blob: 6f7757e12d4e2ca8a1a87ce112605a233c8d9cca [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_connection_logger.h"
#include <algorithm>
#include <string>
#include "base/bind.h"
#include "base/callback.h"
#include "base/metrics/histogram.h"
#include "base/metrics/sparse_histogram.h"
#include "base/strings/string_number_conversions.h"
#include "base/values.h"
#include "net/base/net_log.h"
#include "net/base/net_util.h"
#include "net/cert/cert_verify_result.h"
#include "net/cert/x509_certificate.h"
#include "net/quic/crypto/crypto_handshake_message.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/quic_address_mismatch.h"
#include "net/quic/quic_socket_address_coder.h"
using base::StringPiece;
using std::string;
namespace net {
namespace {
// We have ranges-of-buckets in the cumulative histogram (covering 21 packet
// sequences) of length 2, 3, 4, ... 22.
// Hence the largest sample is bounded by the sum of those numbers.
const int kBoundingSampleInCumulativeHistogram = ((2 + 22) * 21) / 2;
base::Value* NetLogQuicPacketCallback(const IPEndPoint* self_address,
const IPEndPoint* peer_address,
size_t packet_size,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetString("self_address", self_address->ToString());
dict->SetString("peer_address", peer_address->ToString());
dict->SetInteger("size", packet_size);
return dict;
}
base::Value* NetLogQuicPacketSentCallback(
QuicPacketSequenceNumber sequence_number,
EncryptionLevel level,
TransmissionType transmission_type,
size_t packet_size,
WriteResult result,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetInteger("encryption_level", level);
dict->SetInteger("transmission_type", transmission_type);
dict->SetString("packet_sequence_number",
base::Uint64ToString(sequence_number));
dict->SetInteger("size", packet_size);
if (result.status != WRITE_STATUS_OK) {
dict->SetInteger("net_error", result.error_code);
}
return dict;
}
base::Value* NetLogQuicPacketRetransmittedCallback(
QuicPacketSequenceNumber old_sequence_number,
QuicPacketSequenceNumber new_sequence_number,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetString("old_packet_sequence_number",
base::Uint64ToString(old_sequence_number));
dict->SetString("new_packet_sequence_number",
base::Uint64ToString(new_sequence_number));
return dict;
}
base::Value* NetLogQuicPacketHeaderCallback(const QuicPacketHeader* header,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetString("connection_id",
base::Uint64ToString(header->public_header.connection_id));
dict->SetInteger("reset_flag", header->public_header.reset_flag);
dict->SetInteger("version_flag", header->public_header.version_flag);
dict->SetString("packet_sequence_number",
base::Uint64ToString(header->packet_sequence_number));
dict->SetInteger("entropy_flag", header->entropy_flag);
dict->SetInteger("fec_flag", header->fec_flag);
dict->SetInteger("fec_group", header->fec_group);
return dict;
}
base::Value* NetLogQuicStreamFrameCallback(const QuicStreamFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetInteger("stream_id", frame->stream_id);
dict->SetBoolean("fin", frame->fin);
dict->SetString("offset", base::Uint64ToString(frame->offset));
dict->SetInteger("length", frame->data.TotalBufferSize());
return dict;
}
base::Value* NetLogQuicAckFrameCallback(const QuicAckFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetString("largest_observed",
base::Uint64ToString(frame->largest_observed));
dict->SetBoolean("truncated", frame->is_truncated);
base::ListValue* missing = new base::ListValue();
dict->Set("missing_packets", missing);
const SequenceNumberSet& missing_packets = frame->missing_packets;
for (SequenceNumberSet::const_iterator it = missing_packets.begin();
it != missing_packets.end(); ++it) {
missing->AppendString(base::Uint64ToString(*it));
}
return dict;
}
base::Value* NetLogQuicCongestionFeedbackFrameCallback(
const QuicCongestionFeedbackFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
switch (frame->type) {
case kTimestamp: {
dict->SetString("type", "Timestamp");
base::ListValue* received = new base::ListValue();
