blob: 4867d51ee27d5051043808d5bf30e82873cd6064 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chromeos/disks/disk_mount_manager.h"
#include <map>
#include <set>
#include "base/bind.h"
#include "base/memory/weak_ptr.h"
#include "base/observer_list.h"
#include "base/stl_util.h"
#include "base/strings/string_util.h"
#include "chromeos/dbus/dbus_thread_manager.h"
namespace chromeos {
namespace disks {
namespace {
const char kDeviceNotFound[] = "Device could not be found";
DiskMountManager* g_disk_mount_manager = NULL;
// The DiskMountManager implementation.
class DiskMountManagerImpl : public DiskMountManager {
public:
DiskMountManagerImpl() :
already_refreshed_(false),
weak_ptr_factory_(this) {
DBusThreadManager* dbus_thread_manager = DBusThreadManager::Get();
DCHECK(dbus_thread_manager);
cros_disks_client_ = dbus_thread_manager->GetCrosDisksClient();
DCHECK(cros_disks_client_);
cros_disks_client_->SetMountEventHandler(
base::Bind(&DiskMountManagerImpl::OnMountEvent,
weak_ptr_factory_.GetWeakPtr()));
cros_disks_client_->SetMountCompletedHandler(
base::Bind(&DiskMountManagerImpl::OnMountCompleted,
weak_ptr_factory_.GetWeakPtr()));
cros_disks_client_->SetFormatCompletedHandler(
base::Bind(&DiskMountManagerImpl::OnFormatCompleted,
weak_ptr_factory_.GetWeakPtr()));
}
virtual ~DiskMountManagerImpl() {
STLDeleteContainerPairSecondPointers(disks_.begin(), disks_.end());
}
// DiskMountManager override.
virtual void AddObserver(Observer* observer) override {
observers_.AddObserver(observer);
}
// DiskMountManager override.
virtual void RemoveObserver(Observer* observer) override {
observers_.RemoveObserver(observer);
}
// DiskMountManager override.
virtual void MountPath(const std::string& source_path,
const std::string& source_format,
const std::string& mount_label,
MountType type) override {
// Hidden and non-existent devices should not be mounted.
if (type == MOUNT_TYPE_DEVICE) {
DiskMap::const_iterator it = disks_.find(source_path);
if (it == disks_.end() || it->second->is_hidden()) {
OnMountCompleted(MountEntry(MOUNT_ERROR_INTERNAL, source_path, type,
""));
return;
}
}
cros_disks_client_->Mount(
source_path,
source_format,
mount_label,
// When succeeds, OnMountCompleted will be called by
// "MountCompleted" signal instead.
base::Bind(&base::DoNothing),
base::Bind(&DiskMountManagerImpl::OnMountCompleted,
weak_ptr_factory_.GetWeakPtr(),
MountEntry(MOUNT_ERROR_INTERNAL, source_path, type, "")));
}
// DiskMountManager override.
virtual void UnmountPath(const std::string& mount_path,
UnmountOptions options,
const UnmountPathCallback& callback) override {
UnmountChildMounts(mount_path);
cros_disks_client_->Unmount(mount_path, options,
base::Bind(&DiskMountManagerImpl::OnUnmountPath,
weak_ptr_factory_.GetWeakPtr(),
callback,
true,
mount_path),
base::Bind(&DiskMountManagerImpl::OnUnmountPath,
weak_ptr_factory_.GetWeakPtr(),
callback,
false,
mount_path));
}
// DiskMountManager override.
virtual void FormatMountedDevice(const std::string& mount_path) override {
MountPointMap::const_iterator mount_point = mount_points_.find(mount_path);
if (mount_point == mount_points_.end()) {
LOG(ERROR) << "Mount point with path \"" << mount_path << "\" not found.";
OnFormatCompleted(FORMAT_ERROR_UNKNOWN, mount_path);
return;
}
std::string device_path = mount_point->second.source_path;
DiskMap::const_iterator disk = disks_.find(device_path);
if (disk == disks_.end()) {
LOG(ERROR) << "Device with path \"" << device_path << "\" not found.";
OnFormatCompleted(FORMAT_ERROR_UNKNOWN, device_path);
return;
}
UnmountPath(disk->second->mount_path(),
UNMOUNT_OPTIONS_NONE,
base::Bind(&DiskMountManagerImpl::OnUnmountPathForFormat,
weak_ptr_factory_.GetWeakPtr(),
device_path));
}
// DiskMountManager override.
