blob: 124871cc1a6bf8f60bb5cabb0fa15789c1a5168e [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layers/picture_layer_impl.h"
#include <algorithm>
#include "base/time/time.h"
#include "cc/base/math_util.h"
#include "cc/base/util.h"
#include "cc/debug/debug_colors.h"
#include "cc/debug/traced_value.h"
#include "cc/layers/append_quads_data.h"
#include "cc/layers/quad_sink.h"
#include "cc/quads/checkerboard_draw_quad.h"
#include "cc/quads/debug_border_draw_quad.h"
#include "cc/quads/picture_draw_quad.h"
#include "cc/quads/solid_color_draw_quad.h"
#include "cc/quads/tile_draw_quad.h"
#include "cc/trees/layer_tree_impl.h"
#include "ui/gfx/quad_f.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/size_conversions.h"
namespace {
const float kMaxScaleRatioDuringPinch = 2.0f;
}
namespace cc {
PictureLayerImpl::PictureLayerImpl(LayerTreeImpl* tree_impl, int id)
: LayerImpl(tree_impl, id),
twin_layer_(NULL),
pile_(PicturePileImpl::Create()),
last_content_scale_(0),
is_mask_(false),
ideal_page_scale_(0.f),
ideal_device_scale_(0.f),
ideal_source_scale_(0.f),
ideal_contents_scale_(0.f),
raster_page_scale_(0.f),
raster_device_scale_(0.f),
raster_source_scale_(0.f),
raster_contents_scale_(0.f),
low_res_raster_contents_scale_(0.f),
raster_source_scale_was_animating_(false),
is_using_lcd_text_(tree_impl->settings().can_use_lcd_text),
should_update_tile_priorities_(false) {}
PictureLayerImpl::~PictureLayerImpl() {}
const char* PictureLayerImpl::LayerTypeAsString() const {
return "cc::PictureLayerImpl";
}
scoped_ptr<LayerImpl> PictureLayerImpl::CreateLayerImpl(
LayerTreeImpl* tree_impl) {
return PictureLayerImpl::Create(tree_impl, id()).PassAs<LayerImpl>();
}
void PictureLayerImpl::CreateTilingSetIfNeeded() {
DCHECK(layer_tree_impl()->IsPendingTree());
if (!tilings_)
tilings_.reset(new PictureLayerTilingSet(this, bounds()));
}
void PictureLayerImpl::PushPropertiesTo(LayerImpl* base_layer) {
LayerImpl::PushPropertiesTo(base_layer);
PictureLayerImpl* layer_impl = static_cast<PictureLayerImpl*>(base_layer);
// When the pending tree pushes to the active tree, the pending twin
// disappears.
layer_impl->twin_layer_ = NULL;
twin_layer_ = NULL;
layer_impl->SetIsMask(is_mask_);
layer_impl->pile_ = pile_;
pile_ = NULL;
layer_impl->tilings_.swap(tilings_);
layer_impl->tilings_->SetClient(layer_impl);
if (tilings_)
tilings_->SetClient(this);
layer_impl->raster_page_scale_ = raster_page_scale_;
layer_impl->raster_device_scale_ = raster_device_scale_;
layer_impl->raster_source_scale_ = raster_source_scale_;
layer_impl->raster_contents_scale_ = raster_contents_scale_;
layer_impl->low_res_raster_contents_scale_ = low_res_raster_contents_scale_;
layer_impl->UpdateLCDTextStatus(is_using_lcd_text_);
// As an optimization, don't make a copy of this potentially complex region,
// and swap it directly from the pending to the active layer. In general, any
// property pushed to a LayerImpl continues to live on that LayerImpl.
// However, invalidation is the difference between two main thread frames, so
// it no longer makes sense once the pending tree gets recycled. It will
// always get pushed during PictureLayer::PushPropertiesTo.
