blob: 9ffa6c8408624ac2d33fd856ee37f051143be10a [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ash/display/display_manager.h"
#include <cmath>
#include <set>
#include <string>
#include <vector>
#include "ash/ash_switches.h"
#include "ash/display/display_layout_store.h"
#include "ash/screen_ash.h"
#include "ash/shell.h"
#include "base/auto_reset.h"
#include "base/command_line.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "grit/ash_strings.h"
#include "ui/base/l10n/l10n_util.h"
#include "ui/gfx/display.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/screen.h"
#include "ui/gfx/size_conversions.h"
#if defined(USE_X11)
#include "ui/base/x/x11_util.h"
#endif
#if defined(OS_CHROMEOS)
#include "ash/display/output_configurator_animation.h"
#include "base/sys_info.h"
#include "chromeos/display/output_configurator.h"
#endif
#if defined(OS_WIN)
#include "base/win/windows_version.h"
#endif
namespace ash {
namespace internal {
typedef std::vector<gfx::Display> DisplayList;
typedef std::vector<DisplayInfo> DisplayInfoList;
namespace {
// The number of pixels to overlap between the primary and secondary displays,
// in case that the offset value is too large.
const int kMinimumOverlapForInvalidOffset = 100;
// List of value UI Scale values. Scales for 2x are equivalent to 640,
// 800, 1024, 1280, 1440, 1600 and 1920 pixel width respectively on
// 2560 pixel width 2x density display. Please see crbug.com/233375
// for the full list of resolutions.
const float kUIScalesFor2x[] = {0.5f, 0.625f, 0.8f, 1.0f, 1.125f, 1.25f, 1.5f};
const float kUIScalesFor1280[] = {0.5f, 0.625f, 0.8f, 1.0f, 1.125f };
const float kUIScalesFor1366[] = {0.5f, 0.6f, 0.75f, 1.0f, 1.125f };
struct DisplaySortFunctor {
bool operator()(const gfx::Display& a, const gfx::Display& b) {
return a.id() < b.id();
}
};
struct DisplayInfoSortFunctor {
bool operator()(const DisplayInfo& a, const DisplayInfo& b) {
return a.id() < b.id();
}
};
struct ResolutionMatcher {
ResolutionMatcher(const gfx::Size& size) : size(size) {}
bool operator()(const Resolution& resolution) {
return resolution.size == size;
}
gfx::Size size;
};
struct ScaleComparator {
ScaleComparator(float s) : scale(s) {}
bool operator()(float s) const {
const float kEpsilon = 0.0001f;
return std::abs(scale - s) < kEpsilon;
}
float scale;
};
gfx::Display& GetInvalidDisplay() {
static gfx::Display* invalid_display = new gfx::Display();
return *invalid_display;
}
void MaybeInitInternalDisplay(int64 id) {
CommandLine* command_line = CommandLine::ForCurrentProcess();
if (command_line->HasSwitch(switches::kAshUseFirstDisplayAsInternal))
gfx::Display::SetInternalDisplayId(id);
}
// Scoped objects used to either create or close the mirror window
// at specific timing.
class MirrorWindowUpdater {
public:
MirrorWindowUpdater(DisplayManager* manager,
DisplayManager::Delegate* delegate)
: manager_(manager),
delegate_(delegate),
enabled_(manager_->software_mirroring_enabled() &&
manager_->mirrored_display().is_valid()) {
}
~MirrorWindowUpdater() {
if (!delegate_)
return;
if (enabled_) {
DisplayInfo display_info = manager_->GetDisplayInfo(
manager_->mirrored_display().id());
delegate_->CreateOrUpdateMirrorWindow(display_info);
} else {
delegate_->CloseMirrorWindow();
}
}
bool enabled() const { return enabled_; }
private:
DisplayManager* manager_;
DisplayManager::Delegate* delegate_;
bool enabled_;
DISALLOW_COPY_AND_ASSIGN(MirrorWindowUpdater);
};
} // namespace
using std::string;
using std::vector;
DisplayManager::DisplayManager()
: delegate_(NULL),
layout_store_(new DisplayLayoutStore),
first_display_id_(gfx::Display::kInvalidDisplayID),
num_connected_displays_(0),
force_bounds_changed_(false),
change_display_upon_host_resize_(false),
software_mirroring_enabled_(false) {
#if defined(OS_CHROMEOS)
change_display_upon_host_resize_ = !base::SysInfo::IsRunningOnChromeOS();
#endif
}
DisplayManager::~DisplayManager() {
}
// static
std::vector<float> DisplayManager::GetScalesForDisplay(