virtual void UnmountDeviceRecursively(
const std::string& device_path,
const UnmountDeviceRecursivelyCallbackType& callback) override {
std::vector<std::string> devices_to_unmount;
// Get list of all devices to unmount.
int device_path_len = device_path.length();
for (DiskMap::iterator it = disks_.begin(); it != disks_.end(); ++it) {
if (!it->second->mount_path().empty() &&
strncmp(device_path.c_str(), it->second->device_path().c_str(),
device_path_len) == 0) {
devices_to_unmount.push_back(it->second->mount_path());
}
}
// We should detect at least original device.
if (devices_to_unmount.empty()) {
if (disks_.find(device_path) == disks_.end()) {
LOG(WARNING) << "Unmount recursive request failed for device "
<< device_path << ", with error: " << kDeviceNotFound;
callback.Run(false);
return;
}
// Nothing to unmount.
callback.Run(true);
return;
}
// We will send the same callback data object to all Unmount calls and use
// it to synchronize callbacks.
// Note: this implementation has a potential memory leak issue. For
// example if this instance is destructed before all the callbacks for
// Unmount are invoked, the memory pointed by |cb_data| will be leaked.
// It is because the UnmountDeviceRecursivelyCallbackData keeps how
// many times OnUnmountDeviceRecursively callback is called and when
// all the callbacks are called, |cb_data| will be deleted in the method.
// However destructing the instance before all callback invocations will
// cancel all pending callbacks, so that the |cb_data| would never be
// deleted.
// Fortunately, in the real scenario, the instance will be destructed
// only for ShutDown. So, probably the memory would rarely be leaked.
// TODO(hidehiko): Fix the issue.
UnmountDeviceRecursivelyCallbackData* cb_data =
new UnmountDeviceRecursivelyCallbackData(
callback, devices_to_unmount.size());
for (size_t i = 0; i < devices_to_unmount.size(); ++i) {
cros_disks_client_->Unmount(
devices_to_unmount[i],
UNMOUNT_OPTIONS_NONE,
base::Bind(&DiskMountManagerImpl::OnUnmountDeviceRecursively,
weak_ptr_factory_.GetWeakPtr(),
cb_data,
true,
devices_to_unmount[i]),
base::Bind(&DiskMountManagerImpl::OnUnmountDeviceRecursively,
weak_ptr_factory_.GetWeakPtr(),
cb_data,
false,
devices_to_unmount[i]));
}
}
// DiskMountManager override.
virtual void EnsureMountInfoRefreshed(
const EnsureMountInfoRefreshedCallback& callback) override {
if (already_refreshed_) {
callback.Run(true);
return;
}
refresh_callbacks_.push_back(callback);
if (refresh_callbacks_.size() == 1) {
// If there's no in-flight refreshing task, start it.
cros_disks_client_->EnumerateAutoMountableDevices(
base::Bind(&DiskMountManagerImpl::RefreshAfterEnumerateDevices,
weak_ptr_factory_.GetWeakPtr()),
base::Bind(&DiskMountManagerImpl::RefreshCompleted,
weak_ptr_factory_.GetWeakPtr(), false));
}
}
// DiskMountManager override.
virtual const DiskMap& disks() const override { return disks_; }
// DiskMountManager override.
virtual const Disk* FindDiskBySourcePath(const std::string& source_path)
const override {
DiskMap::const_iterator disk_it = disks_.find(source_path);
return disk_it == disks_.end() ? NULL : disk_it->second;
}
// DiskMountManager override.
virtual const MountPointMap& mount_points() const override {
return mount_points_;
}
// DiskMountManager override.
virtual bool AddDiskForTest(Disk* disk) override {
if (disks_.find(disk->device_path()) != disks_.end()) {
LOG(ERROR) << "Attempt to add a duplicate disk";
return false;
}
disks_.insert(std::make_pair(disk->device_path(), disk));
return true;
}
// DiskMountManager override.