layer_impl->invalidation_.Swap(&invalidation_);
invalidation_.Clear();
}
void PictureLayerImpl::AppendQuads(QuadSink* quad_sink,
AppendQuadsData* append_quads_data) {
gfx::Rect rect(visible_content_rect());
gfx::Rect content_rect(content_bounds());
SharedQuadState* shared_quad_state =
quad_sink->UseSharedQuadState(CreateSharedQuadState());
bool draw_direct_to_backbuffer =
draw_properties().can_draw_directly_to_backbuffer &&
layer_tree_impl()->settings().force_direct_layer_drawing;
if (draw_direct_to_backbuffer ||
current_draw_mode_ == DRAW_MODE_RESOURCELESS_SOFTWARE) {
AppendDebugBorderQuad(
quad_sink,
shared_quad_state,
append_quads_data,
DebugColors::DirectPictureBorderColor(),
DebugColors::DirectPictureBorderWidth(layer_tree_impl()));
gfx::Rect geometry_rect = rect;
gfx::Rect opaque_rect = contents_opaque() ? geometry_rect : gfx::Rect();
gfx::Size texture_size = rect.size();
gfx::RectF texture_rect = gfx::RectF(texture_size);
gfx::Rect quad_content_rect = rect;
float contents_scale = contents_scale_x();
scoped_ptr<PictureDrawQuad> quad = PictureDrawQuad::Create();
quad->SetNew(shared_quad_state,
geometry_rect,
opaque_rect,
texture_rect,
texture_size,
false,
quad_content_rect,
contents_scale,
draw_direct_to_backbuffer,
pile_);
if (quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data))
append_quads_data->num_missing_tiles++;
return;
}
AppendDebugBorderQuad(quad_sink, shared_quad_state, append_quads_data);
bool clipped = false;
gfx::QuadF target_quad = MathUtil::MapQuad(
draw_transform(),
gfx::QuadF(rect),
&clipped);
if (ShowDebugBorders()) {
for (PictureLayerTilingSet::CoverageIterator iter(
tilings_.get(), contents_scale_x(), rect, ideal_contents_scale_);
iter;
++iter) {
SkColor color;
float width;
if (*iter && iter->IsReadyToDraw()) {
ManagedTileState::TileVersion::Mode mode =
iter->GetTileVersionForDrawing().mode();
if (mode == ManagedTileState::TileVersion::SOLID_COLOR_MODE) {
color = DebugColors::SolidColorTileBorderColor();
width = DebugColors::SolidColorTileBorderWidth(layer_tree_impl());
} else if (mode == ManagedTileState::TileVersion::PICTURE_PILE_MODE) {
color = DebugColors::PictureTileBorderColor();
width = DebugColors::PictureTileBorderWidth(layer_tree_impl());
} else if (iter->priority(ACTIVE_TREE).resolution == HIGH_RESOLUTION) {
color = DebugColors::HighResTileBorderColor();
width = DebugColors::HighResTileBorderWidth(layer_tree_impl());
} else if (iter->priority(ACTIVE_TREE).resolution == LOW_RESOLUTION) {
color = DebugColors::LowResTileBorderColor();
width = DebugColors::LowResTileBorderWidth(layer_tree_impl());
} else if (iter->contents_scale() > contents_scale_x()) {
color = DebugColors::ExtraHighResTileBorderColor();
width = DebugColors::ExtraHighResTileBorderWidth(layer_tree_impl());
} else {
color = DebugColors::ExtraLowResTileBorderColor();
width = DebugColors::ExtraLowResTileBorderWidth(layer_tree_impl());
}
} else {
color = DebugColors::MissingTileBorderColor();
width = DebugColors::MissingTileBorderWidth(layer_tree_impl());
}
scoped_ptr<DebugBorderDrawQuad> debug_border_quad =
DebugBorderDrawQuad::Create();
gfx::Rect geometry_rect = iter.geometry_rect();
debug_border_quad->SetNew(shared_quad_state, geometry_rect, color, width);
quad_sink->Append(debug_border_quad.PassAs<DrawQuad>(),
append_quads_data);
}
}
// Keep track of the tilings that were used so that tilings that are
// unused can be considered for removal.
std::vector<PictureLayerTiling*> seen_tilings;
for (PictureLayerTilingSet::CoverageIterator iter(
tilings_.get(), contents_scale_x(), rect, ideal_contents_scale_);
iter;
++iter) {
gfx::Rect geometry_rect = iter.geometry_rect();
if (!*iter || !iter->IsReadyToDraw()) {
if (DrawCheckerboardForMissingTiles()) {
// TODO(enne): Figure out how to show debug "invalidated checker" color
scoped_ptr<CheckerboardDrawQuad> quad = CheckerboardDrawQuad::Create();
SkColor color = DebugColors::DefaultCheckerboardColor();
quad->SetNew(shared_quad_state, geometry_rect, color);
if (quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data))
append_quads_data->num_missing_tiles++;
} else {
SkColor color = SafeOpaqueBackgroundColor();
scoped_ptr<SolidColorDrawQuad> quad = SolidColorDrawQuad::Create();
quad->SetNew(shared_quad_state, geometry_rect, color, false);
if (quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data))
append_quads_data->num_missing_tiles++;
}
append_quads_data->had_incomplete_tile = true;
continue;
}
const ManagedTileState::TileVersion& tile_version =
iter->GetTileVersionForDrawing();
switch (tile_version.mode()) {
case ManagedTileState::TileVersion::RESOURCE_MODE: {
gfx::RectF texture_rect = iter.texture_rect();
gfx::Rect opaque_rect = iter->opaque_rect();
opaque_rect.Intersect(content_rect);
if (iter->contents_scale() != ideal_contents_scale_)
append_quads_data->had_incomplete_tile = true;
scoped_ptr<TileDrawQuad> quad = TileDrawQuad::Create();
quad->SetNew(shared_quad_state,
geometry_rect,
opaque_rect,
tile_version.get_resource_id(),
texture_rect,
iter.texture_size(),
tile_version.contents_swizzled());
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
break;
}
case ManagedTileState::TileVersion::PICTURE_PILE_MODE: {
gfx::RectF texture_rect = iter.texture_rect();
gfx::Rect opaque_rect = iter->opaque_rect();
opaque_rect.Intersect(content_rect);
scoped_ptr<PictureDrawQuad> quad = PictureDrawQuad::Create();
quad->SetNew(shared_quad_state,
geometry_rect,
opaque_rect,
texture_rect,
iter.texture_size(),
// TODO(reveman): This assumes the renderer will use
// GL_RGBA as format of temporary resource. The need
// to swizzle should instead be determined by the
// renderer.
