false;
}
void BackendImplV3::SetFlags(uint32 flags) {
user_flags_ |= flags;
}
int BackendImplV3::FlushQueueForTest(const CompletionCallback& callback) {
background_queue_.FlushQueue(callback);
return net::ERR_IO_PENDING;
}
void BackendImplV3::TrimForTest(bool empty) {
eviction_.SetTestMode();
eviction_.TrimCache(empty);
}
void BackendImplV3::TrimDeletedListForTest(bool empty) {
eviction_.SetTestMode();
eviction_.TrimDeletedList(empty);
}
int BackendImplV3::SelfCheck() {
if (!init_) {
LOG(ERROR) << "Init failed";
return ERR_INIT_FAILED;
}
int num_entries = rankings_.SelfCheck();
if (num_entries < 0) {
LOG(ERROR) << "Invalid rankings list, error " << num_entries;
#if !defined(NET_BUILD_STRESS_CACHE)
return num_entries;
#endif
}
if (num_entries != data_->header.num_entries) {
LOG(ERROR) << "Number of entries mismatch";
#if !defined(NET_BUILD_STRESS_CACHE)
return ERR_NUM_ENTRIES_MISMATCH;
#endif
}
return CheckAllEntries();
}
// ------------------------------------------------------------------------
net::CacheType BackendImplV3::GetCacheType() const {
return cache_type_;
}
int32 BackendImplV3::GetEntryCount() const {
if (disabled_)
return 0;
DCHECK(init_);
return index_.header()->num_entries;
}
int BackendImplV3::OpenEntry(const std::string& key, Entry** entry,
const CompletionCallback& callback) {
if (disabled_)
return NULL;
TimeTicks start = TimeTicks::Now();
uint32 hash = base::Hash(key);
Trace("Open hash 0x%x", hash);
bool error;
EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
if (cache_entry && ENTRY_NORMAL != cache_entry->entry()->Data()->state) {
// The entry was already evicted.
cache_entry->Release();
cache_entry = NULL;
}
int current_size = data_->header.num_bytes / (1024 * 1024);
int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
int64 no_use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
int64 use_hours = total_hours - no_use_hours;
if (!cache_entry) {
CACHE_UMA(AGE_MS, "OpenTime.Miss", 0, start);
CACHE_UMA(COUNTS_10000, "AllOpenBySize.Miss", 0, current_size);
CACHE_UMA(HOURS, "AllOpenByTotalHours.Miss", 0, total_hours);
CACHE_UMA(HOURS, "AllOpenByUseHours.Miss", 0, use_hours);
stats_.OnEvent(Stats::OPEN_MISS);
return NULL;
}
eviction_.OnOpenEntry(cache_entry);
entry_count_++;
Trace("Open hash 0x%x end: 0x%x", hash,
cache_entry->entry()->address().value());
CACHE_UMA(AGE_MS, "OpenTime", 0, start);
CACHE_UMA(COUNTS_10000, "AllOpenBySize.Hit", 0, current_size);
CACHE_UMA(HOURS, "AllOpenByTotalHours.Hit", 0, total_hours);
CACHE_UMA(HOURS, "AllOpenByUseHours.Hit", 0, use_hours);
stats_.OnEvent(Stats::OPEN_HIT);
SIMPLE_STATS_COUNTER("disk_cache.hit");
return cache_entry;
}
int BackendImplV3::CreateEntry(const std::string& key, Entry** entry,
const CompletionCallback& callback) {
if (disabled_ || key.empty())
return NULL;
TimeTicks start = TimeTicks::Now();
Trace("Create hash 0x%x", hash);
scoped_refptr<EntryImpl> parent;
Addr entry_address(data_->table[hash & mask_]);
if (entry_address.is_initialized()) {
// We have an entry already. It could be the one we are looking for, or just
// a hash conflict.
bool error;
EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
if (old_entry)
return ResurrectEntry(old_entry);
EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
DCHECK(!error);
if (parent_entry) {
parent.swap(&parent_entry);
} else if (data_->table[hash & mask_]) {
// We should have corrected the problem.
NOTREACHED();
return NULL;
}
}
// The general flow is to allocate disk space and initialize the entry data,
// followed by saving that to disk, then linking the entry though the index
// and finally through the lists. If there is a crash in this process, we may
// end up with:
// a. Used, unreferenced empty blocks on disk (basically just garbage).
// b. Used, unreferenced but meaningful data on disk (more garbage).
// c. A fully formed entry, reachable only through the index.
// d. A fully formed entry, also reachable through the lists, but still dirty.
