blob: 8de43939be8f39ec41e45a16ac990e767b3e8b62 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <limits.h>
#include <math.h>
#include <vector>
#include <google/protobuf/io/tokenizer.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/substitute.h>
#include <google/protobuf/testing/googletest.h>
#include <gtest/gtest.h>
namespace google {
namespace protobuf {
namespace io {
namespace {
// ===================================================================
// Data-Driven Test Infrastructure
// TODO(kenton): This is copied from coded_stream_unittest. This is
// temporary until these fetaures are integrated into gTest itself.
// TEST_1D and TEST_2D are macros I'd eventually like to see added to
// gTest. These macros can be used to declare tests which should be
// run multiple times, once for each item in some input array. TEST_1D
// tests all cases in a single input array. TEST_2D tests all
// combinations of cases from two arrays. The arrays must be statically
// defined such that the GOOGLE_ARRAYSIZE() macro works on them. Example:
//
// int kCases[] = {1, 2, 3, 4}
// TEST_1D(MyFixture, MyTest, kCases) {
// EXPECT_GT(kCases_case, 0);
// }
//
// This test iterates through the numbers 1, 2, 3, and 4 and tests that
// they are all grater than zero. In case of failure, the exact case
// which failed will be printed. The case type must be printable using
// ostream::operator<<.
#define TEST_1D(FIXTURE, NAME, CASES) \
class FIXTURE##_##NAME##_DD : public FIXTURE { \
protected: \
template <typename CaseType> \
void DoSingleCase(const CaseType& CASES##_case); \
}; \
\
TEST_F(FIXTURE##_##NAME##_DD, NAME) { \
for (int i = 0; i < GOOGLE_ARRAYSIZE(CASES); i++) { \
SCOPED_TRACE(testing::Message() \
<< #CASES " case #" << i << ": " << CASES[i]); \
DoSingleCase(CASES[i]); \
} \
} \
\
template <typename CaseType> \
void FIXTURE##_##NAME##_DD::DoSingleCase(const CaseType& CASES##_case)
#define TEST_2D(FIXTURE, NAME, CASES1, CASES2) \
class FIXTURE##_##NAME##_DD : public FIXTURE { \
protected: \
template <typename CaseType1, typename CaseType2> \
void DoSingleCase(const CaseType1& CASES1##_case, \
const CaseType2& CASES2##_case); \
}; \
\
TEST_F(FIXTURE##_##NAME##_DD, NAME) { \
for (int i = 0; i < GOOGLE_ARRAYSIZE(CASES1); i++) { \
for (int j = 0; j < GOOGLE_ARRAYSIZE(CASES2); j++) { \
SCOPED_TRACE(testing::Message() \
<< #CASES1 " case #" << i << ": " << CASES1[i] << ", " \
<< #CASES2 " case #" << j << ": " << CASES2[j]); \
DoSingleCase(CASES1[i], CASES2[j]); \
} \
} \
} \
\
template <typename CaseType1, typename CaseType2> \
void FIXTURE##_##NAME##_DD::DoSingleCase(const CaseType1& CASES1##_case, \
const CaseType2& CASES2##_case)
// -------------------------------------------------------------------
// An input stream that is basically like an ArrayInputStream but sometimes
// returns empty buffers, just to throw us off.
class TestInputStream : public ZeroCopyInputStream {
public:
TestInputStream(const void* data, int size, int block_size)
: array_stream_(data, size, block_size), counter_(0) {}
~TestInputStream() {}
// implements ZeroCopyInputStream ----------------------------------
bool Next(const void** data, int* size) {
// We'll return empty buffers starting with the first buffer, and every
// 3 and 5 buffers after that.
if (counter_ % 3 == 0 || counter_ % 5 == 0) {
*data = NULL;
*size = 0;
++counter_;
return true;
} else {
++counter_;
return array_stream_.Next(data, size);
}
}
void BackUp(int count) { return array_stream_.BackUp(count); }
bool Skip(int count) { return array_stream_.Skip(count); }
int64 ByteCount() const { return array_stream_.ByteCount(); }
private:
ArrayInputStream array_stream_;
int counter_;
};
// -------------------------------------------------------------------
// An error collector which simply concatenates all its errors into a big
// block of text which can be checked.
class TestErrorCollector : public ErrorCollector {
public:
TestErrorCollector() {}
~TestErrorCollector() {}
string text_;
// implements ErrorCollector ---------------------------------------
void AddError(int line, int column, const string& message) {
strings::SubstituteAndAppend(&text_, "$0:$1: $2\n",
line, column, message);
}
};
// -------------------------------------------------------------------
// We test each operation over a variety of block sizes to insure that
// we test cases where reads cross buffer boundaries as well as cases
// where they don't. This is sort of a brute-force approach to this,
// but it's easy to write and easy to understand.