!PlatformColor::SameComponentOrder(GL_RGBA),
iter->content_rect(),
iter->contents_scale(),
draw_direct_to_backbuffer,
pile_);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
break;
}
case ManagedTileState::TileVersion::SOLID_COLOR_MODE: {
scoped_ptr<SolidColorDrawQuad> quad = SolidColorDrawQuad::Create();
quad->SetNew(shared_quad_state,
geometry_rect,
tile_version.get_solid_color(),
false);
quad_sink->Append(quad.PassAs<DrawQuad>(), append_quads_data);
break;
}
default:
NOTREACHED();
}
if (!seen_tilings.size() || seen_tilings.back() != iter.CurrentTiling())
seen_tilings.push_back(iter.CurrentTiling());
}
// Aggressively remove any tilings that are not seen to save memory. Note
// that this is at the expense of doing cause more frequent re-painting. A
// better scheme would be to maintain a tighter visible_content_rect for the
// finer tilings.
CleanUpTilingsOnActiveLayer(seen_tilings);
}
void PictureLayerImpl::UpdateTilePriorities() {
CHECK(should_update_tile_priorities_);
if (!tilings_->num_tilings())
return;
if (!layer_tree_impl()->DeviceViewportValidForTileManagement())
return;
double current_frame_time_in_seconds =
(layer_tree_impl()->CurrentFrameTimeTicks() -
base::TimeTicks()).InSecondsF();
bool tiling_needs_update = false;
for (size_t i = 0; i < tilings_->num_tilings(); ++i) {
if (tilings_->tiling_at(i)->NeedsUpdateForFrameAtTime(
current_frame_time_in_seconds)) {
tiling_needs_update = true;
break;
}
}
if (!tiling_needs_update)
return;
// At this point, tile priorities are going to be modified.
layer_tree_impl()->WillModifyTilePriorities();
UpdateLCDTextStatus(can_use_lcd_text());
gfx::Transform current_screen_space_transform = screen_space_transform();
gfx::Size device_viewport_size = layer_tree_impl()->DeviceViewport().size();
gfx::Rect viewport_in_content_space;
gfx::Transform screen_to_layer(gfx::Transform::kSkipInitialization);
if (screen_space_transform().GetInverse(&screen_to_layer)) {
viewport_in_content_space =
gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(
screen_to_layer, gfx::Rect(device_viewport_size)));
}
WhichTree tree =
layer_tree_impl()->IsActiveTree() ? ACTIVE_TREE : PENDING_TREE;
size_t max_tiles_for_interest_area =
layer_tree_impl()->settings().max_tiles_for_interest_area;
tilings_->UpdateTilePriorities(
tree,
device_viewport_size,
viewport_in_content_space,
visible_content_rect(),
last_bounds_,
bounds(),
last_content_scale_,
contents_scale_x(),
last_screen_space_transform_,
current_screen_space_transform,
current_frame_time_in_seconds,
max_tiles_for_interest_area);
if (layer_tree_impl()->IsPendingTree())
MarkVisibleResourcesAsRequired();
last_screen_space_transform_ = current_screen_space_transform;
last_bounds_ = bounds();
last_content_scale_ = contents_scale_x();
}
void PictureLayerImpl::DidBecomeActive() {
LayerImpl::DidBecomeActive();
tilings_->DidBecomeActive();
layer_tree_impl()->WillModifyTilePriorities();
}
void PictureLayerImpl::DidBeginTracing() {
pile_->DidBeginTracing();
}
void PictureLayerImpl::DidLoseOutputSurface() {
if (tilings_)
tilings_->RemoveAllTilings();
ResetRasterScale();
}
void PictureLayerImpl::CalculateContentsScale(
float ideal_contents_scale,
float device_scale_factor,
float page_scale_factor,
bool animating_transform_to_screen,
float* contents_scale_x,
float* contents_scale_y,
gfx::Size* content_bounds) {
// This function sets valid raster scales and manages tilings, so tile
// priorities can now be updated.
