blob: 53d247dfef101012fbbfa19496ee0f6ebfc26871 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// A mini-zygote specifically for Native Client.
#include "components/nacl/common/nacl_helper_linux.h"
#include <errno.h>
#include <fcntl.h>
#include <link.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <string>
#include <vector>
#include "base/at_exit.h"
#include "base/command_line.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "base/posix/eintr_wrapper.h"
#include "base/posix/global_descriptors.h"
#include "base/posix/unix_domain_socket_linux.h"
#include "base/process/kill.h"
#include "base/rand_util.h"
#include "components/nacl/loader/nacl_listener.h"
#include "components/nacl/loader/nacl_sandbox_linux.h"
#include "crypto/nss_util.h"
#include "ipc/ipc_descriptors.h"
#include "ipc/ipc_switches.h"
#include "sandbox/linux/services/libc_urandom_override.h"
namespace {
struct NaClLoaderSystemInfo {
size_t prereserved_sandbox_size;
long number_of_cores;
};
// The child must mimic the behavior of zygote_main_linux.cc on the child
// side of the fork. See zygote_main_linux.cc:HandleForkRequest from
// if (!child) {
void BecomeNaClLoader(const std::vector<int>& child_fds,
const NaClLoaderSystemInfo& system_info) {
VLOG(1) << "NaCl loader: setting up IPC descriptor";
// don't need zygote FD any more
if (HANDLE_EINTR(close(kNaClZygoteDescriptor)) != 0)
LOG(ERROR) << "close(kNaClZygoteDescriptor) failed.";
bool sandbox_initialized = InitializeBpfSandbox();
if (!sandbox_initialized) {
LOG(ERROR) << "Could not initialize NaCl's second "
<< "layer sandbox (seccomp-bpf).";
}
base::GlobalDescriptors::GetInstance()->Set(kPrimaryIPCChannel,
child_fds[kNaClBrowserFDIndex]);
base::MessageLoopForIO main_message_loop;
NaClListener listener;
listener.set_prereserved_sandbox_size(system_info.prereserved_sandbox_size);
listener.set_number_of_cores(system_info.number_of_cores);
listener.Listen();
_exit(0);
}
// Start the NaCl loader in a child created by the NaCl loader Zygote.
void ChildNaClLoaderInit(const std::vector<int>& child_fds,
const NaClLoaderSystemInfo& system_info) {
bool validack = false;
const size_t kMaxReadSize = 1024;
char buffer[kMaxReadSize];
// Wait until the parent process has discovered our PID. We
// should not fork any child processes (which the seccomp
// sandbox does) until then, because that can interfere with the
// parent's discovery of our PID.
const int nread = HANDLE_EINTR(read(child_fds[kNaClParentFDIndex], buffer,
kMaxReadSize));
const std::string switch_prefix = std::string("--") +
switches::kProcessChannelID + std::string("=");
const size_t len = switch_prefix.length();
if (nread < 0) {
perror("read");
LOG(ERROR) << "read returned " << nread;
} else if (nread > static_cast<int>(len)) {
if (switch_prefix.compare(0, len, buffer, 0, len) == 0) {
VLOG(1) << "NaCl loader is synchronised with Chrome zygote";
CommandLine::ForCurrentProcess()->AppendSwitchASCII(
switches::kProcessChannelID,
std::string(&buffer[len], nread - len));
validack = true;
}
}
if (HANDLE_EINTR(close(child_fds[kNaClDummyFDIndex])) != 0)
LOG(ERROR) << "close(child_fds[kNaClDummyFDIndex]) failed";
if (HANDLE_EINTR(close(child_fds[kNaClParentFDIndex])) != 0)
LOG(ERROR) << "close(child_fds[kNaClParentFDIndex]) failed";
if (validack) {
BecomeNaClLoader(child_fds, system_info);
} else {
LOG(ERROR) << "Failed to synch with zygote";
}
_exit(1);
}
// Handle a fork request from the Zygote.
// Some of this code was lifted from
// content/browser/zygote_main_linux.cc:ForkWithRealPid()
bool HandleForkRequest(const std::vector<int>& child_fds,
const NaClLoaderSystemInfo& system_info,
Pickle* output_pickle) {
if (kNaClParentFDIndex + 1 != child_fds.size()) {
LOG(ERROR) << "nacl_helper: unexpected number of fds, got "
<< child_fds.size();
return false;
}
VLOG(1) << "nacl_helper: forking";
pid_t child_pid = fork();
if (child_pid < 0) {
PLOG(ERROR) << "*** fork() failed.";
}
if (child_pid == 0) {
ChildNaClLoaderInit(child_fds, system_info);
NOTREACHED();
}
// I am the parent.