const int kBlockSizes[] = {1, 2, 3, 5, 7, 13, 32, 1024};
class TokenizerTest : public testing::Test {
protected:
// For easy testing.
uint64 ParseInteger(const string& text) {
uint64 result;
EXPECT_TRUE(Tokenizer::ParseInteger(text, kuint64max, &result));
return result;
}
};
// ===================================================================
// These tests causes gcc 3.3.5 (and earlier?) to give the cryptic error:
// "sorry, unimplemented: `method_call_expr' not supported by dump_expr"
#if !defined(__GNUC__) || __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)
// In each test case, the entire input text should parse as a single token
// of the given type.
struct SimpleTokenCase {
string input;
Tokenizer::TokenType type;
};
inline ostream& operator<<(ostream& out,
const SimpleTokenCase& test_case) {
return out << CEscape(test_case.input);
}
SimpleTokenCase kSimpleTokenCases[] = {
// Test identifiers.
{ "hello", Tokenizer::TYPE_IDENTIFIER },
// Test integers.
{ "123", Tokenizer::TYPE_INTEGER },
{ "0xab6", Tokenizer::TYPE_INTEGER },
{ "0XAB6", Tokenizer::TYPE_INTEGER },
{ "0X1234567", Tokenizer::TYPE_INTEGER },
{ "0x89abcdef", Tokenizer::TYPE_INTEGER },
{ "0x89ABCDEF", Tokenizer::TYPE_INTEGER },
{ "01234567", Tokenizer::TYPE_INTEGER },
// Test floats.
{ "123.45", Tokenizer::TYPE_FLOAT },
{ "1.", Tokenizer::TYPE_FLOAT },
{ "1e3", Tokenizer::TYPE_FLOAT },
{ "1E3", Tokenizer::TYPE_FLOAT },
{ "1e-3", Tokenizer::TYPE_FLOAT },
{ "1e+3", Tokenizer::TYPE_FLOAT },
{ "1.e3", Tokenizer::TYPE_FLOAT },
{ "1.2e3", Tokenizer::TYPE_FLOAT },
{ ".1", Tokenizer::TYPE_FLOAT },
{ ".1e3", Tokenizer::TYPE_FLOAT },
{ ".1e-3", Tokenizer::TYPE_FLOAT },
{ ".1e+3", Tokenizer::TYPE_FLOAT },
// Test strings.
{ "'hello'", Tokenizer::TYPE_STRING },
{ "\"foo\"", Tokenizer::TYPE_STRING },
{ "'a\"b'", Tokenizer::TYPE_STRING },
{ "\"a'b\"", Tokenizer::TYPE_STRING },
{ "'a\\'b'", Tokenizer::TYPE_STRING },
{ "\"a\\\"b\"", Tokenizer::TYPE_STRING },
{ "'\\xf'", Tokenizer::TYPE_STRING },
{ "'\\0'", Tokenizer::TYPE_STRING },
// Test symbols.
{ "+", Tokenizer::TYPE_SYMBOL },
{ ".", Tokenizer::TYPE_SYMBOL },
};
TEST_2D(TokenizerTest, SimpleTokens, kSimpleTokenCases, kBlockSizes) {
// Set up the tokenizer.
TestInputStream input(kSimpleTokenCases_case.input.data(),
kSimpleTokenCases_case.input.size(),
kBlockSizes_case);
TestErrorCollector error_collector;
Tokenizer tokenizer(&input, &error_collector);
// Before Next() is called, the initial token should always be TYPE_START.
EXPECT_EQ(Tokenizer::TYPE_START, tokenizer.current().type);
EXPECT_EQ("", tokenizer.current().text);
EXPECT_EQ(0, tokenizer.current().line);
EXPECT_EQ(0, tokenizer.current().column);
EXPECT_EQ(0, tokenizer.current().end_column);
// Parse the token.
ASSERT_TRUE(tokenizer.Next());
// Check that it has the right type.
EXPECT_EQ(kSimpleTokenCases_case.type, tokenizer.current().type);
// Check that it contains the complete input text.
EXPECT_EQ(kSimpleTokenCases_case.input, tokenizer.current().text);
// Check that it is located at the beginning of the input
EXPECT_EQ(0, tokenizer.current().line);
EXPECT_EQ(0, tokenizer.current().column);
EXPECT_EQ(kSimpleTokenCases_case.input.size(),
tokenizer.current().end_column);
// There should be no more input.
EXPECT_FALSE(tokenizer.Next());
// After Next() returns false, the token should have type TYPE_END.