//
// Anything after (b) can be automatically cleaned up. We may consider saving
// the current operation (as we do while manipulating the lists) so that we
// can detect and cleanup (a) and (b).
int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
LOG(ERROR) << "Create entry failed " << key.c_str();
stats_.OnEvent(Stats::CREATE_ERROR);
return NULL;
}
Addr node_address(0);
if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
block_files_.DeleteBlock(entry_address, false);
LOG(ERROR) << "Create entry failed " << key.c_str();
stats_.OnEvent(Stats::CREATE_ERROR);
return NULL;
}
scoped_refptr<EntryImpl> cache_entry(
new EntryImpl(this, entry_address, false));
IncreaseNumRefs();
if (!cache_entry->CreateEntry(node_address, key, hash)) {
block_files_.DeleteBlock(entry_address, false);
block_files_.DeleteBlock(node_address, false);
LOG(ERROR) << "Create entry failed " << key.c_str();
stats_.OnEvent(Stats::CREATE_ERROR);
return NULL;
}
cache_entry->BeginLogging(net_log_, true);
// We are not failing the operation; let's add this to the map.
open_entries_[entry_address.value()] = cache_entry.get();
// Save the entry.
cache_entry->entry()->Store();
cache_entry->rankings()->Store();
IncreaseNumEntries();
entry_count_++;
// Link this entry through the index.
if (parent.get()) {
parent->SetNextAddress(entry_address);
} else {
data_->table[hash & mask_] = entry_address.value();
}
// Link this entry through the lists.
eviction_.OnCreateEntry(cache_entry.get());
CACHE_UMA(AGE_MS, "CreateTime", 0, start);
stats_.OnEvent(Stats::CREATE_HIT);
SIMPLE_STATS_COUNTER("disk_cache.miss");
Trace("create entry hit ");
FlushIndex();
cache_entry->AddRef();
return cache_entry.get();
}
int BackendImplV3::DoomEntry(const std::string& key,
const CompletionCallback& callback) {
if (disabled_)
return net::ERR_FAILED;
EntryImpl* entry = OpenEntryImpl(key);
if (!entry)
return net::ERR_FAILED;
entry->DoomImpl();
entry->Release();
return net::OK;
}
int BackendImplV3::DoomAllEntries(const CompletionCallback& callback) {
// This is not really an error, but it is an interesting condition.
ReportError(ERR_CACHE_DOOMED);
stats_.OnEvent(Stats::DOOM_CACHE);
if (!num_refs_) {
RestartCache(false);
return disabled_ ? net::ERR_FAILED : net::OK;
} else {
if (disabled_)
return net::ERR_FAILED;
eviction_.TrimCache(true);
return net::OK;
}
}
int BackendImplV3::DoomEntriesBetween(base::Time initial_time,
base::Time end_time,
const CompletionCallback& callback) {
DCHECK_NE(net::APP_CACHE, cache_type_);
if (end_time.is_null())
return SyncDoomEntriesSince(initial_time);
DCHECK(end_time >= initial_time);
if (disabled_)
return net::ERR_FAILED;
EntryImpl* node;
void* iter = NULL;
EntryImpl* next = OpenNextEntryImpl(&iter);
if (!next)
return net::OK;
while (next) {
node = next;
next = OpenNextEntryImpl(&iter);
if (node->GetLastUsed() >= initial_time &&
node->GetLastUsed() < end_time) {
node->DoomImpl();
} else if (node->GetLastUsed() < initial_time) {
if (next)
next->Release();
next = NULL;
SyncEndEnumeration(iter);
}
node->Release();
}
return net::OK;
}
int BackendImplV3::DoomEntriesSince(base::Time initial_time,
const CompletionCallback& callback) {
DCHECK_NE(net::APP_CACHE, cache_type_);
if (disabled_)
return net::ERR_FAILED;
stats_.OnEvent(Stats::DOOM_RECENT);
for (;;) {
void* iter = NULL;
EntryImpl* entry = OpenNextEntryImpl(&iter);
if (!entry)
return net::OK;
if (initial_time > entry->GetLastUsed()) {
entry->Release();
SyncEndEnumeration(iter);
return net::OK;
}
entry->DoomImpl();
entry->Release();
SyncEndEnumeration(iter); // Dooming the entry invalidates the iterator.