dict->Set("received_packets", received);
for (TimeMap::const_iterator it =
frame->timestamp.received_packet_times.begin();
it != frame->timestamp.received_packet_times.end(); ++it) {
string value = base::Uint64ToString(it->first) + "@" +
base::Uint64ToString(it->second.ToDebuggingValue());
received->AppendString(value);
}
break;
}
case kTCP:
dict->SetString("type", "TCP");
dict->SetInteger("receive_window", frame->tcp.receive_window);
break;
}
return dict;
}
base::Value* NetLogQuicRstStreamFrameCallback(
const QuicRstStreamFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetInteger("stream_id", frame->stream_id);
dict->SetInteger("quic_rst_stream_error", frame->error_code);
dict->SetString("details", frame->error_details);
return dict;
}
base::Value* NetLogQuicConnectionCloseFrameCallback(
const QuicConnectionCloseFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetInteger("quic_error", frame->error_code);
dict->SetString("details", frame->error_details);
return dict;
}
base::Value* NetLogQuicWindowUpdateFrameCallback(
const QuicWindowUpdateFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetInteger("stream_id", frame->stream_id);
dict->SetString("byte_offset", base::Uint64ToString(frame->byte_offset));
return dict;
}
base::Value* NetLogQuicBlockedFrameCallback(
const QuicBlockedFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetInteger("stream_id", frame->stream_id);
return dict;
}
base::Value* NetLogQuicGoAwayFrameCallback(
const QuicGoAwayFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetInteger("quic_error", frame->error_code);
dict->SetInteger("last_good_stream_id", frame->last_good_stream_id);
dict->SetString("reason_phrase", frame->reason_phrase);
return dict;
}
base::Value* NetLogQuicStopWaitingFrameCallback(
const QuicStopWaitingFrame* frame,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
base::DictionaryValue* sent_info = new base::DictionaryValue();
dict->Set("sent_info", sent_info);
sent_info->SetString("least_unacked",
base::Uint64ToString(frame->least_unacked));
return dict;
}
base::Value* NetLogQuicVersionNegotiationPacketCallback(
const QuicVersionNegotiationPacket* packet,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
base::ListValue* versions = new base::ListValue();
dict->Set("versions", versions);
for (QuicVersionVector::const_iterator it = packet->versions.begin();
it != packet->versions.end(); ++it) {
versions->AppendString(QuicVersionToString(*it));
}
return dict;
}
base::Value* NetLogQuicCryptoHandshakeMessageCallback(
const CryptoHandshakeMessage* message,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetString("quic_crypto_handshake_message", message->DebugString());
return dict;
}
base::Value* NetLogQuicOnConnectionClosedCallback(
QuicErrorCode error,
bool from_peer,
NetLog::LogLevel /* log_level */) {
base::DictionaryValue* dict = new base::DictionaryValue();
dict->SetInteger("quic_error", error);
dict->SetBoolean("from_peer", from_peer);
return dict;
}
base::Value* NetLogQuicCertificateVerifiedCallback(
scoped_refptr<X509Certificate> cert,
NetLog::LogLevel /* log_level */) {
// Only the subjects are logged so that we can investigate connection pooling.
// More fields could be logged in the future.
std::vector<std::string> dns_names;
cert->GetDNSNames(&dns_names);
base::DictionaryValue* dict = new base::DictionaryValue();
base::ListValue* subjects = new base::ListValue();
for (std::vector<std::string>::const_iterator it = dns_names.begin();
it != dns_names.end(); it++) {
subjects->Append(new base::StringValue(*it));
}
dict->Set("subjects", subjects);
return dict;
}
void UpdatePacketGapSentHistogram(size_t num_consecutive_missing_packets) {
UMA_HISTOGRAM_COUNTS("Net.QuicSession.PacketGapSent",
num_consecutive_missing_packets);
}
void UpdatePublicResetAddressMismatchHistogram(
const IPEndPoint& server_hello_address,
const IPEndPoint& public_reset_address) {
int sample = GetAddressMismatch(server_hello_address, public_reset_address);
// We are seemingly talking to an older server that does not support the
// feature, so we can't report the results in the histogram.