const DisplayInfo& info) {
std::vector<float> ret;
if (info.device_scale_factor() == 2.0f) {
ret.assign(kUIScalesFor2x, kUIScalesFor2x + arraysize(kUIScalesFor2x));
return ret;
}
switch (info.bounds_in_native().width()) {
case 1280:
ret.assign(kUIScalesFor1280,
kUIScalesFor1280 + arraysize(kUIScalesFor1280));
break;
case 1366:
ret.assign(kUIScalesFor1366,
kUIScalesFor1366 + arraysize(kUIScalesFor1366));
break;
default:
ret.assign(kUIScalesFor1280,
kUIScalesFor1280 + arraysize(kUIScalesFor1280));
#if defined(OS_CHROMEOS)
if (base::SysInfo::IsRunningOnChromeOS())
NOTREACHED() << "Unknown resolution:" << info.ToString();
#endif
}
return ret;
}
// static
float DisplayManager::GetNextUIScale(const DisplayInfo& info, bool up) {
float scale = info.ui_scale();
std::vector<float> scales = GetScalesForDisplay(info);
for (size_t i = 0; i < scales.size(); ++i) {
if (ScaleComparator(scales[i])(scale)) {
if (up && i != scales.size() - 1)
return scales[i + 1];
if (!up && i != 0)
return scales[i - 1];
return scales[i];
}
}
// Fallback to 1.0f if the |scale| wasn't in the list.
return 1.0f;
}
void DisplayManager::InitFromCommandLine() {
DisplayInfoList info_list;
CommandLine* command_line = CommandLine::ForCurrentProcess();
const string size_str =
command_line->GetSwitchValueASCII(switches::kAshHostWindowBounds);
vector<string> parts;
base::SplitString(size_str, ',', &parts);
for (vector<string>::const_iterator iter = parts.begin();
iter != parts.end(); ++iter) {
info_list.push_back(DisplayInfo::CreateFromSpec(*iter));
}
if (info_list.size())
MaybeInitInternalDisplay(info_list[0].id());
if (info_list.size() > 1 &&
command_line->HasSwitch(switches::kAshEnableSoftwareMirroring)) {
SetSoftwareMirroring(true);
}
OnNativeDisplaysChanged(info_list);
}
// static
void DisplayManager::UpdateDisplayBoundsForLayoutById(
const DisplayLayout& layout,
const gfx::Display& primary_display,
int64 secondary_display_id) {
DCHECK_NE(gfx::Display::kInvalidDisplayID, secondary_display_id);
UpdateDisplayBoundsForLayout(
layout, primary_display,
Shell::GetInstance()->display_manager()->
FindDisplayForId(secondary_display_id));
}
bool DisplayManager::IsActiveDisplay(const gfx::Display& display) const {
for (DisplayList::const_iterator iter = displays_.begin();
iter != displays_.end(); ++iter) {
if ((*iter).id() == display.id())
return true;
}
return false;
}
bool DisplayManager::HasInternalDisplay() const {
return gfx::Display::InternalDisplayId() != gfx::Display::kInvalidDisplayID;
}
bool DisplayManager::IsInternalDisplayId(int64 id) const {
return gfx::Display::InternalDisplayId() == id;
}
DisplayLayout DisplayManager::GetCurrentDisplayLayout() {
DCHECK_EQ(2U, num_connected_displays());
// Invert if the primary was swapped.
if (num_connected_displays() > 1) {
DisplayIdPair pair = GetCurrentDisplayIdPair();
return layout_store_->ComputeDisplayLayoutForDisplayIdPair(pair);
}
NOTREACHED() << "DisplayLayout is requested for single display";
// On release build, just fallback to default instead of blowing up.
DisplayLayout layout =
layout_store_->default_display_layout();
layout.primary_id = displays_[0].id();
return layout;
}
DisplayIdPair DisplayManager::GetCurrentDisplayIdPair() const {
if (IsMirrored()) {
DCHECK_LE(2u, num_connected_displays());
int64 mirrored_id = mirrored_display().id();
return std::make_pair(displays_[0].id(), mirrored_id);
} else {
CHECK_GE(2u, displays_.size());
int64 id_at_zero = displays_[0].id();
if (id_at_zero == gfx::Display::InternalDisplayId() ||
id_at_zero == first_display_id()) {
return std::make_pair(id_at_zero, displays_[1].id());
} else {
return std::make_pair(displays_[1].id(), id_at_zero);
}
}
}
void DisplayManager::SetLayoutForCurrentDisplays(
const DisplayLayout& layout_relative_to_primary) {
DCHECK_EQ(2U, GetNumDisplays());
if (GetNumDisplays() < 2)
return;
const gfx::Display& primary = Shell::GetScreen()->GetPrimaryDisplay();
const DisplayIdPair pair = GetCurrentDisplayIdPair();
// Invert if the primary was swapped.