// Corresponding disk should be added to the manager before this is called.
virtual bool AddMountPointForTest(
const MountPointInfo& mount_point) override {
if (mount_points_.find(mount_point.mount_path) != mount_points_.end()) {
LOG(ERROR) << "Attempt to add a duplicate mount point";
return false;
}
if (mount_point.mount_type == chromeos::MOUNT_TYPE_DEVICE &&
disks_.find(mount_point.source_path) == disks_.end()) {
LOG(ERROR) << "Device mount points must have a disk entry.";
return false;
}
mount_points_.insert(std::make_pair(mount_point.mount_path, mount_point));
return true;
}
private:
struct UnmountDeviceRecursivelyCallbackData {
UnmountDeviceRecursivelyCallbackData(
const UnmountDeviceRecursivelyCallbackType& in_callback,
int in_num_pending_callbacks)
: callback(in_callback),
num_pending_callbacks(in_num_pending_callbacks) {
}
const UnmountDeviceRecursivelyCallbackType callback;
size_t num_pending_callbacks;
};
// Unmounts all mount points whose source path is transitively parented by
// |mount_path|.
void UnmountChildMounts(const std::string& mount_path_in) {
std::string mount_path = mount_path_in;
// Let's make sure mount path has trailing slash.
if (mount_path[mount_path.length() - 1] != '/')
mount_path += '/';
for (MountPointMap::iterator it = mount_points_.begin();
it != mount_points_.end();
++it) {
if (StartsWithASCII(it->second.source_path, mount_path,
true /*case sensitive*/)) {
// TODO(tbarzic): Handle the case where this fails.
UnmountPath(it->second.mount_path,
UNMOUNT_OPTIONS_NONE,
UnmountPathCallback());
}
}
}
// Callback for UnmountDeviceRecursively.
void OnUnmountDeviceRecursively(
UnmountDeviceRecursivelyCallbackData* cb_data,
bool success,
const std::string& mount_path) {
if (success) {
// Do standard processing for Unmount event.
OnUnmountPath(UnmountPathCallback(), true, mount_path);
VLOG(1) << mount_path << " unmounted.";
}
// This is safe as long as all callbacks are called on the same thread as
// UnmountDeviceRecursively.
cb_data->num_pending_callbacks--;
if (cb_data->num_pending_callbacks == 0) {
// This code has a problem that the |success| status used here is for the
// last "unmount" callback, but not whether all unmounting is succeeded.
// TODO(hidehiko): Fix the issue.
cb_data->callback.Run(success);
delete cb_data;
}
}
// Callback to handle MountCompleted signal and Mount method call failure.
void OnMountCompleted(const MountEntry& entry) {
MountCondition mount_condition = MOUNT_CONDITION_NONE;
if (entry.mount_type() == MOUNT_TYPE_DEVICE) {
if (entry.error_code() == MOUNT_ERROR_UNKNOWN_FILESYSTEM) {
mount_condition = MOUNT_CONDITION_UNKNOWN_FILESYSTEM;
}
if (entry.error_code() == MOUNT_ERROR_UNSUPPORTED_FILESYSTEM) {
mount_condition = MOUNT_CONDITION_UNSUPPORTED_FILESYSTEM;
}
}
const MountPointInfo mount_info(entry.source_path(),
entry.mount_path(),
entry.mount_type(),
mount_condition);
NotifyMountStatusUpdate(MOUNTING, entry.error_code(), mount_info);
// If the device is corrupted but it's still possible to format it, it will
// be fake mounted.
if ((entry.error_code() == MOUNT_ERROR_NONE ||
mount_info.mount_condition) &&
mount_points_.find(mount_info.mount_path) == mount_points_.end()) {
mount_points_.insert(MountPointMap::value_type(mount_info.mount_path,
mount_info));
}
if ((entry.error_code() == MOUNT_ERROR_NONE ||
mount_info.mount_condition) &&
mount_info.mount_type == MOUNT_TYPE_DEVICE &&
!mount_info.source_path.empty() &&
!mount_info.mount_path.empty()) {
DiskMap::iterator iter = disks_.find(mount_info.source_path);
if (iter == disks_.end()) {
// disk might have been removed by now?
return;
}
Disk* disk = iter->second;
DCHECK(disk);
disk->set_mount_path(mount_info.mount_path);
}
}
// Callback for UnmountPath.
void OnUnmountPath(const UnmountPathCallback& callback,
bool success,
const std::string& mount_path) {
MountPointMap::iterator mount_points_it = mount_points_.find(mount_path);
if (mount_points_it == mount_points_.end()) {
// The path was unmounted, but not as a result of this unmount request,
// so return error.