}
}
int BackendImplV3::OpenNextEntry(void** iter, Entry** next_entry,
const CompletionCallback& callback) {
DCHECK(!callback.is_null());
background_queue_.OpenNextEntry(iter, next_entry, callback);
return net::ERR_IO_PENDING;
}
void BackendImplV3::EndEnumeration(void** iter) {
scoped_ptr<IndexIterator> iterator(
reinterpret_cast<IndexIterator*>(*iter));
*iter = NULL;
}
void BackendImplV3::GetStats(StatsItems* stats) {
if (disabled_)
return;
std::pair<std::string, std::string> item;
item.first = "Entries";
item.second = base::StringPrintf("%d", data_->header.num_entries);
stats->push_back(item);
item.first = "Pending IO";
item.second = base::StringPrintf("%d", num_pending_io_);
stats->push_back(item);
item.first = "Max size";
item.second = base::StringPrintf("%d", max_size_);
stats->push_back(item);
item.first = "Current size";
item.second = base::StringPrintf("%d", data_->header.num_bytes);
stats->push_back(item);
item.first = "Cache type";
item.second = "Blockfile Cache";
stats->push_back(item);
stats_.GetItems(stats);
}
void BackendImplV3::OnExternalCacheHit(const std::string& key) {
if (disabled_)
return;
uint32 hash = base::Hash(key);
bool error;
EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
if (cache_entry) {
if (ENTRY_NORMAL == cache_entry->entry()->Data()->state) {
UpdateRank(cache_entry, cache_type() == net::SHADER_CACHE);
}
cache_entry->Release();
}
}
// ------------------------------------------------------------------------
// The maximum cache size will be either set explicitly by the caller, or
// calculated by this code.
void BackendImplV3::AdjustMaxCacheSize(int table_len) {
if (max_size_)
return;
// If table_len is provided, the index file exists.
DCHECK(!table_len || data_->header.magic);
// The user is not setting the size, let's figure it out.
int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_);
if (available < 0) {
max_size_ = kDefaultCacheSize;
return;
}
if (table_len)
available += data_->header.num_bytes;
max_size_ = PreferedCacheSize(available);
// Let's not use more than the default size while we tune-up the performance
// of bigger caches. TODO(rvargas): remove this limit.
if (max_size_ > kDefaultCacheSize * 4)
max_size_ = kDefaultCacheSize * 4;
if (!table_len)
return;
// If we already have a table, adjust the size to it.
int current_max_size = MaxStorageSizeForTable(table_len);
if (max_size_ > current_max_size)
max_size_= current_max_size;
}
bool BackendImplV3::InitStats() {
Addr address(data_->header.stats);
int size = stats_.StorageSize();
if (!address.is_initialized()) {
FileType file_type = Addr::RequiredFileType(size);
DCHECK_NE(file_type, EXTERNAL);
int num_blocks = Addr::RequiredBlocks(size, file_type);
if (!CreateBlock(file_type, num_blocks, &address))
return false;
return stats_.Init(NULL, 0, address);
}
if (!address.is_block_file()) {
NOTREACHED();
return false;
}
// Load the required data.
size = address.num_blocks() * address.BlockSize();
MappedFile* file = File(address);
if (!file)
return false;
scoped_ptr<char[]> data(new char[size]);
size_t offset = address.start_block() * address.BlockSize() +
kBlockHeaderSize;
if (!file->Read(data.get(), size, offset))
return false;
if (!stats_.Init(data.get(), size, address))
return false;
if (cache_type_ == net::DISK_CACHE && ShouldReportAgain())
stats_.InitSizeHistogram();
return true;
}
void BackendImplV3::StoreStats() {
int size = stats_.StorageSize();
scoped_ptr<char[]> data(new char[size]);
Addr address;
size = stats_.SerializeStats(data.get(), size, &address);
DCHECK(size);
if (!address.is_initialized())
return;
MappedFile* file = File(address);
if (!file)
return;
size_t offset = address.start_block() * address.BlockSize() +
kBlockHeaderSize;
file->Write(data.get(), size, offset); // ignore result.
}
void BackendImplV3::RestartCache(bool failure) {
int64 errors = stats_.GetCounter(Stats::FATAL_ERROR);
int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE);
int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT);
int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
PrepareForRestart();
if (failure) {
DCHECK(!num_refs_);
DCHECK(!open_entries_.size());
DelayedCacheCleanup(path_);
} else {
DeleteCache(path_, false);
}
// Don't call Init() if directed by the unit test: we are simulating a failure
// trying to re-enable the cache.
if (unit_test_)
init_ = true; // Let the destructor do proper cleanup.
else if (SyncInit() == net::OK) {
stats_.SetCounter(Stats::FATAL_ERROR, errors);
stats_.SetCounter(Stats::DOOM_CACHE, full_dooms);
stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms);
stats_.SetCounter(Stats::LAST_REPORT, last_report);
}
}
void BackendImplV3::PrepareForRestart() {
if (!(user_flags_ & EVICTION_V2))
lru_eviction_ = true;
disabled_ = true;
data_->header.crash = 0;
index_->Flush();
index_ = NULL;
data_ = NULL;
block_files_.CloseFiles();
rankings_.Reset();
init_ = false;
restarted_ = true;
}
void BackendImplV3::CleanupCache() {
Trace("Backend Cleanup");
eviction_.Stop();
timer_.reset();
if (init_) {
StoreStats();
if (data_)
data_->header.crash = 0;
if (user_flags_ & kNoRandom) {
// This is a net_unittest, verify that we are not 'leaking' entries.