DisplayLayout to_set = pair.first == primary.id() ?
layout_relative_to_primary : layout_relative_to_primary.Invert();
DisplayLayout current_layout =
layout_store_->GetRegisteredDisplayLayout(pair);
if (to_set.position != current_layout.position ||
to_set.offset != current_layout.offset) {
to_set.primary_id = primary.id();
layout_store_->RegisterLayoutForDisplayIdPair(
pair.first, pair.second, to_set);
if (delegate_)
delegate_->PreDisplayConfigurationChange(false);
// PreDisplayConfigurationChange(false);
// TODO(oshima): Call UpdateDisplays instead.
const DisplayLayout layout = GetCurrentDisplayLayout();
UpdateDisplayBoundsForLayoutById(
layout, primary,
ScreenAsh::GetSecondaryDisplay().id());
//UpdateCurrentDisplayBoundsForLayout();
// Primary's bounds stay the same. Just notify bounds change
// on the secondary.
Shell::GetInstance()->screen()->NotifyBoundsChanged(
ScreenAsh::GetSecondaryDisplay());
if (delegate_)
delegate_->PostDisplayConfigurationChange();
}
}
const gfx::Display& DisplayManager::GetDisplayForId(int64 id) const {
gfx::Display* display =
const_cast<DisplayManager*>(this)->FindDisplayForId(id);
return display ? *display : GetInvalidDisplay();
}
const gfx::Display& DisplayManager::FindDisplayContainingPoint(
const gfx::Point& point_in_screen) const {
for (DisplayList::const_iterator iter = displays_.begin();
iter != displays_.end(); ++iter) {
const gfx::Display& display = *iter;
if (display.bounds().Contains(point_in_screen))
return display;
}
return GetInvalidDisplay();
}
bool DisplayManager::UpdateWorkAreaOfDisplay(int64 display_id,
const gfx::Insets& insets) {
gfx::Display* display = FindDisplayForId(display_id);
DCHECK(display);
gfx::Rect old_work_area = display->work_area();
display->UpdateWorkAreaFromInsets(insets);
return old_work_area != display->work_area();
}
void DisplayManager::SetOverscanInsets(int64 display_id,
const gfx::Insets& insets_in_dip) {
display_info_[display_id].SetOverscanInsets(insets_in_dip);
DisplayInfoList display_info_list;
for (DisplayList::const_iterator iter = displays_.begin();
iter != displays_.end(); ++iter) {
display_info_list.push_back(GetDisplayInfo(iter->id()));
}
AddMirrorDisplayInfoIfAny(&display_info_list);
UpdateDisplays(display_info_list);
}
void DisplayManager::SetDisplayRotation(int64 display_id,
gfx::Display::Rotation rotation) {
DisplayInfoList display_info_list;
for (DisplayList::const_iterator iter = displays_.begin();
iter != displays_.end(); ++iter) {
DisplayInfo info = GetDisplayInfo(iter->id());
if (info.id() == display_id) {
if (info.rotation() == rotation)
return;
info.set_rotation(rotation);
}
display_info_list.push_back(info);
}
AddMirrorDisplayInfoIfAny(&display_info_list);
UpdateDisplays(display_info_list);
}
void DisplayManager::SetDisplayUIScale(int64 display_id,
float ui_scale) {
if (!IsDisplayUIScalingEnabled() ||
gfx::Display::InternalDisplayId() != display_id) {
return;
}
DisplayInfoList display_info_list;
for (DisplayList::const_iterator iter = displays_.begin();
iter != displays_.end(); ++iter) {
DisplayInfo info = GetDisplayInfo(iter->id());
if (info.id() == display_id) {
if (info.ui_scale() == ui_scale)
return;
std::vector<float> scales = GetScalesForDisplay(info);
ScaleComparator comparator(ui_scale);
if (std::find_if(scales.begin(), scales.end(), comparator) ==
scales.end()) {
return;
}
info.set_ui_scale(ui_scale);
}
display_info_list.push_back(info);
}
AddMirrorDisplayInfoIfAny(&display_info_list);
UpdateDisplays(display_info_list);
}
void DisplayManager::SetDisplayResolution(int64 display_id,
const gfx::Size& resolution) {
DCHECK_NE(gfx::Display::InternalDisplayId(), display_id);
if (gfx::Display::InternalDisplayId() == display_id)
return;
const DisplayInfo& display_info = GetDisplayInfo(display_id);
const std::vector<Resolution>& resolutions = display_info.resolutions();
DCHECK_NE(0u, resolutions.size());
std::vector<Resolution>::const_iterator iter =
std::find_if(resolutions.begin(),
resolutions.end(),
ResolutionMatcher(resolution));
if (iter == resolutions.end()) {
LOG(WARNING) << "Unsupported resolution was requested:"
<< resolution.ToString();
return;
} else if (iter == resolutions.begin()) {
// The best resolution was set, so forget it.