should_update_tile_priorities_ = true;
if (!CanHaveTilings()) {
ideal_page_scale_ = page_scale_factor;
ideal_device_scale_ = device_scale_factor;
ideal_contents_scale_ = ideal_contents_scale;
ideal_source_scale_ =
ideal_contents_scale_ / ideal_page_scale_ / ideal_device_scale_;
*contents_scale_x = ideal_contents_scale_;
*contents_scale_y = ideal_contents_scale_;
*content_bounds = gfx::ToCeiledSize(gfx::ScaleSize(bounds(),
ideal_contents_scale_,
ideal_contents_scale_));
return;
}
float min_contents_scale = MinimumContentsScale();
DCHECK_GT(min_contents_scale, 0.f);
float min_page_scale = layer_tree_impl()->min_page_scale_factor();
DCHECK_GT(min_page_scale, 0.f);
float min_device_scale = 1.f;
float min_source_scale =
min_contents_scale / min_page_scale / min_device_scale;
float ideal_page_scale = page_scale_factor;
float ideal_device_scale = device_scale_factor;
float ideal_source_scale =
ideal_contents_scale / ideal_page_scale / ideal_device_scale;
ideal_contents_scale_ = std::max(ideal_contents_scale, min_contents_scale);
ideal_page_scale_ = ideal_page_scale;
ideal_device_scale_ = ideal_device_scale;
ideal_source_scale_ = std::max(ideal_source_scale, min_source_scale);
ManageTilings(animating_transform_to_screen);
// The content scale and bounds for a PictureLayerImpl is somewhat fictitious.
// There are (usually) several tilings at different scales. However, the
// content bounds is the (integer!) space in which quads are generated.
// In order to guarantee that we can fill this integer space with any set of
// tilings (and then map back to floating point texture coordinates), the
// contents scale must be at least as large as the largest of the tilings.
float max_contents_scale = min_contents_scale;
for (size_t i = 0; i < tilings_->num_tilings(); ++i) {
const PictureLayerTiling* tiling = tilings_->tiling_at(i);
max_contents_scale = std::max(max_contents_scale, tiling->contents_scale());
}
*contents_scale_x = max_contents_scale;
*contents_scale_y = max_contents_scale;
*content_bounds = gfx::ToCeiledSize(
gfx::ScaleSize(bounds(), max_contents_scale, max_contents_scale));
}
skia::RefPtr<SkPicture> PictureLayerImpl::GetPicture() {
return pile_->GetFlattenedPicture();
}
scoped_refptr<Tile> PictureLayerImpl::CreateTile(PictureLayerTiling* tiling,
gfx::Rect content_rect) {
if (!pile_->CanRaster(tiling->contents_scale(), content_rect))
return scoped_refptr<Tile>();
return make_scoped_refptr(new Tile(
layer_tree_impl()->tile_manager(),
pile_.get(),
content_rect.size(),
content_rect,
contents_opaque() ? content_rect : gfx::Rect(),
tiling->contents_scale(),
id(),
layer_tree_impl()->source_frame_number(),
is_using_lcd_text_));
}
void PictureLayerImpl::UpdatePile(Tile* tile) {
tile->set_picture_pile(pile_);
}
const Region* PictureLayerImpl::GetInvalidation() {
return &invalidation_;
}
const PictureLayerTiling* PictureLayerImpl::GetTwinTiling(
const PictureLayerTiling* tiling) {
if (!twin_layer_)
return NULL;
for (size_t i = 0; i < twin_layer_->tilings_->num_tilings(); ++i)
if (twin_layer_->tilings_->tiling_at(i)->contents_scale() ==
tiling->contents_scale())
return twin_layer_->tilings_->tiling_at(i);
return NULL;
}
gfx::Size PictureLayerImpl::CalculateTileSize(
gfx::Size content_bounds) const {
if (is_mask_) {
int max_size = layer_tree_impl()->MaxTextureSize();
return gfx::Size(
std::min(max_size, content_bounds.width()),
std::min(max_size, content_bounds.height()));
}
int max_texture_size =
layer_tree_impl()->resource_provider()->max_texture_size();
gfx::Size default_tile_size = layer_tree_impl()->settings().default_tile_size;
default_tile_size.SetToMin(gfx::Size(max_texture_size, max_texture_size));
gfx::Size max_untiled_content_size =
layer_tree_impl()->settings().max_untiled_layer_size;
max_untiled_content_size.SetToMin(
gfx::Size(max_texture_size, max_texture_size));
bool any_dimension_too_large =
content_bounds.width() > max_untiled_content_size.width() ||
content_bounds.height() > max_untiled_content_size.height();
bool any_dimension_one_tile =
content_bounds.width() <= default_tile_size.width() ||
content_bounds.height() <= default_tile_size.height();
// If long and skinny, tile at the max untiled content size, and clamp
// the smaller dimension to the content size, e.g. 1000x12 layer with
// 500x500 max untiled size would get 500x12 tiles. Also do this
// if the layer is small.