if (sample < 0) {
return;
}
UMA_HISTOGRAM_ENUMERATION("Net.QuicSession.PublicResetAddressMismatch2",
sample, QUIC_ADDRESS_MISMATCH_MAX);
}
const char* GetConnectionDescriptionString() {
NetworkChangeNotifier::ConnectionType type =
NetworkChangeNotifier::GetConnectionType();
const char* description = NetworkChangeNotifier::ConnectionTypeToString(type);
// Most platforms don't distingish Wifi vs Etherenet, and call everything
// CONNECTION_UNKNOWN :-(. We'll tease out some details when we are on WiFi,
// and hopefully leave only ethernet (with no WiFi available) in the
// CONNECTION_UNKNOWN category. This *might* err if there is both ethernet,
// as well as WiFi, where WiFi was not being used that much.
// This function only seems usefully defined on Windows currently.
if (type == NetworkChangeNotifier::CONNECTION_UNKNOWN ||
type == NetworkChangeNotifier::CONNECTION_WIFI) {
WifiPHYLayerProtocol wifi_type = GetWifiPHYLayerProtocol();
switch (wifi_type) {
case WIFI_PHY_LAYER_PROTOCOL_NONE:
// No wifi support or no associated AP.
break;
case WIFI_PHY_LAYER_PROTOCOL_ANCIENT:
// An obsolete modes introduced by the original 802.11, e.g. IR, FHSS.
description = "CONNECTION_WIFI_ANCIENT";
break;
case WIFI_PHY_LAYER_PROTOCOL_A:
// 802.11a, OFDM-based rates.
description = "CONNECTION_WIFI_802.11a";
break;
case WIFI_PHY_LAYER_PROTOCOL_B:
// 802.11b, DSSS or HR DSSS.
description = "CONNECTION_WIFI_802.11b";
break;
case WIFI_PHY_LAYER_PROTOCOL_G:
// 802.11g, same rates as 802.11a but compatible with 802.11b.
description = "CONNECTION_WIFI_802.11g";
break;
case WIFI_PHY_LAYER_PROTOCOL_N:
// 802.11n, HT rates.
description = "CONNECTION_WIFI_802.11n";
break;
case WIFI_PHY_LAYER_PROTOCOL_UNKNOWN:
// Unclassified mode or failure to identify.
break;
}
}
return description;
}
// If |address| is an IPv4-mapped IPv6 address, returns ADDRESS_FAMILY_IPV4
// instead of ADDRESS_FAMILY_IPV6. Othewise, behaves like GetAddressFamily().
AddressFamily GetRealAddressFamily(const IPAddressNumber& address) {
return IsIPv4Mapped(address) ? ADDRESS_FAMILY_IPV4 :
GetAddressFamily(address);
}
} // namespace
QuicConnectionLogger::QuicConnectionLogger(const BoundNetLog& net_log)
: net_log_(net_log),
last_received_packet_sequence_number_(0),
last_received_packet_size_(0),
largest_received_packet_sequence_number_(0),
largest_received_missing_packet_sequence_number_(0),
num_out_of_order_received_packets_(0),
num_packets_received_(0),
num_truncated_acks_sent_(0),
num_truncated_acks_received_(0),
num_frames_received_(0),
num_duplicate_frames_received_(0),
connection_description_(GetConnectionDescriptionString()) {
}
QuicConnectionLogger::~QuicConnectionLogger() {
UMA_HISTOGRAM_COUNTS("Net.QuicSession.OutOfOrderPacketsReceived",
num_out_of_order_received_packets_);
UMA_HISTOGRAM_COUNTS("Net.QuicSession.TruncatedAcksSent",
num_truncated_acks_sent_);
UMA_HISTOGRAM_COUNTS("Net.QuicSession.TruncatedAcksReceived",
num_truncated_acks_received_);
if (num_frames_received_ > 0) {
int duplicate_stream_frame_per_thousand =
num_duplicate_frames_received_ * 1000 / num_frames_received_;
if (num_packets_received_ < 100) {
UMA_HISTOGRAM_CUSTOM_COUNTS(
"Net.QuicSession.StreamFrameDuplicatedShortConnection",
duplicate_stream_frame_per_thousand, 1, 1000, 75);
} else {
UMA_HISTOGRAM_CUSTOM_COUNTS(
"Net.QuicSession.StreamFrameDuplicatedLongConnection",
duplicate_stream_frame_per_thousand, 1, 1000, 75);
}
}
RecordLossHistograms();
}
void QuicConnectionLogger::OnFrameAddedToPacket(const QuicFrame& frame) {