File::WaitForPendingIO(&num_pending_io_);
DCHECK(!num_refs_);
} else {
File::DropPendingIO();
}
}
block_files_.CloseFiles();
FlushIndex();
index_ = NULL;
ptr_factory_.InvalidateWeakPtrs();
done_.Signal();
}
int BackendImplV3::NewEntry(Addr address, EntryImplV3** entry) {
EntriesMap::iterator it = open_entries_.find(address.value());
if (it != open_entries_.end()) {
// Easy job. This entry is already in memory.
EntryImpl* this_entry = it->second;
this_entry->AddRef();
*entry = this_entry;
return 0;
}
STRESS_DCHECK(block_files_.IsValid(address));
if (!address.SanityCheckForEntry()) {
LOG(WARNING) << "Wrong entry address.";
STRESS_NOTREACHED();
return ERR_INVALID_ADDRESS;
}
scoped_refptr<EntryImpl> cache_entry(
new EntryImpl(this, address, read_only_));
IncreaseNumRefs();
*entry = NULL;
TimeTicks start = TimeTicks::Now();
if (!cache_entry->entry()->Load())
return ERR_READ_FAILURE;
if (IsLoaded()) {
CACHE_UMA(AGE_MS, "LoadTime", 0, start);
}
if (!cache_entry->SanityCheck()) {
LOG(WARNING) << "Messed up entry found.";
STRESS_NOTREACHED();
return ERR_INVALID_ENTRY;
}
STRESS_DCHECK(block_files_.IsValid(
Addr(cache_entry->entry()->Data()->rankings_node)));
if (!cache_entry->LoadNodeAddress())
return ERR_READ_FAILURE;
if (!rankings_.SanityCheck(cache_entry->rankings(), false)) {
STRESS_NOTREACHED();
cache_entry->SetDirtyFlag(0);
// Don't remove this from the list (it is not linked properly). Instead,
// break the link back to the entry because it is going away, and leave the
// rankings node to be deleted if we find it through a list.
rankings_.SetContents(cache_entry->rankings(), 0);
} else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) {
STRESS_NOTREACHED();
cache_entry->SetDirtyFlag(0);
rankings_.SetContents(cache_entry->rankings(), address.value());
}
if (!cache_entry->DataSanityCheck()) {
LOG(WARNING) << "Messed up entry found.";
cache_entry->SetDirtyFlag(0);
cache_entry->FixForDelete();
}
// Prevent overwriting the dirty flag on the destructor.
cache_entry->SetDirtyFlag(GetCurrentEntryId());
if (cache_entry->dirty()) {
Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()),
address.value());
}
open_entries_[address.value()] = cache_entry.get();
cache_entry->BeginLogging(net_log_, false);
cache_entry.swap(entry);
return 0;
}
// This is the actual implementation for OpenNextEntry and OpenPrevEntry.
int BackendImplV3::OpenFollowingEntry(bool forward, void** iter,
Entry** next_entry,
const CompletionCallback& callback) {
if (disabled_)
return net::ERR_FAILED;
DCHECK(iter);
const int kListsToSearch = 3;
scoped_refptr<EntryImpl> entries[kListsToSearch];
scoped_ptr<Rankings::Iterator> iterator(
reinterpret_cast<Rankings::Iterator*>(*iter));
*iter = NULL;
if (!iterator.get()) {
iterator.reset(new Rankings::Iterator(&rankings_));
bool ret = false;
// Get an entry from each list.
for (int i = 0; i < kListsToSearch; i++) {
EntryImpl* temp = NULL;
ret |= OpenFollowingEntryFromList(forward, static_cast<Rankings::List>(i),
&iterator->nodes[i], &temp);
entries[i].swap(&temp); // The entry was already addref'd.
}
if (!ret)
return NULL;
} else {
// Get the next entry from the last list, and the actual entries for the
// elements on the other lists.
for (int i = 0; i < kListsToSearch; i++) {
EntryImpl* temp = NULL;
if (iterator->list == i) {
OpenFollowingEntryFromList(forward, iterator->list,
&iterator->nodes[i], &temp);
} else {
temp = GetEnumeratedEntry(iterator->nodes[i],
static_cast<Rankings::List>(i));
}
entries[i].swap(&temp); // The entry was already addref'd.