if (any_dimension_one_tile || !any_dimension_too_large) {
int width =
std::min(max_untiled_content_size.width(), content_bounds.width());
int height =
std::min(max_untiled_content_size.height(), content_bounds.height());
// Round width and height up to the closest multiple of 64, or 56 if
// we should avoid power-of-two textures. This helps reduce the number
// of different textures sizes to help recycling, and also keeps all
// textures multiple-of-eight, which is preferred on some drivers (IMG).
bool avoid_pow2 =
layer_tree_impl()->GetRendererCapabilities().avoid_pow2_textures;
int round_up_to = avoid_pow2 ? 56 : 64;
width = RoundUp(width, round_up_to);
height = RoundUp(height, round_up_to);
return gfx::Size(width, height);
}
return default_tile_size;
}
void PictureLayerImpl::SyncFromActiveLayer() {
DCHECK(layer_tree_impl()->IsPendingTree());
if (twin_layer_)
SyncFromActiveLayer(twin_layer_);
}
void PictureLayerImpl::SyncFromActiveLayer(const PictureLayerImpl* other) {
UpdateLCDTextStatus(other->is_using_lcd_text_);
if (!DrawsContent()) {
ResetRasterScale();
return;
}
raster_page_scale_ = other->raster_page_scale_;
raster_device_scale_ = other->raster_device_scale_;
raster_source_scale_ = other->raster_source_scale_;
raster_contents_scale_ = other->raster_contents_scale_;
low_res_raster_contents_scale_ = other->low_res_raster_contents_scale_;
// Add synthetic invalidations for any recordings that were dropped. As
// tiles are updated to point to this new pile, this will force the dropping
// of tiles that can no longer be rastered. This is not ideal, but is a
// trade-off for memory (use the same pile as much as possible, by switching
// during DidBecomeActive) and for time (don't bother checking every tile
// during activation to see if the new pile can still raster it).
for (int x = 0; x < pile_->num_tiles_x(); ++x) {
for (int y = 0; y < pile_->num_tiles_y(); ++y) {
bool previously_had = other->pile_->HasRecordingAt(x, y);
bool now_has = pile_->HasRecordingAt(x, y);
if (now_has || !previously_had)
continue;
gfx::Rect layer_rect = pile_->tile_bounds(x, y);
invalidation_.Union(layer_rect);
}
}
// Union in the other newly exposed regions as invalid.
Region difference_region = Region(gfx::Rect(bounds()));
difference_region.Subtract(gfx::Rect(other->bounds()));
invalidation_.Union(difference_region);
if (CanHaveTilings()) {
// The recycle tree's tiling set is two frames out of date, so it needs to
// have both this frame's invalidation and the previous frame's invalidation
// (stored on the active layer).
Region tiling_invalidation = other->invalidation_;
tiling_invalidation.Union(invalidation_);
tilings_->SyncTilings(*other->tilings_,
bounds(),
tiling_invalidation,
MinimumContentsScale());
} else {
tilings_->RemoveAllTilings();
}
}
void PictureLayerImpl::SyncTiling(
const PictureLayerTiling* tiling) {
if (!CanHaveTilingWithScale(tiling->contents_scale()))
return;
tilings_->AddTiling(tiling->contents_scale());
// If this tree needs update draw properties, then the tiling will
// get updated prior to drawing or activation. If this tree does not
// need update draw properties, then its transforms are up to date and
// we can create tiles for this tiling immediately.
if (!layer_tree_impl()->needs_update_draw_properties() &&
should_update_tile_priorities_)
UpdateTilePriorities();
}
void PictureLayerImpl::UpdateTwinLayer() {
DCHECK(layer_tree_impl()->IsPendingTree());
twin_layer_ = static_cast<PictureLayerImpl*>(
layer_tree_impl()->FindActiveTreeLayerById(id()));
if (twin_layer_)
twin_layer_->twin_layer_ = this;
}
void PictureLayerImpl::SetIsMask(bool is_mask) {
if (is_mask_ == is_mask)
return;
is_mask_ = is_mask;
if (tilings_)
tilings_->RemoveAllTiles();
}
ResourceProvider::ResourceId PictureLayerImpl::ContentsResourceId() const {
gfx::Rect content_rect(content_bounds());
float scale = contents_scale_x();
for (PictureLayerTilingSet::CoverageIterator
iter(tilings_.get(), scale, content_rect, ideal_contents_scale_);
iter;
++iter) {
// Mask resource not ready yet.
if (!*iter)
return 0;
const ManagedTileState::TileVersion& tile_version =
iter->GetTileVersionForDrawing();
if (!tile_version.IsReadyToDraw() ||
tile_version.mode() != ManagedTileState::TileVersion::RESOURCE_MODE)
return 0;
// Masks only supported if they fit on exactly one tile.