switch (frame.type) {
case PADDING_FRAME:
break;
case STREAM_FRAME:
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_STREAM_FRAME_SENT,
base::Bind(&NetLogQuicStreamFrameCallback, frame.stream_frame));
break;
case ACK_FRAME:
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_ACK_FRAME_SENT,
base::Bind(&NetLogQuicAckFrameCallback, frame.ack_frame));
if (frame.ack_frame->is_truncated)
++num_truncated_acks_sent_;
break;
case CONGESTION_FEEDBACK_FRAME:
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_CONGESTION_FEEDBACK_FRAME_SENT,
base::Bind(&NetLogQuicCongestionFeedbackFrameCallback,
frame.congestion_feedback_frame));
break;
case RST_STREAM_FRAME:
UMA_HISTOGRAM_SPARSE_SLOWLY("Net.QuicSession.RstStreamErrorCodeClient",
frame.rst_stream_frame->error_code);
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_RST_STREAM_FRAME_SENT,
base::Bind(&NetLogQuicRstStreamFrameCallback,
frame.rst_stream_frame));
break;
case CONNECTION_CLOSE_FRAME:
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_CONNECTION_CLOSE_FRAME_SENT,
base::Bind(&NetLogQuicConnectionCloseFrameCallback,
frame.connection_close_frame));
break;
case GOAWAY_FRAME:
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_GOAWAY_FRAME_SENT,
base::Bind(&NetLogQuicGoAwayFrameCallback,
frame.goaway_frame));
break;
case WINDOW_UPDATE_FRAME:
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_WINDOW_UPDATE_FRAME_SENT,
base::Bind(&NetLogQuicWindowUpdateFrameCallback,
frame.window_update_frame));
break;
case BLOCKED_FRAME:
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_BLOCKED_FRAME_SENT,
base::Bind(&NetLogQuicBlockedFrameCallback,
frame.blocked_frame));
break;
case STOP_WAITING_FRAME:
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_STOP_WAITING_FRAME_SENT,
base::Bind(&NetLogQuicStopWaitingFrameCallback,
frame.stop_waiting_frame));
break;
case PING_FRAME:
// PingFrame has no contents to log, so just record that it was sent.
net_log_.AddEvent(NetLog::TYPE_QUIC_SESSION_PING_FRAME_SENT);
break;
default:
DCHECK(false) << "Illegal frame type: " << frame.type;
}
}
void QuicConnectionLogger::OnPacketSent(
QuicPacketSequenceNumber sequence_number,
EncryptionLevel level,
TransmissionType transmission_type,
const QuicEncryptedPacket& packet,
WriteResult result) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_PACKET_SENT,
base::Bind(&NetLogQuicPacketSentCallback, sequence_number, level,
transmission_type, packet.length(), result));
}
void QuicConnectionLogger:: OnPacketRetransmitted(
QuicPacketSequenceNumber old_sequence_number,
QuicPacketSequenceNumber new_sequence_number) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_PACKET_RETRANSMITTED,
base::Bind(&NetLogQuicPacketRetransmittedCallback,
old_sequence_number, new_sequence_number));
}
void QuicConnectionLogger::OnPacketReceived(const IPEndPoint& self_address,
const IPEndPoint& peer_address,
const QuicEncryptedPacket& packet) {
if (local_address_from_self_.GetFamily() == ADDRESS_FAMILY_UNSPECIFIED) {
local_address_from_self_ = self_address;
UMA_HISTOGRAM_ENUMERATION("Net.QuicSession.ConnectionTypeFromSelf",
GetRealAddressFamily(self_address.address()),
ADDRESS_FAMILY_LAST);
}
last_received_packet_size_ = packet.length();
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_PACKET_RECEIVED,
base::Bind(&NetLogQuicPacketCallback, &self_address, &peer_address,
packet.length()));
}
void QuicConnectionLogger::OnProtocolVersionMismatch(
QuicVersion received_version) {
// TODO(rtenneti): Add logging.