}
}
int newest = -1;
int oldest = -1;
Time access_times[kListsToSearch];
for (int i = 0; i < kListsToSearch; i++) {
if (entries[i].get()) {
access_times[i] = entries[i]->GetLastUsed();
if (newest < 0) {
DCHECK_LT(oldest, 0);
newest = oldest = i;
continue;
}
if (access_times[i] > access_times[newest])
newest = i;
if (access_times[i] < access_times[oldest])
oldest = i;
}
}
if (newest < 0 || oldest < 0)
return NULL;
EntryImpl* next_entry;
if (forward) {
next_entry = entries[newest].get();
iterator->list = static_cast<Rankings::List>(newest);
} else {
next_entry = entries[oldest].get();
iterator->list = static_cast<Rankings::List>(oldest);
}
*iter = iterator.release();
next_entry->AddRef();
return next_entry;
}
void BackendImplV3::AddStorageSize(int32 bytes) {
data_->header.num_bytes += bytes;
DCHECK_GE(data_->header.num_bytes, 0);
}
void BackendImplV3::SubstractStorageSize(int32 bytes) {
data_->header.num_bytes -= bytes;
DCHECK_GE(data_->header.num_bytes, 0);
}
void BackendImplV3::IncreaseNumRefs() {
num_refs_++;
if (max_refs_ < num_refs_)
max_refs_ = num_refs_;
}
void BackendImplV3::DecreaseNumRefs() {
DCHECK(num_refs_);
num_refs_--;
if (!num_refs_ && disabled_)
base::MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
}
void BackendImplV3::IncreaseNumEntries() {
index_.header()->num_entries++;
DCHECK_GT(index_.header()->num_entries, 0);
}
void BackendImplV3::DecreaseNumEntries() {
index_.header()->num_entries--;
if (index_.header()->num_entries < 0) {
NOTREACHED();
index_.header()->num_entries = 0;
}
}
int BackendImplV3::SyncInit() {
#if defined(NET_BUILD_STRESS_CACHE)
// Start evictions right away.
up_ticks_ = kTrimDelay * 2;
#endif
DCHECK(!init_);
if (init_)
return net::ERR_FAILED;
bool create_files = false;
if (!InitBackingStore(&create_files)) {
ReportError(ERR_STORAGE_ERROR);
return net::ERR_FAILED;
}
num_refs_ = num_pending_io_ = max_refs_ = 0;
entry_count_ = byte_count_ = 0;
if (!restarted_) {
buffer_bytes_ = 0;
trace_object_ = TraceObject::GetTraceObject();
// Create a recurrent timer of 30 secs.
int timer_delay = unit_test_ ? 1000 : 30000;
timer_.reset(new base::RepeatingTimer<BackendImplV3>());
timer_->Start(FROM_HERE, TimeDelta::FromMilliseconds(timer_delay), this,
&BackendImplV3::OnStatsTimer);
}
init_ = true;
Trace("Init");
if (data_->header.experiment != NO_EXPERIMENT &&
cache_type_ != net::DISK_CACHE) {
// No experiment for other caches.
return net::ERR_FAILED;
}
if (!(user_flags_ & kNoRandom)) {
// The unit test controls directly what to test.
new_eviction_ = (cache_type_ == net::DISK_CACHE);
}
if (!CheckIndex()) {
ReportError(ERR_INIT_FAILED);
return net::ERR_FAILED;
}
if (!restarted_ && (create_files || !data_->header.num_entries))
ReportError(ERR_CACHE_CREATED);
if (!(user_flags_ & kNoRandom) && cache_type_ == net::DISK_CACHE &&
!InitExperiment(&data_->header, create_files)) {
return net::ERR_FAILED;
}
// We don't care if the value overflows. The only thing we care about is that
// the id cannot be zero, because that value is used as "not dirty".
// Increasing the value once per second gives us many years before we start
// having collisions.
data_->header.this_id++;
if (!data_->header.this_id)
data_->header.this_id++;
bool previous_crash = (data_->header.crash != 0);
data_->header.crash = 1;
if (!block_files_.Init(create_files))
return net::ERR_FAILED;
// We want to minimize the changes to cache for an AppCache.
if (cache_type() == net::APP_CACHE) {
DCHECK(!new_eviction_);
read_only_ = true;
} else if (cache_type() == net::SHADER_CACHE) {
DCHECK(!new_eviction_);
}
eviction_.Init(this);
// stats_ and rankings_ may end up calling back to us so we better be enabled.