EXPECT_EQ(Tokenizer::TYPE_END, tokenizer.current().type);
EXPECT_EQ("", tokenizer.current().text);
EXPECT_EQ(0, tokenizer.current().line);
EXPECT_EQ(kSimpleTokenCases_case.input.size(), tokenizer.current().column);
EXPECT_EQ(kSimpleTokenCases_case.input.size(),
tokenizer.current().end_column);
// There should be no errors.
EXPECT_TRUE(error_collector.text_.empty());
}
TEST_1D(TokenizerTest, FloatSuffix, kBlockSizes) {
// Test the "allow_f_after_float" option.
// Set up the tokenizer.
const char* text = "1f 2.5f 6e3f 7F";
TestInputStream input(text, strlen(text), kBlockSizes_case);
TestErrorCollector error_collector;
Tokenizer tokenizer(&input, &error_collector);
tokenizer.set_allow_f_after_float(true);
// Advance through tokens and check that they are parsed as expected.
ASSERT_TRUE(tokenizer.Next());
EXPECT_EQ(tokenizer.current().text, "1f");
EXPECT_EQ(tokenizer.current().type, Tokenizer::TYPE_FLOAT);
ASSERT_TRUE(tokenizer.Next());
EXPECT_EQ(tokenizer.current().text, "2.5f");
EXPECT_EQ(tokenizer.current().type, Tokenizer::TYPE_FLOAT);
ASSERT_TRUE(tokenizer.Next());
EXPECT_EQ(tokenizer.current().text, "6e3f");
EXPECT_EQ(tokenizer.current().type, Tokenizer::TYPE_FLOAT);
ASSERT_TRUE(tokenizer.Next());
EXPECT_EQ(tokenizer.current().text, "7F");
EXPECT_EQ(tokenizer.current().type, Tokenizer::TYPE_FLOAT);
// There should be no more input.
EXPECT_FALSE(tokenizer.Next());
// There should be no errors.
EXPECT_TRUE(error_collector.text_.empty());
}
#endif
// -------------------------------------------------------------------
// In each case, the input is parsed to produce a list of tokens. The
// last token in "output" must have type TYPE_END.
struct MultiTokenCase {
string input;
Tokenizer::Token output[10]; // The compiler wants a constant array
// size for initialization to work. There
// is no reason this can't be increased if
// needed.
};
inline ostream& operator<<(ostream& out,
const MultiTokenCase& test_case) {
return out << CEscape(test_case.input);
}
MultiTokenCase kMultiTokenCases[] = {
// Test empty input.
{ "", {
{ Tokenizer::TYPE_END , "" , 0, 0 },
}},
// Test all token types at the same time.
{ "foo 1 1.2 + 'bar'", {
{ Tokenizer::TYPE_IDENTIFIER, "foo" , 0, 0, 3 },
{ Tokenizer::TYPE_INTEGER , "1" , 0, 4, 5 },
{ Tokenizer::TYPE_FLOAT , "1.2" , 0, 6, 9 },
{ Tokenizer::TYPE_SYMBOL , "+" , 0, 10, 11 },
{ Tokenizer::TYPE_STRING , "'bar'", 0, 12, 17 },
{ Tokenizer::TYPE_END , "" , 0, 17, 17 },
}},
// Test that consecutive symbols are parsed as separate tokens.
{ "!@+%", {
{ Tokenizer::TYPE_SYMBOL , "!" , 0, 0, 1 },
{ Tokenizer::TYPE_SYMBOL , "@" , 0, 1, 2 },
{ Tokenizer::TYPE_SYMBOL , "+" , 0, 2, 3 },
{ Tokenizer::TYPE_SYMBOL , "%" , 0, 3, 4 },
{ Tokenizer::TYPE_END , "" , 0, 4, 4 },
}},
// Test that newlines affect line numbers correctly.
{ "foo bar\nrab oof", {
{ Tokenizer::TYPE_IDENTIFIER, "foo", 0, 0, 3 },
{ Tokenizer::TYPE_IDENTIFIER, "bar", 0, 4, 7 },
{ Tokenizer::TYPE_IDENTIFIER, "rab", 1, 0, 3 },
{ Tokenizer::TYPE_IDENTIFIER, "oof", 1, 4, 7 },
{ Tokenizer::TYPE_END , "" , 1, 7, 7 },
}},
// Test that tabs affect column numbers correctly.
{ "foo\tbar \tbaz", {
{ Tokenizer::TYPE_IDENTIFIER, "foo", 0, 0, 3 },
{ Tokenizer::TYPE_IDENTIFIER, "bar", 0, 8, 11 },
{ Tokenizer::TYPE_IDENTIFIER, "baz", 0, 16, 19 },
{ Tokenizer::TYPE_END , "" , 0, 19, 19 },
}},
// Test that tabs in string literals affect column numbers correctly.