}
void QuicConnectionLogger::OnPacketHeader(const QuicPacketHeader& header) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_PACKET_HEADER_RECEIVED,
base::Bind(&NetLogQuicPacketHeaderCallback, &header));
++num_packets_received_;
if (largest_received_packet_sequence_number_ <
header.packet_sequence_number) {
QuicPacketSequenceNumber delta = header.packet_sequence_number -
largest_received_packet_sequence_number_;
if (delta > 1) {
// There is a gap between the largest packet previously received and
// the current packet. This indicates either loss, or out-of-order
// delivery.
UMA_HISTOGRAM_COUNTS("Net.QuicSession.PacketGapReceived", delta - 1);
}
largest_received_packet_sequence_number_ = header.packet_sequence_number;
}
if (header.packet_sequence_number < received_packets_.size())
received_packets_[header.packet_sequence_number] = true;
if (header.packet_sequence_number < last_received_packet_sequence_number_) {
++num_out_of_order_received_packets_;
UMA_HISTOGRAM_COUNTS("Net.QuicSession.OutOfOrderGapReceived",
last_received_packet_sequence_number_ -
header.packet_sequence_number);
}
last_received_packet_sequence_number_ = header.packet_sequence_number;
}
void QuicConnectionLogger::OnStreamFrame(const QuicStreamFrame& frame) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_STREAM_FRAME_RECEIVED,
base::Bind(&NetLogQuicStreamFrameCallback, &frame));
}
void QuicConnectionLogger::OnAckFrame(const QuicAckFrame& frame) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_ACK_FRAME_RECEIVED,
base::Bind(&NetLogQuicAckFrameCallback, &frame));
const size_t kApproximateLargestSoloAckBytes = 100;
if (last_received_packet_sequence_number_ < received_acks_.size() &&
last_received_packet_size_ < kApproximateLargestSoloAckBytes)
received_acks_[last_received_packet_sequence_number_] = true;
if (frame.is_truncated)
++num_truncated_acks_received_;
if (frame.missing_packets.empty())
return;
SequenceNumberSet missing_packets = frame.missing_packets;
SequenceNumberSet::const_iterator it = missing_packets.lower_bound(
largest_received_missing_packet_sequence_number_);
if (it == missing_packets.end())
return;
if (*it == largest_received_missing_packet_sequence_number_) {
++it;
if (it == missing_packets.end())
return;
}
// Scan through the list and log consecutive ranges of missing packets.
size_t num_consecutive_missing_packets = 0;
QuicPacketSequenceNumber previous_missing_packet = *it - 1;
while (it != missing_packets.end()) {
if (previous_missing_packet == *it - 1) {
++num_consecutive_missing_packets;
} else {
DCHECK_NE(0u, num_consecutive_missing_packets);
UpdatePacketGapSentHistogram(num_consecutive_missing_packets);
// Make sure this packet it included in the count.