resolutions_.erase(display_id);
} else {
resolutions_[display_id] = resolution;
}
#if defined(OS_CHROMEOS) && defined(USE_X11)
if (base::SysInfo::IsRunningOnChromeOS())
Shell::GetInstance()->output_configurator()->ScheduleConfigureOutputs();
#endif
}
void DisplayManager::RegisterDisplayProperty(
int64 display_id,
gfx::Display::Rotation rotation,
float ui_scale,
const gfx::Insets* overscan_insets,
const gfx::Size& resolution_in_pixels) {
if (display_info_.find(display_id) == display_info_.end()) {
display_info_[display_id] =
DisplayInfo(display_id, std::string(""), false);
}
display_info_[display_id].set_rotation(rotation);
// Just in case the preference file was corrupted.
if (0.5f <= ui_scale && ui_scale <= 2.0f)
display_info_[display_id].set_ui_scale(ui_scale);
if (overscan_insets)
display_info_[display_id].SetOverscanInsets(*overscan_insets);
if (!resolution_in_pixels.IsEmpty())
resolutions_[display_id] = resolution_in_pixels;
}
bool DisplayManager::GetSelectedResolutionForDisplayId(
int64 id,
gfx::Size* resolution_out) const {
std::map<int64, gfx::Size>::const_iterator iter =
resolutions_.find(id);
if (iter == resolutions_.end())
return false;
*resolution_out = iter->second;
return true;
}
bool DisplayManager::IsDisplayUIScalingEnabled() const {
return GetDisplayIdForUIScaling() != gfx::Display::kInvalidDisplayID;
}
gfx::Insets DisplayManager::GetOverscanInsets(int64 display_id) const {
std::map<int64, DisplayInfo>::const_iterator it =
display_info_.find(display_id);
return (it != display_info_.end()) ?
it->second.overscan_insets_in_dip() : gfx::Insets();
}
void DisplayManager::OnNativeDisplaysChanged(
const std::vector<DisplayInfo>& updated_displays) {
if (updated_displays.empty()) {
// If the device is booted without display, or chrome is started
// without --ash-host-window-bounds on linux desktop, use the
// default display.
if (displays_.empty()) {
std::vector<DisplayInfo> init_displays;
init_displays.push_back(DisplayInfo::CreateFromSpec(std::string()));
MaybeInitInternalDisplay(init_displays[0].id());
OnNativeDisplaysChanged(init_displays);
} else {
// Otherwise don't update the displays when all displays are disconnected.
// This happens when:
// - the device is idle and powerd requested to turn off all displays.
// - the device is suspended. (kernel turns off all displays)
// - the internal display's brightness is set to 0 and no external
// display is connected.
// - the internal display's brightness is 0 and external display is
// disconnected.
// The display will be updated when one of displays is turned on, and the
// display list will be updated correctly.
}
return;
}
first_display_id_ = updated_displays[0].id();
std::set<gfx::Point> origins;
if (updated_displays.size() == 1) {
VLOG(1) << "OnNativeDisplaysChanged(1):" << updated_displays[0].ToString();
} else {
VLOG(1) << "OnNativeDisplaysChanged(" << updated_displays.size()
<< ") [0]=" << updated_displays[0].ToString()
<< ", [1]=" << updated_displays[1].ToString();
}
bool internal_display_connected = false;
num_connected_displays_ = updated_displays.size();
mirrored_display_ = gfx::Display();
DisplayInfoList new_display_info_list;
for (DisplayInfoList::const_iterator iter = updated_displays.begin();
iter != updated_displays.end();
++iter) {
if (!internal_display_connected)
internal_display_connected = IsInternalDisplayId(iter->id());
// Mirrored monitors have the same origins.