{ "\"foo\tbar\" baz", {
{ Tokenizer::TYPE_STRING , "\"foo\tbar\"", 0, 0, 12 },
{ Tokenizer::TYPE_IDENTIFIER, "baz" , 0, 13, 16 },
{ Tokenizer::TYPE_END , "" , 0, 16, 16 },
}},
// Test that line comments are ignored.
{ "foo // This is a comment\n"
"bar // This is another comment", {
{ Tokenizer::TYPE_IDENTIFIER, "foo", 0, 0, 3 },
{ Tokenizer::TYPE_IDENTIFIER, "bar", 1, 0, 3 },
{ Tokenizer::TYPE_END , "" , 1, 30, 30 },
}},
// Test that block comments are ignored.
{ "foo /* This is a block comment */ bar", {
{ Tokenizer::TYPE_IDENTIFIER, "foo", 0, 0, 3 },
{ Tokenizer::TYPE_IDENTIFIER, "bar", 0, 34, 37 },
{ Tokenizer::TYPE_END , "" , 0, 37, 37 },
}},
// Test that sh-style comments are not ignored by default.
{ "foo # bar\n"
"baz", {
{ Tokenizer::TYPE_IDENTIFIER, "foo", 0, 0, 3 },
{ Tokenizer::TYPE_SYMBOL , "#" , 0, 4, 5 },
{ Tokenizer::TYPE_IDENTIFIER, "bar", 0, 6, 9 },
{ Tokenizer::TYPE_IDENTIFIER, "baz", 1, 0, 3 },
{ Tokenizer::TYPE_END , "" , 1, 3, 3 },
}},
// Bytes with the high-order bit set should not be seen as control characters.
{ "\300", {
{ Tokenizer::TYPE_SYMBOL, "\300", 0, 0, 1 },
{ Tokenizer::TYPE_END , "" , 0, 1, 1 },
}},
// Test all whitespace chars
{ "foo\n\t\r\v\fbar", {
{ Tokenizer::TYPE_IDENTIFIER, "foo", 0, 0, 3 },
{ Tokenizer::TYPE_IDENTIFIER, "bar", 1, 11, 14 },
{ Tokenizer::TYPE_END , "" , 1, 14, 14 },
}},
};
TEST_2D(TokenizerTest, MultipleTokens, kMultiTokenCases, kBlockSizes) {
// Set up the tokenizer.
TestInputStream input(kMultiTokenCases_case.input.data(),
kMultiTokenCases_case.input.size(),
kBlockSizes_case);
TestErrorCollector error_collector;
Tokenizer tokenizer(&input, &error_collector);
// Before Next() is called, the initial token should always be TYPE_START.
EXPECT_EQ(Tokenizer::TYPE_START, tokenizer.current().type);
EXPECT_EQ("", tokenizer.current().text);
EXPECT_EQ(0, tokenizer.current().line);
EXPECT_EQ(0, tokenizer.current().column);
EXPECT_EQ(0, tokenizer.current().end_column);
// Loop through all expected tokens.
int i = 0;
Tokenizer::Token token;
do {
token = kMultiTokenCases_case.output[i++];
SCOPED_TRACE(testing::Message() << "Token #" << i << ": " << token.text);
Tokenizer::Token previous = tokenizer.current();
// Next() should only return false when it hits the end token.
if (token.type != Tokenizer::TYPE_END) {
ASSERT_TRUE(tokenizer.Next());
} else {
ASSERT_FALSE(tokenizer.Next());
}
// Check that the previous token is set correctly.
EXPECT_EQ(previous.type, tokenizer.previous().type);
EXPECT_EQ(previous.text, tokenizer.previous().text);
EXPECT_EQ(previous.line, tokenizer.previous().line);
EXPECT_EQ(previous.column, tokenizer.previous().column);
EXPECT_EQ(previous.end_column, tokenizer.previous().end_column);
// Check that the token matches the expected one.
EXPECT_EQ(token.type, tokenizer.current().type);
EXPECT_EQ(token.text, tokenizer.current().text);
EXPECT_EQ(token.line, tokenizer.current().line);
EXPECT_EQ(token.column, tokenizer.current().column);
EXPECT_EQ(token.end_column, tokenizer.current().end_column);
} while (token.type != Tokenizer::TYPE_END);
// There should be no errors.