// First, close the dummy_fd so the sandbox won't find me when
// looking for the child's pid in /proc. Also close other fds.
for (size_t i = 0; i < child_fds.size(); i++) {
if (HANDLE_EINTR(close(child_fds[i])) != 0)
LOG(ERROR) << "close(child_fds[i]) failed";
}
VLOG(1) << "nacl_helper: child_pid is " << child_pid;
// Now send child_pid (eventually -1 if fork failed) to the Chrome Zygote.
output_pickle->WriteInt(child_pid);
return true;
}
bool HandleGetTerminationStatusRequest(PickleIterator* input_iter,
Pickle* output_pickle) {
pid_t child_to_wait;
if (!input_iter->ReadInt(&child_to_wait)) {
LOG(ERROR) << "Could not read pid to wait for";
return false;
}
bool known_dead;
if (!input_iter->ReadBool(&known_dead)) {
LOG(ERROR) << "Could not read known_dead status";
return false;
}
// TODO(jln): With NaCl, known_dead seems to never be set to true (unless
// called from the Zygote's kZygoteCommandReap command). This means that we
// will sometimes detect the process as still running when it's not. Fix
// this!
int exit_code;
base::TerminationStatus status;
if (known_dead)
status = base::GetKnownDeadTerminationStatus(child_to_wait, &exit_code);
else
status = base::GetTerminationStatus(child_to_wait, &exit_code);
output_pickle->WriteInt(static_cast<int>(status));
output_pickle->WriteInt(exit_code);
return true;
}
// This is a poor man's check on whether we are sandboxed.
bool IsSandboxed() {
int proc_fd = open("/proc/self/exe", O_RDONLY);
if (proc_fd >= 0) {
HANDLE_EINTR(close(proc_fd));
return false;
}
return true;
}
// Honor a command |command_type|. Eventual command parameters are
// available in |input_iter| and eventual file descriptors attached to
// the command are in |attached_fds|.
// Reply to the command on |reply_fds|.
bool HonorRequestAndReply(int reply_fd,
int command_type,
const std::vector<int>& attached_fds,
const NaClLoaderSystemInfo& system_info,
PickleIterator* input_iter) {
Pickle write_pickle;
bool have_to_reply = false;
// Commands must write anything to send back to |write_pickle|.
switch (command_type) {
case kNaClForkRequest:
have_to_reply = HandleForkRequest(attached_fds, system_info,
&write_pickle);
break;
case kNaClGetTerminationStatusRequest:
have_to_reply =
HandleGetTerminationStatusRequest(input_iter, &write_pickle);
break;
default:
LOG(ERROR) << "Unsupported command from Zygote";
return false;
}
if (!have_to_reply)
return false;
const std::vector<int> empty; // We never send file descriptors back.
if (!UnixDomainSocket::SendMsg(reply_fd, write_pickle.data(),
write_pickle.size(), empty)) {
LOG(ERROR) << "*** send() to zygote failed";
return false;
}
return true;
}
// Read a request from the Zygote from |zygote_ipc_fd| and handle it.
// Die on EOF from |zygote_ipc_fd|.
bool HandleZygoteRequest(int zygote_ipc_fd,
const NaClLoaderSystemInfo& system_info) {
std::vector<int> fds;
char buf[kNaClMaxIPCMessageLength];
const ssize_t msglen = UnixDomainSocket::RecvMsg(zygote_ipc_fd,
&buf, sizeof(buf), &fds);
// If the Zygote has started handling requests, we should be sandboxed via
// the setuid sandbox.
if (!IsSandboxed()) {
LOG(ERROR) << "NaCl helper process running without a sandbox!\n"
<< "Most likely you need to configure your SUID sandbox "
<< "correctly";
}
if (msglen == 0 || (msglen == -1 && errno == ECONNRESET)) {
// EOF from the browser. Goodbye!
_exit(0);
}
if (msglen < 0) {
PLOG(ERROR) << "nacl_helper: receive from zygote failed";
return false;
}
Pickle read_pickle(buf, msglen);
PickleIterator read_iter(read_pickle);
int command_type;
if (!read_iter.ReadInt(&command_type)) {
LOG(ERROR) << "Unable to read command from Zygote";
return false;
}
return HonorRequestAndReply(zygote_ipc_fd, command_type, fds, system_info,
&read_iter);
}
static const char kNaClHelperReservedAtZero[] = "reserved_at_zero";
static const char kNaClHelperRDebug[] = "r_debug";
// Since we were started by nacl_helper_bootstrap rather than in the
// usual way, the debugger cannot figure out where our executable
// or the dynamic linker or the shared libraries are in memory,
// so it won't find any symbols. But we can fake it out to find us.
//
// The zygote passes --r_debug=0xXXXXXXXXXXXXXXXX.
// nacl_helper_bootstrap replaces the Xs with the address of its _r_debug
// structure. The debugger will look for that symbol by name to
// discover the addresses of key dynamic linker data structures.