if (!callback.is_null())
callback.Run(MOUNT_ERROR_INTERNAL);
return;
}
NotifyMountStatusUpdate(
UNMOUNTING,
success ? MOUNT_ERROR_NONE : MOUNT_ERROR_INTERNAL,
MountPointInfo(mount_points_it->second.source_path,
mount_points_it->second.mount_path,
mount_points_it->second.mount_type,
mount_points_it->second.mount_condition));
std::string path(mount_points_it->second.source_path);
if (success)
mount_points_.erase(mount_points_it);
DiskMap::iterator disk_iter = disks_.find(path);
if (disk_iter != disks_.end()) {
DCHECK(disk_iter->second);
if (success)
disk_iter->second->clear_mount_path();
}
if (!callback.is_null())
callback.Run(success ? MOUNT_ERROR_NONE : MOUNT_ERROR_INTERNAL);
}
void OnUnmountPathForFormat(const std::string& device_path,
MountError error_code) {
if (error_code == MOUNT_ERROR_NONE &&
disks_.find(device_path) != disks_.end()) {
FormatUnmountedDevice(device_path);
} else {
OnFormatCompleted(FORMAT_ERROR_UNKNOWN, device_path);
}
}
// Starts device formatting.
void FormatUnmountedDevice(const std::string& device_path) {
DiskMap::const_iterator disk = disks_.find(device_path);
DCHECK(disk != disks_.end() && disk->second->mount_path().empty());
const char kFormatVFAT[] = "vfat";
cros_disks_client_->Format(
device_path,
kFormatVFAT,
base::Bind(&DiskMountManagerImpl::OnFormatStarted,
weak_ptr_factory_.GetWeakPtr(),
device_path),
base::Bind(&DiskMountManagerImpl::OnFormatCompleted,
weak_ptr_factory_.GetWeakPtr(),
FORMAT_ERROR_UNKNOWN,
device_path));
}
// Callback for Format.
void OnFormatStarted(const std::string& device_path) {
NotifyFormatStatusUpdate(FORMAT_STARTED, FORMAT_ERROR_NONE, device_path);
}
// Callback to handle FormatCompleted signal and Format method call failure.
void OnFormatCompleted(FormatError error_code,
const std::string& device_path) {
NotifyFormatStatusUpdate(FORMAT_COMPLETED, error_code, device_path);
}
// Callback for GetDeviceProperties.
void OnGetDeviceProperties(const DiskInfo& disk_info) {
// TODO(zelidrag): Find a better way to filter these out before we
// fetch the properties:
// Ignore disks coming from the device we booted the system from.
if (disk_info.on_boot_device())
return;
LOG(WARNING) << "Found disk " << disk_info.device_path();
// Delete previous disk info for this path:
bool is_new = true;
DiskMap::iterator iter = disks_.find(disk_info.device_path());
if (iter != disks_.end()) {
delete iter->second;
disks_.erase(iter);
is_new = false;
}
Disk* disk = new Disk(disk_info.device_path(),
disk_info.mount_path(),
disk_info.system_path(),
disk_info.file_path(),
disk_info.label(),
disk_info.drive_label(),
disk_info.vendor_id(),
disk_info.vendor_name(),
disk_info.product_id(),
disk_info.product_name(),
disk_info.uuid(),
FindSystemPathPrefix(disk_info.system_path()),
disk_info.device_type(),
disk_info.total_size_in_bytes(),
disk_info.is_drive(),
disk_info.is_read_only(),
disk_info.has_media(),
disk_info.on_boot_device(),
disk_info.on_removable_device(),
disk_info.is_hidden());
disks_.insert(std::make_pair(disk_info.device_path(), disk));
NotifyDiskStatusUpdate(is_new ? DISK_ADDED : DISK_CHANGED, disk);
}
// Part of EnsureMountInfoRefreshed(). Called after the list of devices are
// enumerated.
void RefreshAfterEnumerateDevices(const std::vector<std::string>& devices) {
std::set<std::string> current_device_set(devices.begin(), devices.end());
for (DiskMap::iterator iter = disks_.begin(); iter != disks_.end(); ) {
if (current_device_set.find(iter->first) == current_device_set.end()) {
delete iter->second;
disks_.erase(iter++);
} else {
++iter;
}
}
RefreshDeviceAtIndex(devices, 0);
}
// Part of EnsureMountInfoRefreshed(). Called for each device to refresh info.