EXPECT_TRUE(error_collector.text_.empty());
}
// This test causes gcc 3.3.5 (and earlier?) to give the cryptic error:
// "sorry, unimplemented: `method_call_expr' not supported by dump_expr"
#if !defined(__GNUC__) || __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)
TEST_1D(TokenizerTest, ShCommentStyle, kBlockSizes) {
// Test the "comment_style" option.
const char* text = "foo # bar\n"
"baz // qux\n"
"corge /* grault */\n"
"garply";
const char* const kTokens[] = {"foo", // "# bar" is ignored
"baz", "/", "/", "qux",
"corge", "/", "*", "grault", "*", "/",
"garply"};
// Set up the tokenizer.
TestInputStream input(text, strlen(text), kBlockSizes_case);
TestErrorCollector error_collector;
Tokenizer tokenizer(&input, &error_collector);
tokenizer.set_comment_style(Tokenizer::SH_COMMENT_STYLE);
// Advance through tokens and check that they are parsed as expected.
for (int i = 0; i < GOOGLE_ARRAYSIZE(kTokens); i++) {
EXPECT_TRUE(tokenizer.Next());
EXPECT_EQ(tokenizer.current().text, kTokens[i]);
}
// There should be no more input.
EXPECT_FALSE(tokenizer.Next());
// There should be no errors.
EXPECT_TRUE(error_collector.text_.empty());
}
#endif
// -------------------------------------------------------------------
// In each case, the input is expected to have two tokens named "prev" and
// "next" with comments in between.
struct DocCommentCase {
string input;
const char* prev_trailing_comments;
const char* detached_comments[10];
const char* next_leading_comments;
};
inline ostream& operator<<(ostream& out,
const DocCommentCase& test_case) {
return out << CEscape(test_case.input);
}
DocCommentCase kDocCommentCases[] = {
{
"prev next",
"",
{},
""
},
{
"prev /* ignored */ next",
"",
{},
""
},
{
"prev // trailing comment\n"
"next",
" trailing comment\n",
{},
""
},
{
"prev\n"
"// leading comment\n"
"// line 2\n"
"next",
"",
{},
" leading comment\n"
" line 2\n"
},
{
"prev\n"
"// trailing comment\n"
"// line 2\n"
"\n"
"next",
" trailing comment\n"
" line 2\n",
{},
""
},
{
"prev // trailing comment\n"
"// leading comment\n"
"// line 2\n"
"next",
" trailing comment\n",
{},
" leading comment\n"
" line 2\n"
},
{
"prev /* trailing block comment */\n"
"/* leading block comment\n"
" * line 2\n"
" * line 3 */"
"next",
" trailing block comment ",
{},
" leading block comment\n"
" line 2\n"
" line 3 "
},
{
"prev\n"
"/* trailing block comment\n"
" * line 2\n"
" * line 3\n"
" */\n"
"/* leading block comment\n"
" * line 2\n"
" * line 3 */"
"next",
" trailing block comment\n"
" line 2\n"
" line 3\n",
{},
" leading block comment\n"
" line 2\n"
" line 3 "
},
{
"prev\n"
"// trailing comment\n"
"\n"
"// detached comment\n"
"// line 2\n"
"\n"
"// second detached comment\n"
"/* third detached comment\n"
" * line 2 */\n"
"// leading comment\n"
"next",
" trailing comment\n",
{
" detached comment\n"
" line 2\n",
" second detached comment\n",
" third detached comment\n"
" line 2 "
},
" leading comment\n"
},
{
"prev /**/\n"
"\n"
"// detached comment\n"
"\n"
"// leading comment\n"
"next",
"",
{
" detached comment\n"
},
" leading comment\n"
},
{
"prev /**/\n"
"// leading comment\n"
"next",
"",
{},
" leading comment\n"
},
};
TEST_2D(TokenizerTest, DocComments, kDocCommentCases, kBlockSizes) {
// Set up the tokenizer.
TestInputStream input(kDocCommentCases_case.input.data(),
kDocCommentCases_case.input.size(),
kBlockSizes_case);
TestErrorCollector error_collector;
Tokenizer tokenizer(&input, &error_collector);
// Set up a second tokenizer where we'll pass all NULLs to NextWithComments().
TestInputStream input2(kDocCommentCases_case.input.data(),
kDocCommentCases_case.input.size(),
kBlockSizes_case);
Tokenizer tokenizer2(&input2, &error_collector);
tokenizer.Next();
tokenizer2.Next();
EXPECT_EQ("prev", tokenizer.current().text);
EXPECT_EQ("prev", tokenizer2.current().text);
string prev_trailing_comments;
vector<string> detached_comments;
string next_leading_comments;
tokenizer.NextWithComments(&prev_trailing_comments, &detached_comments,
&next_leading_comments);
tokenizer2.NextWithComments(NULL, NULL, NULL);
EXPECT_EQ("next", tokenizer.current().text);
EXPECT_EQ("next", tokenizer2.current().text);
EXPECT_EQ(kDocCommentCases_case.prev_trailing_comments,
prev_trailing_comments);
for (int i = 0; i < detached_comments.size(); i++) {
ASSERT_LT(i, GOOGLE_ARRAYSIZE(kDocCommentCases));
ASSERT_TRUE(kDocCommentCases_case.detached_comments[i] != NULL);
EXPECT_EQ(kDocCommentCases_case.detached_comments[i],
detached_comments[i]);
}
// Verify that we matched all the detached comments.