gfx::Point origin = iter->bounds_in_native().origin();
if (origins.find(origin) != origins.end()) {
InsertAndUpdateDisplayInfo(*iter);
mirrored_display_ = CreateDisplayFromDisplayInfoById(iter->id());
} else {
origins.insert(origin);
new_display_info_list.push_back(*iter);
}
}
if (HasInternalDisplay() &&
!internal_display_connected &&
display_info_.find(gfx::Display::InternalDisplayId()) ==
display_info_.end()) {
DisplayInfo internal_display_info(
gfx::Display::InternalDisplayId(),
l10n_util::GetStringUTF8(IDS_ASH_INTERNAL_DISPLAY_NAME),
false /*Internal display must not have overscan */);
internal_display_info.SetBounds(gfx::Rect(0, 0, 800, 600));
display_info_[gfx::Display::InternalDisplayId()] = internal_display_info;
}
UpdateDisplays(new_display_info_list);
}
void DisplayManager::UpdateDisplays() {
DisplayInfoList display_info_list;
for (DisplayList::const_iterator iter = displays_.begin();
iter != displays_.end(); ++iter) {
display_info_list.push_back(GetDisplayInfo(iter->id()));
}
AddMirrorDisplayInfoIfAny(&display_info_list);
UpdateDisplays(display_info_list);
}
void DisplayManager::UpdateDisplays(
const std::vector<DisplayInfo>& updated_display_info_list) {
#if defined(OS_WIN)
if (base::win::GetVersion() >= base::win::VERSION_WIN8) {
DCHECK_EQ(1u, updated_display_info_list.size()) <<
"Multiple display test does not work on Win8 bots. Please "
"skip (don't disable) the test using SupportsMultipleDisplays()";
}
#endif
DisplayInfoList new_display_info_list = updated_display_info_list;
std::sort(displays_.begin(), displays_.end(), DisplaySortFunctor());
std::sort(new_display_info_list.begin(),
new_display_info_list.end(),
DisplayInfoSortFunctor());
DisplayList removed_displays;
std::vector<size_t> changed_display_indices;
std::vector<size_t> added_display_indices;
DisplayList::iterator curr_iter = displays_.begin();
DisplayInfoList::const_iterator new_info_iter = new_display_info_list.begin();
DisplayList new_displays;
// Use the internal display or 1st as the mirror source, then scale
// the root window so that it matches the external display's
// resolution. This is necessary in order for scaling to work while
// mirrored.
int64 mirrored_display_id = gfx::Display::kInvalidDisplayID;
if (software_mirroring_enabled_ && new_display_info_list.size() == 2) {
bool zero_is_source =
first_display_id_ == new_display_info_list[0].id() ||
gfx::Display::InternalDisplayId() == new_display_info_list[0].id();
mirrored_display_id = new_display_info_list[zero_is_source ? 1 : 0].id();
}
while (curr_iter != displays_.end() ||
new_info_iter != new_display_info_list.end()) {
if (new_info_iter != new_display_info_list.end() &&
mirrored_display_id == new_info_iter->id()) {
DisplayInfo info = *new_info_iter;
info.SetOverscanInsets(gfx::Insets());
InsertAndUpdateDisplayInfo(info);
mirrored_display_ = CreateDisplayFromDisplayInfoById(new_info_iter->id());
++new_info_iter;
// Remove existing external dispaly if it is going to be mirrored.
if (curr_iter != displays_.end() &&
curr_iter->id() == mirrored_display_id) {
removed_displays.push_back(*curr_iter);
++curr_iter;
}
continue;
}
if (curr_iter == displays_.end()) {
// more displays in new list.
added_display_indices.push_back(new_displays.size());
InsertAndUpdateDisplayInfo(*new_info_iter);
new_displays.push_back(
CreateDisplayFromDisplayInfoById(new_info_iter->id()));
++new_info_iter;
} else if (new_info_iter == new_display_info_list.end()) {
// more displays in current list.
removed_displays.push_back(*curr_iter);
++curr_iter;
} else if (curr_iter->id() == new_info_iter->id()) {
const gfx::Display& current_display = *curr_iter;
// Copy the info because |CreateDisplayFromInfo| updates the instance.