void RefreshDeviceAtIndex(const std::vector<std::string>& devices,
size_t index) {
if (index == devices.size()) {
// All devices info retrieved. Proceed to enumerate mount point info.
cros_disks_client_->EnumerateMountEntries(
base::Bind(&DiskMountManagerImpl::RefreshAfterEnumerateMountEntries,
weak_ptr_factory_.GetWeakPtr()),
base::Bind(&DiskMountManagerImpl::RefreshCompleted,
weak_ptr_factory_.GetWeakPtr(), false));
return;
}
cros_disks_client_->GetDeviceProperties(
devices[index],
base::Bind(&DiskMountManagerImpl::RefreshAfterGetDeviceProperties,
weak_ptr_factory_.GetWeakPtr(), devices, index + 1),
base::Bind(&DiskMountManagerImpl::RefreshCompleted,
weak_ptr_factory_.GetWeakPtr(), false));
}
// Part of EnsureMountInfoRefreshed().
void RefreshAfterGetDeviceProperties(const std::vector<std::string>& devices,
size_t next_index,
const DiskInfo& disk_info) {
OnGetDeviceProperties(disk_info);
RefreshDeviceAtIndex(devices, next_index);
}
// Part of EnsureMountInfoRefreshed(). Called after mount entries are listed.
void RefreshAfterEnumerateMountEntries(
const std::vector<MountEntry>& entries) {
for (size_t i = 0; i < entries.size(); ++i)
OnMountCompleted(entries[i]);
RefreshCompleted(true);
}
// Part of EnsureMountInfoRefreshed(). Called when the refreshing is done.
void RefreshCompleted(bool success) {
already_refreshed_ = true;
for (size_t i = 0; i < refresh_callbacks_.size(); ++i)
refresh_callbacks_[i].Run(success);
refresh_callbacks_.clear();
}
// Callback to handle mount event signals.
void OnMountEvent(MountEventType event, const std::string& device_path_arg) {
// Take a copy of the argument so we can modify it below.
std::string device_path = device_path_arg;
switch (event) {
case CROS_DISKS_DISK_ADDED: {
cros_disks_client_->GetDeviceProperties(
device_path,
base::Bind(&DiskMountManagerImpl::OnGetDeviceProperties,
weak_ptr_factory_.GetWeakPtr()),
base::Bind(&base::DoNothing));
break;
}
case CROS_DISKS_DISK_REMOVED: {
// Search and remove disks that are no longer present.
DiskMountManager::DiskMap::iterator iter = disks_.find(device_path);
if (iter != disks_.end()) {
Disk* disk = iter->second;
NotifyDiskStatusUpdate(DISK_REMOVED, disk);
delete iter->second;
disks_.erase(iter);
}
break;
}
case CROS_DISKS_DEVICE_ADDED: {
system_path_prefixes_.insert(device_path);
NotifyDeviceStatusUpdate(DEVICE_ADDED, device_path);
break;
}
case CROS_DISKS_DEVICE_REMOVED: {
system_path_prefixes_.erase(device_path);
NotifyDeviceStatusUpdate(DEVICE_REMOVED, device_path);
break;
}
case CROS_DISKS_DEVICE_SCANNED: {
NotifyDeviceStatusUpdate(DEVICE_SCANNED, device_path);
break;
}
default: {
LOG(ERROR) << "Unknown event: " << event;
}
}
}
// Notifies all observers about disk status update.
void NotifyDiskStatusUpdate(DiskEvent event,
const Disk* disk) {
FOR_EACH_OBSERVER(Observer, observers_, OnDiskEvent(event, disk));
}
// Notifies all observers about device status update.
void NotifyDeviceStatusUpdate(DeviceEvent event,
const std::string& device_path) {
FOR_EACH_OBSERVER(Observer, observers_, OnDeviceEvent(event, device_path));
}
// Notifies all observers about mount completion.
void NotifyMountStatusUpdate(MountEvent event,
MountError error_code,
const MountPointInfo& mount_info) {
FOR_EACH_OBSERVER(Observer, observers_,
OnMountEvent(event, error_code, mount_info));
}
void NotifyFormatStatusUpdate(FormatEvent event,
FormatError error_code,
const std::string& device_path) {
FOR_EACH_OBSERVER(Observer, observers_,
OnFormatEvent(event, error_code, device_path));
}
// Finds system path prefix from |system_path|.
const std::string& FindSystemPathPrefix(const std::string& system_path) {
if (system_path.empty())
return base::EmptyString();
for (SystemPathPrefixSet::const_iterator it = system_path_prefixes_.begin();
it != system_path_prefixes_.end();
++it) {
const std::string& prefix = *it;
if (StartsWithASCII(system_path, prefix, true))
return prefix;
}
return base::EmptyString();
}
// Mount event change observers.