num_consecutive_missing_packets = 1;
}
previous_missing_packet = *it;
++it;
}
if (num_consecutive_missing_packets != 0) {
UpdatePacketGapSentHistogram(num_consecutive_missing_packets);
}
largest_received_missing_packet_sequence_number_ =
*missing_packets.rbegin();
}
void QuicConnectionLogger::OnCongestionFeedbackFrame(
const QuicCongestionFeedbackFrame& frame) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_CONGESTION_FEEDBACK_FRAME_RECEIVED,
base::Bind(&NetLogQuicCongestionFeedbackFrameCallback, &frame));
}
void QuicConnectionLogger::OnStopWaitingFrame(
const QuicStopWaitingFrame& frame) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_STOP_WAITING_FRAME_RECEIVED,
base::Bind(&NetLogQuicStopWaitingFrameCallback, &frame));
}
void QuicConnectionLogger::OnRstStreamFrame(const QuicRstStreamFrame& frame) {
UMA_HISTOGRAM_SPARSE_SLOWLY("Net.QuicSession.RstStreamErrorCodeServer",
frame.error_code);
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_RST_STREAM_FRAME_RECEIVED,
base::Bind(&NetLogQuicRstStreamFrameCallback, &frame));
}
void QuicConnectionLogger::OnConnectionCloseFrame(
const QuicConnectionCloseFrame& frame) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_CONNECTION_CLOSE_FRAME_RECEIVED,
base::Bind(&NetLogQuicConnectionCloseFrameCallback, &frame));
}
void QuicConnectionLogger::OnWindowUpdateFrame(
const QuicWindowUpdateFrame& frame) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_WINDOW_UPDATE_FRAME_RECEIVED,
base::Bind(&NetLogQuicWindowUpdateFrameCallback, &frame));
}
void QuicConnectionLogger::OnBlockedFrame(const QuicBlockedFrame& frame) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_BLOCKED_FRAME_RECEIVED,
base::Bind(&NetLogQuicBlockedFrameCallback, &frame));
}
void QuicConnectionLogger::OnGoAwayFrame(const QuicGoAwayFrame& frame) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_GOAWAY_FRAME_RECEIVED,
base::Bind(&NetLogQuicGoAwayFrameCallback, &frame));
}
void QuicConnectionLogger::OnPingFrame(const QuicPingFrame& frame) {
// PingFrame has no contents to log, so just record that it was received.
net_log_.AddEvent(NetLog::TYPE_QUIC_SESSION_PING_FRAME_RECEIVED);
}
void QuicConnectionLogger::OnPublicResetPacket(
const QuicPublicResetPacket& packet) {
net_log_.AddEvent(NetLog::TYPE_QUIC_SESSION_PUBLIC_RESET_PACKET_RECEIVED);
UpdatePublicResetAddressMismatchHistogram(local_address_from_shlo_,
packet.client_address);
}
void QuicConnectionLogger::OnVersionNegotiationPacket(
const QuicVersionNegotiationPacket& packet) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_VERSION_NEGOTIATION_PACKET_RECEIVED,
base::Bind(&NetLogQuicVersionNegotiationPacketCallback, &packet));
}
void QuicConnectionLogger::OnRevivedPacket(
const QuicPacketHeader& revived_header,
base::StringPiece payload) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_PACKET_HEADER_REVIVED,
base::Bind(&NetLogQuicPacketHeaderCallback, &revived_header));
}
void QuicConnectionLogger::OnCryptoHandshakeMessageReceived(
const CryptoHandshakeMessage& message) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_CRYPTO_HANDSHAKE_MESSAGE_RECEIVED,
base::Bind(&NetLogQuicCryptoHandshakeMessageCallback, &message));
if (message.tag() == kSHLO) {
StringPiece address;
QuicSocketAddressCoder decoder;
if (message.GetStringPiece(kCADR, &address) &&
decoder.Decode(address.data(), address.size())) {
local_address_from_shlo_ = IPEndPoint(decoder.ip(), decoder.port());
UMA_HISTOGRAM_ENUMERATION("Net.QuicSession.ConnectionTypeFromPeer",
GetRealAddressFamily(
local_address_from_shlo_.address()),
ADDRESS_FAMILY_LAST);
}
}
}
void QuicConnectionLogger::OnCryptoHandshakeMessageSent(
const CryptoHandshakeMessage& message) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_CRYPTO_HANDSHAKE_MESSAGE_SENT,
base::Bind(&NetLogQuicCryptoHandshakeMessageCallback, &message));
}
void QuicConnectionLogger::OnConnectionClosed(QuicErrorCode error,
bool from_peer) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_CLOSED,