const DisplayInfo current_display_info =
GetDisplayInfo(current_display.id());
InsertAndUpdateDisplayInfo(*new_info_iter);
gfx::Display new_display =
CreateDisplayFromDisplayInfoById(new_info_iter->id());
const DisplayInfo& new_display_info = GetDisplayInfo(new_display.id());
bool host_window_bounds_changed =
current_display_info.bounds_in_native() !=
new_display_info.bounds_in_native();
if (force_bounds_changed_ ||
host_window_bounds_changed ||
(current_display.device_scale_factor() !=
new_display.device_scale_factor()) ||
(current_display_info.size_in_pixel() !=
new_display.GetSizeInPixel()) ||
(current_display.rotation() != new_display.rotation())) {
changed_display_indices.push_back(new_displays.size());
}
new_display.UpdateWorkAreaFromInsets(current_display.GetWorkAreaInsets());
new_displays.push_back(new_display);
++curr_iter;
++new_info_iter;
} else if (curr_iter->id() < new_info_iter->id()) {
// more displays in current list between ids, which means it is deleted.
removed_displays.push_back(*curr_iter);
++curr_iter;
} else {
// more displays in new list between ids, which means it is added.
added_display_indices.push_back(new_displays.size());
InsertAndUpdateDisplayInfo(*new_info_iter);
new_displays.push_back(
CreateDisplayFromDisplayInfoById(new_info_iter->id()));
++new_info_iter;
}
}
scoped_ptr<MirrorWindowUpdater> mirror_window_updater(
new MirrorWindowUpdater(this, delegate_));
// Do not update |displays_| if there's nothing to be updated. Without this,
// it will not update the display layout, which causes the bug
// http://crbug.com/155948.
if (changed_display_indices.empty() && added_display_indices.empty() &&
removed_displays.empty()) {
return;
}
if (delegate_)
delegate_->PreDisplayConfigurationChange(!removed_displays.empty());
size_t updated_index;
if (UpdateSecondaryDisplayBoundsForLayout(&new_displays, &updated_index) &&
std::find(added_display_indices.begin(),
added_display_indices.end(),
updated_index) == added_display_indices.end() &&
std::find(changed_display_indices.begin(),
changed_display_indices.end(),
updated_index) == changed_display_indices.end()) {
changed_display_indices.push_back(updated_index);
}
displays_ = new_displays;
base::AutoReset<bool> resetter(&change_display_upon_host_resize_, false);
// Temporarily add displays to be removed because display object
// being removed are accessed during shutting down the root.
displays_.insert(displays_.end(), removed_displays.begin(),
removed_displays.end());
for (DisplayList::const_reverse_iterator iter = removed_displays.rbegin();
iter != removed_displays.rend(); ++iter) {
Shell::GetInstance()->screen()->NotifyDisplayRemoved(displays_.back());
displays_.pop_back();
}
// Close the mirror window here to avoid creating two compositor on
// one display.
if (!mirror_window_updater->enabled())
mirror_window_updater.reset();
for (std::vector<size_t>::iterator iter = added_display_indices.begin();
iter != added_display_indices.end(); ++iter) {
Shell::GetInstance()->screen()->NotifyDisplayAdded(displays_[*iter]);
}
// Create the mirror window after all displays are added so that
// it can mirror the display newly added. This can happen when switching
// from dock mode to software mirror mode.
mirror_window_updater.reset();
for (std::vector<size_t>::iterator iter = changed_display_indices.begin();
iter != changed_display_indices.end(); ++iter) {
Shell::GetInstance()->screen()->NotifyBoundsChanged(displays_[*iter]);
}
if (delegate_)
delegate_->PostDisplayConfigurationChange();
#if defined(USE_X11) && defined(OS_CHROMEOS)
if (!changed_display_indices.empty() && base::SysInfo::IsRunningOnChromeOS())
ui::ClearX11DefaultRootWindow();
#endif
}
const gfx::Display& DisplayManager::GetDisplayAt(size_t index) const {
DCHECK_LT(index, displays_.size());
return displays_[index];
}
const gfx::Display& DisplayManager::GetPrimaryDisplayCandidate() const {
if (GetNumDisplays() == 1) {
return displays_[0];
}
DisplayLayout layout = layout_store_->GetRegisteredDisplayLayout(
GetCurrentDisplayIdPair());
return GetDisplayForId(layout.primary_id);
}
size_t DisplayManager::GetNumDisplays() const {
return displays_.size();
}
bool DisplayManager::IsMirrored() const {
return mirrored_display_.id() != gfx::Display::kInvalidDisplayID;
}
const DisplayInfo& DisplayManager::GetDisplayInfo(int64 display_id) const {
std::map<int64, DisplayInfo>::const_iterator iter =
display_info_.find(display_id);
CHECK(iter != display_info_.end()) << display_id;
return iter->second;
}
std::string DisplayManager::GetDisplayNameForId(int64 id) {
if (id == gfx::Display::kInvalidDisplayID)
return l10n_util::GetStringUTF8(IDS_ASH_STATUS_TRAY_UNKNOWN_DISPLAY_NAME);
std::map<int64, DisplayInfo>::const_iterator iter = display_info_.find(id);
if (iter != display_info_.end() && !iter->second.name().empty())
return iter->second.name();
return base::StringPrintf("Display %d", static_cast<int>(id));
}
int64 DisplayManager::GetDisplayIdForUIScaling() const {
// UI Scaling is effective only on internal display.