if (iter.geometry_rect() != content_rect)
return 0;
return tile_version.get_resource_id();
}
return 0;
}
void PictureLayerImpl::MarkVisibleResourcesAsRequired() const {
DCHECK(layer_tree_impl()->IsPendingTree());
DCHECK(!layer_tree_impl()->needs_update_draw_properties());
DCHECK(ideal_contents_scale_);
DCHECK_GT(tilings_->num_tilings(), 0u);
gfx::Rect rect(visible_content_rect());
float min_acceptable_scale =
std::min(raster_contents_scale_, ideal_contents_scale_);
if (PictureLayerImpl* twin = twin_layer_) {
float twin_min_acceptable_scale =
std::min(twin->ideal_contents_scale_, twin->raster_contents_scale_);
// Ignore 0 scale in case CalculateContentsScale() has never been
// called for active twin.
if (twin_min_acceptable_scale != 0.0f) {
min_acceptable_scale =
std::min(min_acceptable_scale, twin_min_acceptable_scale);
}
}
// Mark tiles for activation in two passes. Ready to draw tiles in acceptable
// but non-ideal tilings are marked as required for activation, but any
// non-ready tiles are not marked as required. From there, any missing holes
// will need to be filled in from the high res tiling.
PictureLayerTiling* high_res = NULL;
Region missing_region = rect;
for (size_t i = 0; i < tilings_->num_tilings(); ++i) {
PictureLayerTiling* tiling = tilings_->tiling_at(i);
DCHECK(tiling->has_ever_been_updated());
if (tiling->contents_scale() < min_acceptable_scale)
continue;
if (tiling->resolution() == HIGH_RESOLUTION) {
DCHECK(!high_res) << "There can only be one high res tiling";
high_res = tiling;
continue;
}
for (PictureLayerTiling::CoverageIterator iter(tiling,
contents_scale_x(),
rect);
iter;
++iter) {
if (!*iter || !iter->IsReadyToDraw())
continue;
// This iteration is over the visible content rect which is potentially
// less conservative than projecting the viewport into the layer.
// Ignore tiles that are know to be outside the viewport.
if (iter->priority(PENDING_TREE).distance_to_visible_in_pixels != 0)
continue;
missing_region.Subtract(iter.geometry_rect());
iter->mark_required_for_activation();
}
}
DCHECK(high_res) << "There must be one high res tiling";
for (PictureLayerTiling::CoverageIterator iter(high_res,
contents_scale_x(),
rect);
iter;
++iter) {
// A null tile (i.e. missing recording) can just be skipped.
if (!*iter)
continue;
// This iteration is over the visible content rect which is potentially
// less conservative than projecting the viewport into the layer.
// Ignore tiles that are know to be outside the viewport.
if (iter->priority(PENDING_TREE).distance_to_visible_in_pixels != 0)
continue;
// If the missing region doesn't cover it, this tile is fully
// covered by acceptable tiles at other scales.
if (!missing_region.Intersects(iter.geometry_rect()))
continue;
iter->mark_required_for_activation();
}
}
PictureLayerTiling* PictureLayerImpl::AddTiling(float contents_scale) {
DCHECK(CanHaveTilingWithScale(contents_scale)) <<
"contents_scale: " << contents_scale;
PictureLayerTiling* tiling = tilings_->AddTiling(contents_scale);
const Region& recorded = pile_->recorded_region();
DCHECK(!recorded.IsEmpty());
if (twin_layer_)
twin_layer_->SyncTiling(tiling);
return tiling;
}
void PictureLayerImpl::RemoveTiling(float contents_scale) {
for (size_t i = 0; i < tilings_->num_tilings(); ++i) {
PictureLayerTiling* tiling = tilings_->tiling_at(i);
if (tiling->contents_scale() == contents_scale) {
tilings_->Remove(tiling);
break;
}
}
}
namespace {
inline float PositiveRatio(float float1, float float2) {
DCHECK_GT(float1, 0);
DCHECK_GT(float2, 0);
return float1 > float2 ? float1 / float2 : float2 / float1;
}
inline bool IsCloserToThan(
PictureLayerTiling* layer1,
PictureLayerTiling* layer2,
float contents_scale) {
// Absolute value for ratios.
float ratio1 = PositiveRatio(layer1->contents_scale(), contents_scale);
float ratio2 = PositiveRatio(layer2->contents_scale(), contents_scale);
return ratio1 < ratio2;
}
} // namespace
void PictureLayerImpl::ManageTilings(bool animating_transform_to_screen) {
DCHECK(ideal_contents_scale_);
DCHECK(ideal_page_scale_);
DCHECK(ideal_device_scale_);
DCHECK(ideal_source_scale_);
DCHECK(CanHaveTilings());
bool change_target_tiling =
raster_page_scale_ == 0.f ||
raster_device_scale_ == 0.f ||
raster_source_scale_ == 0.f ||
raster_contents_scale_ == 0.f ||
low_res_raster_contents_scale_ == 0.f ||
ShouldAdjustRasterScale(animating_transform_to_screen);
// Store the value for the next time ShouldAdjustRasterScale is called.