base::Bind(&NetLogQuicOnConnectionClosedCallback, error, from_peer));
}
void QuicConnectionLogger::OnSuccessfulVersionNegotiation(
const QuicVersion& version) {
string quic_version = QuicVersionToString(version);
net_log_.AddEvent(NetLog::TYPE_QUIC_SESSION_VERSION_NEGOTIATED,
NetLog::StringCallback("version", &quic_version));
}
void QuicConnectionLogger::UpdateReceivedFrameCounts(
QuicStreamId stream_id,
int num_frames_received,
int num_duplicate_frames_received) {
if (stream_id != kCryptoStreamId) {
num_frames_received_ += num_frames_received;
num_duplicate_frames_received_ += num_duplicate_frames_received;
}
}
void QuicConnectionLogger::OnCertificateVerified(
const CertVerifyResult& result) {
net_log_.AddEvent(
NetLog::TYPE_QUIC_SESSION_CERTIFICATE_VERIFIED,
base::Bind(&NetLogQuicCertificateVerifiedCallback, result.verified_cert));
}
base::HistogramBase* QuicConnectionLogger::GetPacketSequenceNumberHistogram(
const char* statistic_name) const {
string prefix("Net.QuicSession.PacketReceived_");
return base::LinearHistogram::FactoryGet(
prefix + statistic_name + connection_description_,
1, received_packets_.size(), received_packets_.size() + 1,
base::HistogramBase::kUmaTargetedHistogramFlag);
}
base::HistogramBase* QuicConnectionLogger::Get6PacketHistogram(
const char* which_6) const {
// This histogram takes a binary encoding of the 6 consecutive packets
// received. As a result, there are 64 possible sample-patterns.
string prefix("Net.QuicSession.6PacketsPatternsReceived_");
return base::LinearHistogram::FactoryGet(
prefix + which_6 + connection_description_, 1, 64, 65,
base::HistogramBase::kUmaTargetedHistogramFlag);
}
base::HistogramBase* QuicConnectionLogger::Get21CumulativeHistogram(
const char* which_21) const {
// This histogram contains, for each sequence of 21 packets, the results from
// 21 distinct questions about that sequence. Conceptually the histogtram is
// broken into 21 distinct ranges, and one sample is added into each of those
// ranges whenever we process a set of 21 packets.
// There is a little rendundancy, as each "range" must have the same number
// of samples, all told, but the histogram is a tad easier to read this way.
// The questions are:
// Was the first packet present (bucket 0==>no; bucket 1==>yes)
// Of the first two packets, how many were present? (bucket 2==> none;
// bucket 3==> 1 of 2; bucket 4==> 2 of 2)
// Of the first three packets, how many were present? (bucket 5==>none;
// bucket 6==> 1 of 3; bucket 7==> 2 of 3; bucket 8==> 3 of 3).
// etc.
string prefix("Net.QuicSession.21CumulativePacketsReceived_");
return base::LinearHistogram::FactoryGet(
prefix + which_21 + connection_description_,
1, kBoundingSampleInCumulativeHistogram,
kBoundingSampleInCumulativeHistogram + 1,
base::HistogramBase::kUmaTargetedHistogramFlag);
}
// static
void QuicConnectionLogger::AddTo21CumulativeHistogram(
base::HistogramBase* histogram,
int bit_mask_of_packets,
int valid_bits_in_mask) {
DCHECK_LE(valid_bits_in_mask, 21);
DCHECK_LT(bit_mask_of_packets, 1 << 21);
const int blank_bits_in_mask = 21 - valid_bits_in_mask;
DCHECK_EQ(bit_mask_of_packets & ((1 << blank_bits_in_mask) - 1), 0);
bit_mask_of_packets >>= blank_bits_in_mask;
int bits_so_far = 0;
int range_start = 0;
for (int i = 1; i <= valid_bits_in_mask; ++i) {
bits_so_far += bit_mask_of_packets & 1;
bit_mask_of_packets >>= 1;
DCHECK_LT(range_start + bits_so_far, kBoundingSampleInCumulativeHistogram);
histogram->Add(range_start + bits_so_far);
range_start += i + 1;
}
}
void QuicConnectionLogger::RecordAggregatePacketLossRate() const {
// For short connections under 22 packets in length, we'll rely on the
// Net.QuicSession.21CumulativePacketsReceived_* histogram to indicate packet
// loss rates. This way we avoid tremendously anomalous contributions to our
// histogram. (e.g., if we only got 5 packets, but lost 1, we'd otherwise
// record a 20% loss in this histogram!). We may still get some strange data
// (1 loss in 22 is still high :-/).