disabled_ = false;
if (!InitStats())
return net::ERR_FAILED;
disabled_ = !rankings_.Init(this, new_eviction_);
#if defined(STRESS_CACHE_EXTENDED_VALIDATION)
trace_object_->EnableTracing(false);
int sc = SelfCheck();
if (sc < 0 && sc != ERR_NUM_ENTRIES_MISMATCH)
NOTREACHED();
trace_object_->EnableTracing(true);
#endif
if (previous_crash) {
ReportError(ERR_PREVIOUS_CRASH);
} else if (!restarted_) {
ReportError(ERR_NO_ERROR);
}
FlushIndex();
return disabled_ ? net::ERR_FAILED : net::OK;
}
EntryImpl* BackendImplV3::ResurrectEntry(EntryImpl* deleted_entry) {
if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) {
deleted_entry->Release();
stats_.OnEvent(Stats::CREATE_MISS);
Trace("create entry miss ");
return NULL;
}
// We are attempting to create an entry and found out that the entry was
// previously deleted.
eviction_.OnCreateEntry(deleted_entry);
entry_count_++;
stats_.OnEvent(Stats::RESURRECT_HIT);
Trace("Resurrect entry hit ");
return deleted_entry;
}
EntryImpl* BackendImplV3::CreateEntryImpl(const std::string& key) {
if (disabled_ || key.empty())
return NULL;
TimeTicks start = TimeTicks::Now();
Trace("Create hash 0x%x", hash);
scoped_refptr<EntryImpl> parent;
Addr entry_address(data_->table[hash & mask_]);
if (entry_address.is_initialized()) {
// We have an entry already. It could be the one we are looking for, or just
// a hash conflict.
bool error;
EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
if (old_entry)
return ResurrectEntry(old_entry);
EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
DCHECK(!error);
if (parent_entry) {
parent.swap(&parent_entry);
} else if (data_->table[hash & mask_]) {
// We should have corrected the problem.
NOTREACHED();
return NULL;
}
}
// The general flow is to allocate disk space and initialize the entry data,
// followed by saving that to disk, then linking the entry though the index
// and finally through the lists. If there is a crash in this process, we may
// end up with:
// a. Used, unreferenced empty blocks on disk (basically just garbage).
// b. Used, unreferenced but meaningful data on disk (more garbage).
// c. A fully formed entry, reachable only through the index.
// d. A fully formed entry, also reachable through the lists, but still dirty.
//
// Anything after (b) can be automatically cleaned up. We may consider saving
// the current operation (as we do while manipulating the lists) so that we
// can detect and cleanup (a) and (b).
int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
LOG(ERROR) << "Create entry failed " << key.c_str();
stats_.OnEvent(Stats::CREATE_ERROR);
return NULL;
}
Addr node_address(0);
if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
block_files_.DeleteBlock(entry_address, false);
LOG(ERROR) << "Create entry failed " << key.c_str();
stats_.OnEvent(Stats::CREATE_ERROR);
return NULL;
}
scoped_refptr<EntryImpl> cache_entry(
new EntryImpl(this, entry_address, false));
IncreaseNumRefs();
if (!cache_entry->CreateEntry(node_address, key, hash)) {
block_files_.DeleteBlock(entry_address, false);
block_files_.DeleteBlock(node_address, false);
LOG(ERROR) << "Create entry failed " << key.c_str();
stats_.OnEvent(Stats::CREATE_ERROR);
return NULL;
}
cache_entry->BeginLogging(net_log_, true);
// We are not failing the operation; let's add this to the map.
open_entries_[entry_address.value()] = cache_entry;
// Save the entry.
cache_entry->entry()->Store();
cache_entry->rankings()->Store();
IncreaseNumEntries();
entry_count_++;
// Link this entry through the index.
if (parent.get()) {
parent->SetNextAddress(entry_address);
} else {
data_->table[hash & mask_] = entry_address.value();
}
// Link this entry through the lists.