raster_source_scale_was_animating_ = animating_transform_to_screen;
if (!change_target_tiling)
return;
raster_page_scale_ = ideal_page_scale_;
raster_device_scale_ = ideal_device_scale_;
raster_source_scale_ = ideal_source_scale_;
CalculateRasterContentsScale(animating_transform_to_screen,
&raster_contents_scale_,
&low_res_raster_contents_scale_);
PictureLayerTiling* high_res = NULL;
PictureLayerTiling* low_res = NULL;
PictureLayerTiling* previous_low_res = NULL;
for (size_t i = 0; i < tilings_->num_tilings(); ++i) {
PictureLayerTiling* tiling = tilings_->tiling_at(i);
if (tiling->contents_scale() == raster_contents_scale_)
high_res = tiling;
if (tiling->contents_scale() == low_res_raster_contents_scale_)
low_res = tiling;
if (tiling->resolution() == LOW_RESOLUTION)
previous_low_res = tiling;
// Reset all tilings to non-ideal until the end of this function.
tiling->set_resolution(NON_IDEAL_RESOLUTION);
}
if (!high_res) {
high_res = AddTiling(raster_contents_scale_);
if (raster_contents_scale_ == low_res_raster_contents_scale_)
low_res = high_res;
}
// Only create new low res tilings when the transform is static. This
// prevents wastefully creating a paired low res tiling for every new high res
// tiling during a pinch or a CSS animation.
bool is_pinching = layer_tree_impl()->PinchGestureActive();
if (!is_pinching && !animating_transform_to_screen && !low_res &&
low_res != high_res)
low_res = AddTiling(low_res_raster_contents_scale_);
if (high_res)
high_res->set_resolution(HIGH_RESOLUTION);
if (low_res && low_res != high_res)
low_res->set_resolution(LOW_RESOLUTION);
else if (!low_res && previous_low_res)
previous_low_res->set_resolution(LOW_RESOLUTION);
}
bool PictureLayerImpl::ShouldAdjustRasterScale(
bool animating_transform_to_screen) const {
// TODO(danakj): Adjust raster source scale closer to ideal source scale at
// a throttled rate. Possibly make use of invalidation_.IsEmpty() on pending
// tree. This will allow CSS scale changes to get re-rastered at an
// appropriate rate.
if (raster_source_scale_was_animating_ && !animating_transform_to_screen)
return true;
bool is_pinching = layer_tree_impl()->PinchGestureActive();
if (is_pinching && raster_page_scale_) {
// If the page scale diverges too far during pinch, change raster target to
// the current page scale.
float ratio = PositiveRatio(ideal_page_scale_, raster_page_scale_);
if (ratio >= kMaxScaleRatioDuringPinch)
return true;
}
if (!is_pinching) {
// When not pinching, match the ideal page scale factor.
if (raster_page_scale_ != ideal_page_scale_)
return true;
}
// Always match the ideal device scale factor.
if (raster_device_scale_ != ideal_device_scale_)
return true;
return false;
}
void PictureLayerImpl::CalculateRasterContentsScale(
bool animating_transform_to_screen,
float* raster_contents_scale,
float* low_res_raster_contents_scale) const {
*raster_contents_scale = ideal_contents_scale_;
// Don't allow animating CSS scales to drop below 1. This is needed because
// changes in raster source scale aren't handled. See the comment in
// ShouldAdjustRasterScale.
if (animating_transform_to_screen) {
*raster_contents_scale = std::max(
*raster_contents_scale, 1.f * ideal_page_scale_ * ideal_device_scale_);
}
// If this layer would only create one tile at this content scale,
// don't create a low res tiling.