int64 display_id = gfx::Display::InternalDisplayId();
#if defined(OS_WIN)
display_id = first_display_id();
#endif
return display_id;
}
void DisplayManager::SetMirrorMode(bool mirrored) {
if (num_connected_displays() <= 1)
return;
#if defined(OS_CHROMEOS)
if (base::SysInfo::IsRunningOnChromeOS()) {
chromeos::OutputState new_state = mirrored ?
chromeos::STATE_DUAL_MIRROR : chromeos::STATE_DUAL_EXTENDED;
Shell::GetInstance()->output_configurator()->SetDisplayMode(new_state);
return;
}
#endif
SetSoftwareMirroring(mirrored);
DisplayInfoList display_info_list;
int count = 0;
for (std::map<int64, DisplayInfo>::const_iterator iter =
display_info_.begin();
count < 2; ++iter, ++count) {
display_info_list.push_back(GetDisplayInfo(iter->second.id()));
}
UpdateDisplays(display_info_list);
#if defined(OS_CHROMEOS)
if (Shell::GetInstance()->output_configurator_animation()) {
Shell::GetInstance()->output_configurator_animation()->
StartFadeInAnimation();
}
#endif
}
void DisplayManager::AddRemoveDisplay() {
DCHECK(!displays_.empty());
std::vector<DisplayInfo> new_display_info_list;
const DisplayInfo& first_display = GetDisplayInfo(displays_[0].id());
new_display_info_list.push_back(first_display);
// Add if there is only one display connected.
if (num_connected_displays() == 1) {
// Layout the 2nd display below the primary as with the real device.
gfx::Rect host_bounds = first_display.bounds_in_native();
new_display_info_list.push_back(DisplayInfo::CreateFromSpec(
base::StringPrintf(
"%d+%d-500x400", host_bounds.x(), host_bounds.bottom())));
}
num_connected_displays_ = new_display_info_list.size();
mirrored_display_ = gfx::Display();
UpdateDisplays(new_display_info_list);
}
void DisplayManager::ToggleDisplayScaleFactor() {
DCHECK(!displays_.empty());
std::vector<DisplayInfo> new_display_info_list;
for (DisplayList::const_iterator iter = displays_.begin();
iter != displays_.end(); ++iter) {
DisplayInfo display_info = GetDisplayInfo(iter->id());
display_info.set_device_scale_factor(
display_info.device_scale_factor() == 1.0f ? 2.0f : 1.0f);
new_display_info_list.push_back(display_info);
}
AddMirrorDisplayInfoIfAny(&new_display_info_list);
UpdateDisplays(new_display_info_list);
}
void DisplayManager::SetSoftwareMirroring(bool enabled) {
software_mirroring_enabled_ = enabled;
mirrored_display_ = gfx::Display();
}
bool DisplayManager::UpdateDisplayBounds(int64 display_id,
const gfx::Rect& new_bounds) {
if (change_display_upon_host_resize_) {
display_info_[display_id].SetBounds(new_bounds);
// Don't notify observers if the mirrored window has changed.