EXPECT_EQ(NULL,
kDocCommentCases_case.detached_comments[detached_comments.size()]);
EXPECT_EQ(kDocCommentCases_case.next_leading_comments,
next_leading_comments);
}
// -------------------------------------------------------------------
// Test parse helpers. It's not really worth setting up a full data-driven
// test here.
TEST_F(TokenizerTest, ParseInteger) {
EXPECT_EQ(0, ParseInteger("0"));
EXPECT_EQ(123, ParseInteger("123"));
EXPECT_EQ(0xabcdef12u, ParseInteger("0xabcdef12"));
EXPECT_EQ(0xabcdef12u, ParseInteger("0xABCDEF12"));
EXPECT_EQ(kuint64max, ParseInteger("0xFFFFFFFFFFFFFFFF"));
EXPECT_EQ(01234567, ParseInteger("01234567"));
EXPECT_EQ(0X123, ParseInteger("0X123"));
// Test invalid integers that may still be tokenized as integers.
EXPECT_EQ(0, ParseInteger("0x"));
uint64 i;
#ifdef GTEST_HAS_DEATH_TEST // death tests do not work on Windows yet
// Test invalid integers that will never be tokenized as integers.
EXPECT_DEBUG_DEATH(Tokenizer::ParseInteger("zxy", kuint64max, &i),
"passed text that could not have been tokenized as an integer");
EXPECT_DEBUG_DEATH(Tokenizer::ParseInteger("1.2", kuint64max, &i),
"passed text that could not have been tokenized as an integer");
EXPECT_DEBUG_DEATH(Tokenizer::ParseInteger("08", kuint64max, &i),
"passed text that could not have been tokenized as an integer");
EXPECT_DEBUG_DEATH(Tokenizer::ParseInteger("0xg", kuint64max, &i),
"passed text that could not have been tokenized as an integer");
EXPECT_DEBUG_DEATH(Tokenizer::ParseInteger("-1", kuint64max, &i),
"passed text that could not have been tokenized as an integer");
#endif // GTEST_HAS_DEATH_TEST
// Test overflows.
EXPECT_TRUE (Tokenizer::ParseInteger("0", 0, &i));
EXPECT_FALSE(Tokenizer::ParseInteger("1", 0, &i));
EXPECT_TRUE (Tokenizer::ParseInteger("1", 1, &i));
EXPECT_TRUE (Tokenizer::ParseInteger("12345", 12345, &i));
EXPECT_FALSE(Tokenizer::ParseInteger("12346", 12345, &i));
EXPECT_TRUE (Tokenizer::ParseInteger("0xFFFFFFFFFFFFFFFF" , kuint64max, &i));
EXPECT_FALSE(Tokenizer::ParseInteger("0x10000000000000000", kuint64max, &i));
}
TEST_F(TokenizerTest, ParseFloat) {
EXPECT_DOUBLE_EQ(1 , Tokenizer::ParseFloat("1."));
EXPECT_DOUBLE_EQ(1e3 , Tokenizer::ParseFloat("1e3"));
EXPECT_DOUBLE_EQ(1e3 , Tokenizer::ParseFloat("1E3"));
EXPECT_DOUBLE_EQ(1.5e3, Tokenizer::ParseFloat("1.5e3"));
EXPECT_DOUBLE_EQ(.1 , Tokenizer::ParseFloat(".1"));
EXPECT_DOUBLE_EQ(.25 , Tokenizer::ParseFloat(".25"));
EXPECT_DOUBLE_EQ(.1e3 , Tokenizer::ParseFloat(".1e3"));
EXPECT_DOUBLE_EQ(.25e3, Tokenizer::ParseFloat(".25e3"));
EXPECT_DOUBLE_EQ(.1e+3, Tokenizer::ParseFloat(".1e+3"));
EXPECT_DOUBLE_EQ(.1e-3, Tokenizer::ParseFloat(".1e-3"));
EXPECT_DOUBLE_EQ(5 , Tokenizer::ParseFloat("5"));
EXPECT_DOUBLE_EQ(6e-12, Tokenizer::ParseFloat("6e-12"));
EXPECT_DOUBLE_EQ(1.2 , Tokenizer::ParseFloat("1.2"));
EXPECT_DOUBLE_EQ(1.e2 , Tokenizer::ParseFloat("1.e2"));
// Test invalid integers that may still be tokenized as integers.