// Since all it knows about is the original main executable, which
// is the bootstrap program, it finds the symbol defined there. The
// dynamic linker's structure is somewhere else, but it is filled in
// after initialization. The parts that really matter to the
// debugger never change. So we just copy the contents of the
// dynamic linker's structure into the address provided by the option.
// Hereafter, if someone attaches a debugger (or examines a core dump),
// the debugger will find all the symbols in the normal way.
static void CheckRDebug(char* argv0) {
std::string r_debug_switch_value =
CommandLine::ForCurrentProcess()->GetSwitchValueASCII(kNaClHelperRDebug);
if (!r_debug_switch_value.empty()) {
char* endp;
uintptr_t r_debug_addr = strtoul(r_debug_switch_value.c_str(), &endp, 0);
if (r_debug_addr != 0 && *endp == '\0') {
r_debug* bootstrap_r_debug = reinterpret_cast<r_debug*>(r_debug_addr);
*bootstrap_r_debug = _r_debug;
// Since the main executable (the bootstrap program) does not
// have a dynamic section, the debugger will not skip the
// first element of the link_map list as it usually would for
// an executable or PIE that was loaded normally. But the
// dynamic linker has set l_name for the PIE to "" as is
// normal for the main executable. So the debugger doesn't
// know which file it is. Fill in the actual file name, which
// came in as our argv[0].
link_map* l = _r_debug.r_map;
if (l->l_name[0] == '\0')
l->l_name = argv0;
}
}
}
// The zygote passes --reserved_at_zero=0xXXXXXXXXXXXXXXXX.
// nacl_helper_bootstrap replaces the Xs with the amount of prereserved
// sandbox memory.
//
// CheckReservedAtZero parses the value of the argument reserved_at_zero
// and returns the amount of prereserved sandbox memory.
static size_t CheckReservedAtZero() {
size_t prereserved_sandbox_size = 0;
std::string reserved_at_zero_switch_value =
CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
kNaClHelperReservedAtZero);
if (!reserved_at_zero_switch_value.empty()) {
char* endp;
prereserved_sandbox_size =
strtoul(reserved_at_zero_switch_value.c_str(), &endp, 0);
if (*endp != '\0')
LOG(ERROR) << "Could not parse reserved_at_zero argument value of "
<< reserved_at_zero_switch_value;
}
return prereserved_sandbox_size;
}
} // namespace
#if defined(ADDRESS_SANITIZER)
// Do not install the SIGSEGV handler in ASan. This should make the NaCl
// platform qualification test pass.
static const char kAsanDefaultOptionsNaCl[] = "handle_segv=0";
// Override the default ASan options for the NaCl helper.
// __asan_default_options should not be instrumented, because it is called
// before ASan is initialized.
extern "C"
__attribute__((no_address_safety_analysis))
const char* __asan_default_options() {
return kAsanDefaultOptionsNaCl;
}
#endif
int main(int argc, char* argv[]) {
CommandLine::Init(argc, argv);
base::AtExitManager exit_manager;
base::RandUint64(); // acquire /dev/urandom fd before sandbox is raised
// Allows NSS to fopen() /dev/urandom.
sandbox::InitLibcUrandomOverrides();
#if defined(USE_NSS)
// Configure NSS for use inside the NaCl process.
// The fork check has not caused problems for NaCl, but this appears to be
// best practice (see other places LoadNSSLibraries is called.)
crypto::DisableNSSForkCheck();
// Without this line on Linux, HMAC::Init will instantiate a singleton that
// in turn attempts to open a file. Disabling this behavior avoids a ~70 ms
// stall the first time HMAC is used.
crypto::ForceNSSNoDBInit();
// Load shared libraries before sandbox is raised.
// NSS is needed to perform hashing for validation caching.
crypto::LoadNSSLibraries();
#endif
const NaClLoaderSystemInfo system_info = {
CheckReservedAtZero(),
sysconf(_SC_NPROCESSORS_ONLN)
};
CheckRDebug(argv[0]);
// Check that IsSandboxed() works. We should not be sandboxed at this point.
CHECK(!IsSandboxed()) << "Unexpectedly sandboxed!";
const std::vector<int> empty;
// Send the zygote a message to let it know we are ready to help
if (!UnixDomainSocket::SendMsg(kNaClZygoteDescriptor,
kNaClHelperStartupAck,
sizeof(kNaClHelperStartupAck), empty)) {
LOG(ERROR) << "*** send() to zygote failed";
}
// Now handle requests from the Zygote.
while (true) {
bool request_handled = HandleZygoteRequest(kNaClZygoteDescriptor,
system_info);
// Do not turn this into a CHECK() without thinking about robustness
// against malicious IPC requests.
DCHECK(request_handled);
}
NOTREACHED();
}