eviction_.OnCreateEntry(cache_entry);
CACHE_UMA(AGE_MS, "CreateTime", 0, start);
stats_.OnEvent(Stats::CREATE_HIT);
SIMPLE_STATS_COUNTER("disk_cache.miss");
Trace("create entry hit ");
FlushIndex();
cache_entry->AddRef();
return cache_entry.get();
}
void BackendImplV3::LogStats() {
StatsItems stats;
GetStats(&stats);
for (size_t index = 0; index < stats.size(); index++)
VLOG(1) << stats[index].first << ": " << stats[index].second;
}
void BackendImplV3::ReportStats() {
IndexHeaderV3* header = index_.header();
CACHE_UMA(COUNTS, "Entries", header->num_entries);
int current_size = header->num_bytes / (1024 * 1024);
int max_size = max_size_ / (1024 * 1024);
CACHE_UMA(COUNTS_10000, "Size", current_size);
CACHE_UMA(COUNTS_10000, "MaxSize", max_size);
if (!max_size)
max_size++;
CACHE_UMA(PERCENTAGE, "UsedSpace", current_size * 100 / max_size);
CACHE_UMA(COUNTS_10000, "AverageOpenEntries",
static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES)));
CACHE_UMA(COUNTS_10000, "MaxOpenEntries",
static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES)));
stats_.SetCounter(Stats::MAX_ENTRIES, 0);
CACHE_UMA(COUNTS_10000, "TotalFatalErrors",
static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR)));
CACHE_UMA(COUNTS_10000, "TotalDoomCache",
static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE)));
CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries",
static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT)));
stats_.SetCounter(Stats::FATAL_ERROR, 0);
stats_.SetCounter(Stats::DOOM_CACHE, 0);
stats_.SetCounter(Stats::DOOM_RECENT, 0);
int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
if (!(header->flags & CACHE_EVICTED)) {
CACHE_UMA(HOURS, "TotalTimeNotFull", static_cast<int>(total_hours));
return;
}
// This is an up to date client that will report FirstEviction() data. After
// that event, start reporting this:
CACHE_UMA(HOURS, "TotalTime", static_cast<int>(total_hours));
int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER));
// We may see users with no use_hours at this point if this is the first time
// we are running this code.
if (use_hours)
use_hours = total_hours - use_hours;
if (!use_hours || !GetEntryCount() || !header->num_bytes)
return;
CACHE_UMA(HOURS, "UseTime", static_cast<int>(use_hours));
int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours;
CACHE_UMA(COUNTS, "TrimRate", static_cast<int>(trim_rate));
int avg_size = header->num_bytes / GetEntryCount();
CACHE_UMA(COUNTS, "EntrySize", avg_size);
CACHE_UMA(COUNTS, "EntriesFull", header->num_entries);
int large_entries_bytes = stats_.GetLargeEntriesSize();
int large_ratio = large_entries_bytes * 100 / header->num_bytes;
CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", large_ratio);
if (!lru_eviction_) {
CACHE_UMA(PERCENTAGE, "ResurrectRatio", stats_.GetResurrectRatio());
CACHE_UMA(PERCENTAGE, "NoUseRatio",
header->num_no_use_entries * 100 / header->num_entries);
CACHE_UMA(PERCENTAGE, "LowUseRatio",
header->num_low_use_entries * 100 / header->num_entries);
CACHE_UMA(PERCENTAGE, "HighUseRatio",
header->num_high_use_entries * 100 / header->num_entries);
CACHE_UMA(PERCENTAGE, "DeletedRatio",
header->num_evicted_entries * 100 / header->num_entries);
}
stats_.ResetRatios();
stats_.SetCounter(Stats::TRIM_ENTRY, 0);
if (cache_type_ == net::DISK_CACHE)
block_files_.ReportStats();
}
void BackendImplV3::ReportError(int error) {
STRESS_DCHECK(!error || error == ERR_PREVIOUS_CRASH ||
error == ERR_CACHE_CREATED);
// We transmit positive numbers, instead of direct error codes.
DCHECK_LE(error, 0);
CACHE_UMA(CACHE_ERROR, "Error", error * -1);
}
bool BackendImplV3::CheckIndex() {
DCHECK(data_);
size_t current_size = index_->GetLength();
if (current_size < sizeof(Index)) {
LOG(ERROR) << "Corrupt Index file";
return false;
}
if (new_eviction_) {
// We support versions 2.0 and 2.1, upgrading 2.0 to 2.1.
if (kIndexMagic != data_->header.magic ||
kCurrentVersion >> 16 != data_->header.version >> 16) {
LOG(ERROR) << "Invalid file version or magic";
return false;
}
if (kCurrentVersion == data_->header.version) {
// We need file version 2.1 for the new eviction algorithm.