EXPECT_DOUBLE_EQ(1, Tokenizer::ParseFloat("1e"));
EXPECT_DOUBLE_EQ(1, Tokenizer::ParseFloat("1e-"));
EXPECT_DOUBLE_EQ(1, Tokenizer::ParseFloat("1.e"));
// Test 'f' suffix.
EXPECT_DOUBLE_EQ(1, Tokenizer::ParseFloat("1f"));
EXPECT_DOUBLE_EQ(1, Tokenizer::ParseFloat("1.0f"));
EXPECT_DOUBLE_EQ(1, Tokenizer::ParseFloat("1F"));
// These should parse successfully even though they are out of range.
// Overflows become infinity and underflows become zero.
EXPECT_EQ( 0.0, Tokenizer::ParseFloat("1e-9999999999999999999999999999"));
EXPECT_EQ(HUGE_VAL, Tokenizer::ParseFloat("1e+9999999999999999999999999999"));
#ifdef GTEST_HAS_DEATH_TEST // death tests do not work on Windows yet
// Test invalid integers that will never be tokenized as integers.
EXPECT_DEBUG_DEATH(Tokenizer::ParseFloat("zxy"),
"passed text that could not have been tokenized as a float");
EXPECT_DEBUG_DEATH(Tokenizer::ParseFloat("1-e0"),
"passed text that could not have been tokenized as a float");
EXPECT_DEBUG_DEATH(Tokenizer::ParseFloat("-1.0"),
"passed text that could not have been tokenized as a float");
#endif // GTEST_HAS_DEATH_TEST
}
TEST_F(TokenizerTest, ParseString) {
string output;
Tokenizer::ParseString("'hello'", &output);
EXPECT_EQ("hello", output);
Tokenizer::ParseString("\"blah\\nblah2\"", &output);
EXPECT_EQ("blah\nblah2", output);
Tokenizer::ParseString("'\\1x\\1\\123\\739\\52\\334n\\3'", &output);
EXPECT_EQ("\1x\1\123\739\52\334n\3", output);
Tokenizer::ParseString("'\\x20\\x4'", &output);
EXPECT_EQ("\x20\x4", output);
// Test invalid strings that may still be tokenized as strings.
Tokenizer::ParseString("\"\\a\\l\\v\\t", &output); // \l is invalid
EXPECT_EQ("\a?\v\t", output);
Tokenizer::ParseString("'", &output);
EXPECT_EQ("", output);
Tokenizer::ParseString("'\\", &output);
EXPECT_EQ("\\", output);
// Experiment with Unicode escapes. Here are one-, two- and three-byte Unicode
// characters.
Tokenizer::ParseString("'\\u0024\\u00a2\\u20ac\\U00024b62XX'", &output);
EXPECT_EQ("$¢€𤭢XX", output);
// Same thing encoded using UTF16.
Tokenizer::ParseString("'\\u0024\\u00a2\\u20ac\\ud852\\udf62XX'", &output);
EXPECT_EQ("$¢€𤭢XX", output);
// Here's some broken UTF16; there's a head surrogate with no tail surrogate.
// We just output this as if it were UTF8; it's not a defined code point, but
// it has a defined encoding.
Tokenizer::ParseString("'\\ud852XX'", &output);
EXPECT_EQ("\xed\xa1\x92XX", output);
// Malformed escape: Demons may fly out of the nose.
Tokenizer::ParseString("\\u0", &output);
EXPECT_EQ("u0", output);
// Test invalid strings that will never be tokenized as strings.
#ifdef GTEST_HAS_DEATH_TEST // death tests do not work on Windows yet
EXPECT_DEBUG_DEATH(Tokenizer::ParseString("", &output),
"passed text that could not have been tokenized as a string");
#endif // GTEST_HAS_DEATH_TEST
}
TEST_F(TokenizerTest, ParseStringAppend) {
// Check that ParseString and ParseStringAppend differ.
string output("stuff+");
Tokenizer::ParseStringAppend("'hello'", &output);
EXPECT_EQ("stuff+hello", output);
Tokenizer::ParseString("'hello'", &output);
EXPECT_EQ("hello", output);
}
// -------------------------------------------------------------------
// Each case parses some input text, ignoring the tokens produced, and
// checks that the error output matches what is expected.
struct ErrorCase {
string input;
bool recoverable; // True if the tokenizer should be able to recover and
// parse more tokens after seeing this error. Cases
// for which this is true must end with "foo" as
// the last token, which the test will check for.
const char* errors;
};
inline ostream& operator<<(ostream& out,
const ErrorCase& test_case) {
return out << CEscape(test_case.input);
}
ErrorCase kErrorCases[] = {
// String errors.