if (largest_received_packet_sequence_number_ <= 21)
return;
QuicPacketSequenceNumber divisor = largest_received_packet_sequence_number_;
QuicPacketSequenceNumber numerator = divisor - num_packets_received_;
if (divisor < 100000)
numerator *= 1000;
else
divisor /= 1000;
string prefix("Net.QuicSession.PacketLossRate_");
base::HistogramBase* histogram = base::Histogram::FactoryGet(
prefix + connection_description_, 1, 1000, 75,
base::HistogramBase::kUmaTargetedHistogramFlag);
histogram->Add(numerator / divisor);
}
void QuicConnectionLogger::RecordLossHistograms() const {
if (largest_received_packet_sequence_number_ == 0)
return; // Connection was never used.
RecordAggregatePacketLossRate();
base::HistogramBase* is_not_ack_histogram =
GetPacketSequenceNumberHistogram("IsNotAck_");
base::HistogramBase* is_an_ack_histogram =
GetPacketSequenceNumberHistogram("IsAnAck_");
base::HistogramBase* packet_arrived_histogram =
GetPacketSequenceNumberHistogram("Ack_");
base::HistogramBase* packet_missing_histogram =
GetPacketSequenceNumberHistogram("Nack_");
base::HistogramBase* ongoing_cumulative_packet_histogram =
Get21CumulativeHistogram("Some21s_");
base::HistogramBase* first_cumulative_packet_histogram =
Get21CumulativeHistogram("First21_");
base::HistogramBase* six_packet_histogram = Get6PacketHistogram("Some6s_");
DCHECK_EQ(received_packets_.size(), received_acks_.size());
const QuicPacketSequenceNumber last_index =
std::min<QuicPacketSequenceNumber>(received_packets_.size() - 1,
largest_received_packet_sequence_number_);
const QuicPacketSequenceNumber index_of_first_21_contribution =
std::min<QuicPacketSequenceNumber>(21, last_index);
// Bit pattern of consecutively received packets that is maintained as we scan
// through the received_packets_ vector. Less significant bits correspond to
// less recent packets, and only the low order 21 bits are ever defined.
// Bit is 1 iff corresponding packet was received.
int packet_pattern_21 = 0;
// Zero is an invalid packet sequence number.
DCHECK(!received_packets_[0]);
for (size_t i = 1; i <= last_index; ++i) {
if (received_acks_[i])
is_an_ack_histogram->Add(i);
else
is_not_ack_histogram->Add(i);
packet_pattern_21 >>= 1;
if (received_packets_[i]) {
packet_arrived_histogram->Add(i);
packet_pattern_21 |= (1 << 20); // Turn on the 21st bit.
} else {
packet_missing_histogram->Add(i);
}
if (i == index_of_first_21_contribution) {
AddTo21CumulativeHistogram(first_cumulative_packet_histogram,
packet_pattern_21, i);
}
// We'll just record for non-overlapping ranges, to reduce histogramming
// cost for now. Each call does 21 separate histogram additions.
if (i > 21 || i % 21 == 0) {
AddTo21CumulativeHistogram(ongoing_cumulative_packet_histogram,
packet_pattern_21, 21);
}
if (i < 6)
continue; // Not enough packets to do any pattern recording.
int recent_6_mask = packet_pattern_21 >> 15;
DCHECK_LT(recent_6_mask, 64);
if (i == 6) {
Get6PacketHistogram("First6_")->Add(recent_6_mask);
continue;
}
// Record some overlapping patterns, to get a better picture, since this is
// not very expensive.
if (i % 3 == 0)
six_packet_histogram->Add(recent_6_mask);
}
}
} // namespace net