ObserverList<Observer> observers_;
CrosDisksClient* cros_disks_client_;
// The list of disks found.
DiskMountManager::DiskMap disks_;
DiskMountManager::MountPointMap mount_points_;
typedef std::set<std::string> SystemPathPrefixSet;
SystemPathPrefixSet system_path_prefixes_;
bool already_refreshed_;
std::vector<EnsureMountInfoRefreshedCallback> refresh_callbacks_;
base::WeakPtrFactory<DiskMountManagerImpl> weak_ptr_factory_;
DISALLOW_COPY_AND_ASSIGN(DiskMountManagerImpl);
};
} // namespace
DiskMountManager::Disk::Disk(const std::string& device_path,
const std::string& mount_path,
const std::string& system_path,
const std::string& file_path,
const std::string& device_label,
const std::string& drive_label,
const std::string& vendor_id,
const std::string& vendor_name,
const std::string& product_id,
const std::string& product_name,
const std::string& fs_uuid,
const std::string& system_path_prefix,
DeviceType device_type,
uint64 total_size_in_bytes,
bool is_parent,
bool is_read_only,
bool has_media,
bool on_boot_device,
bool on_removable_device,
bool is_hidden)
: device_path_(device_path),
mount_path_(mount_path),
system_path_(system_path),
file_path_(file_path),
device_label_(device_label),
drive_label_(drive_label),
vendor_id_(vendor_id),
vendor_name_(vendor_name),
product_id_(product_id),
product_name_(product_name),
fs_uuid_(fs_uuid),
system_path_prefix_(system_path_prefix),
device_type_(device_type),
total_size_in_bytes_(total_size_in_bytes),
is_parent_(is_parent),
is_read_only_(is_read_only),
has_media_(has_media),
on_boot_device_(on_boot_device),
on_removable_device_(on_removable_device),
is_hidden_(is_hidden) {
}
DiskMountManager::Disk::~Disk() {}
bool DiskMountManager::AddDiskForTest(Disk* disk) {
return false;
}
bool DiskMountManager::AddMountPointForTest(const MountPointInfo& mount_point) {
return false;
}
// static
std::string DiskMountManager::MountConditionToString(MountCondition condition) {
switch (condition) {
case MOUNT_CONDITION_NONE:
return "";
case MOUNT_CONDITION_UNKNOWN_FILESYSTEM:
return "unknown_filesystem";
case MOUNT_CONDITION_UNSUPPORTED_FILESYSTEM:
return "unsupported_filesystem";
default:
NOTREACHED();
}
return "";
}
// static
std::string DiskMountManager::DeviceTypeToString(DeviceType type) {
switch (type) {
case DEVICE_TYPE_USB:
return "usb";
case DEVICE_TYPE_SD:
return "sd";
case DEVICE_TYPE_OPTICAL_DISC:
return "optical";
case DEVICE_TYPE_MOBILE:
return "mobile";
default:
return "unknown";
}
}
// static
void DiskMountManager::Initialize() {
if (g_disk_mount_manager) {
LOG(WARNING) << "DiskMountManager was already initialized";
return;
}
g_disk_mount_manager = new DiskMountManagerImpl();
VLOG(1) << "DiskMountManager initialized";
}
// static
void DiskMountManager::InitializeForTesting(
DiskMountManager* disk_mount_manager) {
if (g_disk_mount_manager) {
LOG(WARNING) << "DiskMountManager was already initialized";
return;
}
g_disk_mount_manager = disk_mount_manager;
VLOG(1) << "DiskMountManager initialized";
}
// static
void DiskMountManager::Shutdown() {
if (!g_disk_mount_manager) {
LOG(WARNING) << "DiskMountManager::Shutdown() called with NULL manager";
return;
}
delete g_disk_mount_manager;
g_disk_mount_manager = NULL;
VLOG(1) << "DiskMountManager Shutdown completed";
}
// static
DiskMountManager* DiskMountManager::GetInstance() {
return g_disk_mount_manager;
}
} // namespace disks
} // namespace chromeos