if (software_mirroring_enabled_ && mirrored_display_.id() == display_id)
return false;
gfx::Display* display = FindDisplayForId(display_id);
display->SetSize(display_info_[display_id].size_in_pixel());
Shell::GetInstance()->screen()->NotifyBoundsChanged(*display);
return true;
}
return false;
}
void DisplayManager::CreateMirrorWindowIfAny() {
MirrorWindowUpdater updater(this, delegate_);
}
gfx::Display* DisplayManager::FindDisplayForId(int64 id) {
for (DisplayList::iterator iter = displays_.begin();
iter != displays_.end(); ++iter) {
if ((*iter).id() == id)
return &(*iter);
}
DLOG(WARNING) << "Could not find display:" << id;
return NULL;
}
void DisplayManager::AddMirrorDisplayInfoIfAny(
std::vector<DisplayInfo>* display_info_list) {
if (software_mirroring_enabled_ && mirrored_display_.is_valid())
display_info_list->push_back(GetDisplayInfo(mirrored_display_.id()));
}
void DisplayManager::InsertAndUpdateDisplayInfo(const DisplayInfo& new_info) {
std::map<int64, DisplayInfo>::iterator info =
display_info_.find(new_info.id());
if (info != display_info_.end())
info->second.Copy(new_info);
else {
display_info_[new_info.id()] = new_info;
display_info_[new_info.id()].set_native(false);
}
display_info_[new_info.id()].UpdateDisplaySize();
}
gfx::Display DisplayManager::CreateDisplayFromDisplayInfoById(int64 id) {
DCHECK(display_info_.find(id) != display_info_.end());
const DisplayInfo& display_info = display_info_[id];
gfx::Display new_display(display_info.id());
gfx::Rect bounds_in_native(display_info.size_in_pixel());
// Simply set the origin to (0,0). The primary display's origin is
// always (0,0) and the secondary display's bounds will be updated
// in |UpdateSecondaryDisplayBoundsForLayout| called in |UpdateDisplay|.
new_display.SetScaleAndBounds(
display_info.device_scale_factor(), gfx::Rect(bounds_in_native.size()));
new_display.set_rotation(display_info.rotation());
return new_display;
}
bool DisplayManager::UpdateSecondaryDisplayBoundsForLayout(
DisplayList* displays,
size_t* updated_index) const {
if (displays->size() != 2U)
return false;
int64 id_at_zero = displays->at(0).id();
DisplayIdPair pair =
(id_at_zero == first_display_id_ ||
id_at_zero == gfx::Display::InternalDisplayId()) ?
std::make_pair(id_at_zero, displays->at(1).id()) :
std::make_pair(displays->at(1).id(), id_at_zero) ;
DisplayLayout layout =
layout_store_->ComputeDisplayLayoutForDisplayIdPair(pair);
// Ignore if a user has a old format (should be extremely rare)
// and this will be replaced with DCHECK.
if (layout.primary_id != gfx::Display::kInvalidDisplayID) {
size_t primary_index, secondary_index;
if (displays->at(0).id() == layout.primary_id) {
primary_index = 0;
secondary_index = 1;
} else {
primary_index = 1;
secondary_index = 0;
}
// This function may be called before the secondary display is
// registered. The bounds is empty in that case and will
// return true.
gfx::Rect bounds =
GetDisplayForId(displays->at(secondary_index).id()).bounds();
UpdateDisplayBoundsForLayout(
layout, displays->at(primary_index), &displays->at(secondary_index));
*updated_index = secondary_index;
return bounds != displays->at(secondary_index).bounds();
}
return false;
}
// static
void DisplayManager::UpdateDisplayBoundsForLayout(
const DisplayLayout& layout,
const gfx::Display& primary_display,
gfx::Display* secondary_display) {
DCHECK_EQ("0,0", primary_display.bounds().origin().ToString());
const gfx::Rect& primary_bounds = primary_display.bounds();
const gfx::Rect& secondary_bounds = secondary_display->bounds();
gfx::Point new_secondary_origin = primary_bounds.origin();
DisplayLayout::Position position = layout.position;
// Ignore the offset in case the secondary display doesn't share edges with
// the primary display.
int offset = layout.offset;
if (position == DisplayLayout::TOP || position == DisplayLayout::BOTTOM) {
offset = std::min(
offset, primary_bounds.width() - kMinimumOverlapForInvalidOffset);
offset = std::max(
offset, -secondary_bounds.width() + kMinimumOverlapForInvalidOffset);
} else {
offset = std::min(
offset, primary_bounds.height() - kMinimumOverlapForInvalidOffset);
offset = std::max(
offset, -secondary_bounds.height() + kMinimumOverlapForInvalidOffset);
}
switch (position) {
case DisplayLayout::TOP:
new_secondary_origin.Offset(offset, -secondary_bounds.height());
break;
case DisplayLayout::RIGHT:
new_secondary_origin.Offset(primary_bounds.width(), offset);
break;
case DisplayLayout::BOTTOM:
new_secondary_origin.Offset(offset, primary_bounds.height());
break;
case DisplayLayout::LEFT:
new_secondary_origin.Offset(-secondary_bounds.width(), offset);
break;
}
gfx::Insets insets = secondary_display->GetWorkAreaInsets();
secondary_display->set_bounds(
gfx::Rect(new_secondary_origin, secondary_bounds.size()));
secondary_display->UpdateWorkAreaFromInsets(insets);
}
} // namespace internal
} // namespace ash