gfx::Size content_bounds =
gfx::ToCeiledSize(gfx::ScaleSize(bounds(), *raster_contents_scale));
gfx::Size tile_size = CalculateTileSize(content_bounds);
if (tile_size.width() >= content_bounds.width() &&
tile_size.height() >= content_bounds.height()) {
*low_res_raster_contents_scale = *raster_contents_scale;
return;
}
float low_res_factor =
layer_tree_impl()->settings().low_res_contents_scale_factor;
*low_res_raster_contents_scale = std::max(
*raster_contents_scale * low_res_factor,
MinimumContentsScale());
}
void PictureLayerImpl::CleanUpTilingsOnActiveLayer(
std::vector<PictureLayerTiling*> used_tilings) {
DCHECK(layer_tree_impl()->IsActiveTree());
float min_acceptable_high_res_scale = std::min(
raster_contents_scale_, ideal_contents_scale_);
float max_acceptable_high_res_scale = std::max(
raster_contents_scale_, ideal_contents_scale_);
PictureLayerImpl* twin = twin_layer_;
if (twin) {
min_acceptable_high_res_scale = std::min(
min_acceptable_high_res_scale,
std::min(twin->raster_contents_scale_, twin->ideal_contents_scale_));
max_acceptable_high_res_scale = std::max(
max_acceptable_high_res_scale,
std::max(twin->raster_contents_scale_, twin->ideal_contents_scale_));
}
std::vector<PictureLayerTiling*> to_remove;
for (size_t i = 0; i < tilings_->num_tilings(); ++i) {
PictureLayerTiling* tiling = tilings_->tiling_at(i);
// Keep multiple high resolution tilings even if not used to help
// activate earlier at non-ideal resolutions.
if (tiling->contents_scale() >= min_acceptable_high_res_scale &&
tiling->contents_scale() <= max_acceptable_high_res_scale)
continue;
// Low resolution can't activate, so only keep one around.
if (tiling->resolution() == LOW_RESOLUTION)
continue;
// Don't remove tilings that are being used (and thus would cause a flash.)
if (std::find(used_tilings.begin(), used_tilings.end(), tiling) !=
used_tilings.end())
continue;
to_remove.push_back(tiling);
}
for (size_t i = 0; i < to_remove.size(); ++i) {
if (twin)
twin->RemoveTiling(to_remove[i]->contents_scale());
tilings_->Remove(to_remove[i]);
}
}
float PictureLayerImpl::MinimumContentsScale() const {
float setting_min = layer_tree_impl()->settings().minimum_contents_scale;
// If the contents scale is less than 1 / width (also for height),
// then it will end up having less than one pixel of content in that
// dimension. Bump the minimum contents scale up in this case to prevent
// this from happening.
int min_dimension = std::min(bounds().width(), bounds().height());
if (!min_dimension)
return setting_min;
return std::max(1.f / min_dimension, setting_min);
}
void PictureLayerImpl::UpdateLCDTextStatus(bool new_status) {
// Once this layer is not using lcd text, don't switch back.
if (!is_using_lcd_text_)
return;
if (is_using_lcd_text_ == new_status)
return;
is_using_lcd_text_ = new_status;
tilings_->SetCanUseLCDText(is_using_lcd_text_);
}
void PictureLayerImpl::ResetRasterScale() {
raster_page_scale_ = 0.f;
raster_device_scale_ = 0.f;
raster_source_scale_ = 0.f;
raster_contents_scale_ = 0.f;
low_res_raster_contents_scale_ = 0.f;
// When raster scales aren't valid, don't update tile priorities until
// this layer has been updated via UpdateDrawProperties.
should_update_tile_priorities_ = false;
}
bool PictureLayerImpl::CanHaveTilings() const {
if (!DrawsContent())
return false;
if (pile_->recorded_region().IsEmpty())
return false;
if (draw_properties().can_draw_directly_to_backbuffer &&
layer_tree_impl()->settings().force_direct_layer_drawing)
return false;
return true;
}
bool PictureLayerImpl::CanHaveTilingWithScale(float contents_scale) const {
if (!CanHaveTilings())
return false;
if (contents_scale < MinimumContentsScale())
return false;
return true;
}
void PictureLayerImpl::GetDebugBorderProperties(
SkColor* color,
float* width) const {
*color = DebugColors::TiledContentLayerBorderColor();
*width = DebugColors::TiledContentLayerBorderWidth(layer_tree_impl());
}
void PictureLayerImpl::AsValueInto(base::DictionaryValue* state) const {
LayerImpl::AsValueInto(state);
state->SetDouble("ideal_contents_scale", ideal_contents_scale_);
state->Set("tilings", tilings_->AsValue().release());
state->Set("pictures", pile_->AsValue().release());
state->Set("invalidation", invalidation_.AsValue().release());
scoped_ptr<base::ListValue> coverage_tiles(new base::ListValue);
for (PictureLayerTilingSet::CoverageIterator iter(tilings_.get(),
contents_scale_x(),
gfx::Rect(bounds()),
ideal_contents_scale_);
iter;
++iter) {
scoped_ptr<base::DictionaryValue> tile_data(new base::DictionaryValue);
tile_data->Set("geometry_rect",
MathUtil::AsValue(iter.geometry_rect()).release());
if (*iter)
tile_data->Set("tile", TracedValue::CreateIDRef(*iter).release());
coverage_tiles->Append(tile_data.release());
}
state->Set("coverage_tiles", coverage_tiles.release());
}
size_t PictureLayerImpl::GPUMemoryUsageInBytes() const {
return tilings_->GPUMemoryUsageInBytes();
}
} // namespace cc