UpgradeTo2_1();
}
} else {
if (kIndexMagic != data_->header.magic ||
kCurrentVersion != data_->header.version) {
LOG(ERROR) << "Invalid file version or magic";
return false;
}
}
if (!data_->header.table_len) {
LOG(ERROR) << "Invalid table size";
return false;
}
if (current_size < GetIndexSize(data_->header.table_len) ||
data_->header.table_len & (kBaseTableLen - 1)) {
LOG(ERROR) << "Corrupt Index file";
return false;
}
AdjustMaxCacheSize(data_->header.table_len);
#if !defined(NET_BUILD_STRESS_CACHE)
if (data_->header.num_bytes < 0 ||
(max_size_ < kint32max - kDefaultCacheSize &&
data_->header.num_bytes > max_size_ + kDefaultCacheSize)) {
LOG(ERROR) << "Invalid cache (current) size";
return false;
}
#endif
if (data_->header.num_entries < 0) {
LOG(ERROR) << "Invalid number of entries";
return false;
}
if (!mask_)
mask_ = data_->header.table_len - 1;
// Load the table into memory with a single read.
scoped_ptr<char[]> buf(new char[current_size]);
return index_->Read(buf.get(), current_size, 0);
}
int BackendImplV3::CheckAllEntries() {
int num_dirty = 0;
int num_entries = 0;
DCHECK(mask_ < kuint32max);
for (unsigned int i = 0; i <= mask_; i++) {
Addr address(data_->table[i]);
if (!address.is_initialized())
continue;
for (;;) {
EntryImpl* tmp;
int ret = NewEntry(address, &tmp);
if (ret) {
STRESS_NOTREACHED();
return ret;
}
scoped_refptr<EntryImpl> cache_entry;
cache_entry.swap(&tmp);
if (cache_entry->dirty())
num_dirty++;
else if (CheckEntry(cache_entry.get()))
num_entries++;
else
return ERR_INVALID_ENTRY;
DCHECK_EQ(i, cache_entry->entry()->Data()->hash & mask_);
address.set_value(cache_entry->GetNextAddress());
if (!address.is_initialized())
break;
}
}
Trace("CheckAllEntries End");
if (num_entries + num_dirty != data_->header.num_entries) {
LOG(ERROR) << "Number of entries " << num_entries << " " << num_dirty <<
" " << data_->header.num_entries;
DCHECK_LT(num_entries, data_->header.num_entries);
return ERR_NUM_ENTRIES_MISMATCH;
}
return num_dirty;
}
bool BackendImplV3::CheckEntry(EntryImpl* cache_entry) {
bool ok = block_files_.IsValid(cache_entry->entry()->address());
ok = ok && block_files_.IsValid(cache_entry->rankings()->address());
EntryStore* data = cache_entry->entry()->Data();
for (size_t i = 0; i < arraysize(data->data_addr); i++) {
if (data->data_addr[i]) {
Addr address(data->data_addr[i]);
if (address.is_block_file())
ok = ok && block_files_.IsValid(address);
}
}
return ok && cache_entry->rankings()->VerifyHash();
}
int BackendImplV3::MaxBuffersSize() {
static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();
static bool done = false;
if (!done) {
const int kMaxBuffersSize = 30 * 1024 * 1024;
// We want to use up to 2% of the computer's memory.
total_memory = total_memory * 2 / 100;
if (total_memory > kMaxBuffersSize || total_memory <= 0)
total_memory = kMaxBuffersSize;
done = true;
}
return static_cast<int>(total_memory);
}
#endif // defined(V3_NOT_JUST_YET_READY).
bool BackendImplV3::IsAllocAllowed(int current_size, int new_size) {
return false;
}
net::CacheType BackendImplV3::GetCacheType() const {
return cache_type_;
}
int32 BackendImplV3::GetEntryCount() const {
return 0;
}
int BackendImplV3::OpenEntry(const std::string& key, Entry** entry,
const CompletionCallback& callback) {
return net::ERR_FAILED;
}
int BackendImplV3::CreateEntry(const std::string& key, Entry** entry,
const CompletionCallback& callback) {
return net::ERR_FAILED;
}
int BackendImplV3::DoomEntry(const std::string& key,
const CompletionCallback& callback) {
return net::ERR_FAILED;
}
int BackendImplV3::DoomAllEntries(const CompletionCallback& callback) {
return net::ERR_FAILED;
}
int BackendImplV3::DoomEntriesBetween(base::Time initial_time,
base::Time end_time,
const CompletionCallback& callback) {
return net::ERR_FAILED;
}
int BackendImplV3::DoomEntriesSince(base::Time initial_time,
const CompletionCallback& callback) {
return net::ERR_FAILED;
}
int BackendImplV3::OpenNextEntry(void** iter, Entry** next_entry,
const CompletionCallback& callback) {
return net::ERR_FAILED;
}
void BackendImplV3::EndEnumeration(void** iter) {
NOTIMPLEMENTED();
}
void BackendImplV3::GetStats(StatsItems* stats) {
NOTIMPLEMENTED();
}
void BackendImplV3::OnExternalCacheHit(const std::string& key) {
NOTIMPLEMENTED();
}
void BackendImplV3::CleanupCache() {
}
} // namespace disk_cache