{ "'\\l' foo", true,
"0:2: Invalid escape sequence in string literal.\n" },
{ "'\\x' foo", true,
"0:3: Expected hex digits for escape sequence.\n" },
{ "'foo", false,
"0:4: String literals cannot cross line boundaries.\n" },
{ "'bar\nfoo", true,
"0:4: String literals cannot cross line boundaries.\n" },
{ "'\\u01' foo", true,
"0:5: Expected four hex digits for \\u escape sequence.\n" },
{ "'\\u01' foo", true,
"0:5: Expected four hex digits for \\u escape sequence.\n" },
{ "'\\uXYZ' foo", true,
"0:3: Expected four hex digits for \\u escape sequence.\n" },
// Integer errors.
{ "123foo", true,
"0:3: Need space between number and identifier.\n" },
// Hex/octal errors.
{ "0x foo", true,
"0:2: \"0x\" must be followed by hex digits.\n" },
{ "0541823 foo", true,
"0:4: Numbers starting with leading zero must be in octal.\n" },
{ "0x123z foo", true,
"0:5: Need space between number and identifier.\n" },
{ "0x123.4 foo", true,
"0:5: Hex and octal numbers must be integers.\n" },
{ "0123.4 foo", true,
"0:4: Hex and octal numbers must be integers.\n" },
// Float errors.
{ "1e foo", true,
"0:2: \"e\" must be followed by exponent.\n" },
{ "1e- foo", true,
"0:3: \"e\" must be followed by exponent.\n" },
{ "1.2.3 foo", true,
"0:3: Already saw decimal point or exponent; can't have another one.\n" },
{ "1e2.3 foo", true,
"0:3: Already saw decimal point or exponent; can't have another one.\n" },
{ "a.1 foo", true,
"0:1: Need space between identifier and decimal point.\n" },
// allow_f_after_float not enabled, so this should be an error.
{ "1.0f foo", true,
"0:3: Need space between number and identifier.\n" },
// Block comment errors.
{ "/*", false,
"0:2: End-of-file inside block comment.\n"
"0:0: Comment started here.\n"},
{ "/*/*/ foo", true,
"0:3: \"/*\" inside block comment. Block comments cannot be nested.\n"},
// Control characters. Multiple consecutive control characters should only
// produce one error.
{ "\b foo", true,
"0:0: Invalid control characters encountered in text.\n" },
{ "\b\b foo", true,
"0:0: Invalid control characters encountered in text.\n" },
// Check that control characters at end of input don't result in an
// infinite loop.
{ "\b", false,
"0:0: Invalid control characters encountered in text.\n" },
// Check recovery from '\0'. We have to explicitly specify the length of
// these strings because otherwise the string constructor will just call
// strlen() which will see the first '\0' and think that is the end of the
// string.
{ string("\0foo", 4), true,
"0:0: Invalid control characters encountered in text.\n" },
{ string("\0\0foo", 5), true,
"0:0: Invalid control characters encountered in text.\n" },
};
TEST_2D(TokenizerTest, Errors, kErrorCases, kBlockSizes) {
// Set up the tokenizer.
TestInputStream input(kErrorCases_case.input.data(),
kErrorCases_case.input.size(),
kBlockSizes_case);
TestErrorCollector error_collector;
Tokenizer tokenizer(&input, &error_collector);
// Ignore all input, except remember if the last token was "foo".
bool last_was_foo = false;
while (tokenizer.Next()) {
last_was_foo = tokenizer.current().text == "foo";
}
// Check that the errors match what was expected.
EXPECT_EQ(kErrorCases_case.errors, error_collector.text_);
// If the error was recoverable, make sure we saw "foo" after it.
if (kErrorCases_case.recoverable) {
EXPECT_TRUE(last_was_foo);
}
}
// -------------------------------------------------------------------
TEST_1D(TokenizerTest, BackUpOnDestruction, kBlockSizes) {
string text = "foo bar";
TestInputStream input(text.data(), text.size(), kBlockSizes_case);
// Create a tokenizer, read one token, then destroy it.
{
TestErrorCollector error_collector;
Tokenizer tokenizer(&input, &error_collector);
tokenizer.Next();
}
// Only "foo" should have been read.
EXPECT_EQ(strlen("foo"), input.ByteCount());
}
} // namespace
} // namespace io
} // namespace protobuf
} // namespace google