blob: 15633bb20178b961b4742c6f9b0fd55beb0f22dd [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/audio_output_resampler.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/compiler_specific.h"
#include "base/metrics/histogram.h"
#include "base/single_thread_task_runner.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "media/audio/audio_io.h"
#include "media/audio/audio_output_dispatcher_impl.h"
#include "media/audio/audio_output_proxy.h"
#include "media/audio/sample_rates.h"
#include "media/base/audio_converter.h"
#include "media/base/limits.h"
namespace media {
class OnMoreDataConverter
: public AudioOutputStream::AudioSourceCallback,
public AudioConverter::InputCallback {
public:
OnMoreDataConverter(const AudioParameters& input_params,
const AudioParameters& output_params);
virtual ~OnMoreDataConverter();
// AudioSourceCallback interface.
virtual int OnMoreData(AudioBus* dest,
AudioBuffersState buffers_state) OVERRIDE;
virtual void OnError(AudioOutputStream* stream) OVERRIDE;
// Sets |source_callback_|. If this is not a new object, then Stop() must be
// called before Start().
void Start(AudioOutputStream::AudioSourceCallback* callback);
// Clears |source_callback_| and flushes the resampler.
void Stop();
bool started() { return source_callback_ != NULL; }
private:
// AudioConverter::InputCallback implementation.
virtual double ProvideInput(AudioBus* audio_bus,
base::TimeDelta buffer_delay) OVERRIDE;
// Ratio of input bytes to output bytes used to correct playback delay with
// regard to buffering and resampling.
const double io_ratio_;
// Source callback.
AudioOutputStream::AudioSourceCallback* source_callback_;
// Last AudioBuffersState object received via OnMoreData(), used to correct
// playback delay by ProvideInput() and passed on to |source_callback_|.
AudioBuffersState current_buffers_state_;
const int input_bytes_per_second_;
// Handles resampling, buffering, and channel mixing between input and output
// parameters.
AudioConverter audio_converter_;
DISALLOW_COPY_AND_ASSIGN(OnMoreDataConverter);
};
// Record UMA statistics for hardware output configuration.
static void RecordStats(const AudioParameters& output_params) {
// Note the 'PRESUBMIT_IGNORE_UMA_MAX's below, these silence the PRESUBMIT.py
// check for uma enum max usage, since we're abusing UMA_HISTOGRAM_ENUMERATION
// to report a discrete value.
UMA_HISTOGRAM_ENUMERATION(
"Media.HardwareAudioBitsPerChannel",
output_params.bits_per_sample(),
limits::kMaxBitsPerSample); // PRESUBMIT_IGNORE_UMA_MAX
UMA_HISTOGRAM_ENUMERATION(
"Media.HardwareAudioChannelLayout", output_params.channel_layout(),
CHANNEL_LAYOUT_MAX + 1);
UMA_HISTOGRAM_ENUMERATION(
"Media.HardwareAudioChannelCount", output_params.channels(),
limits::kMaxChannels); // PRESUBMIT_IGNORE_UMA_MAX
AudioSampleRate asr;
if (ToAudioSampleRate(output_params.sample_rate(), &asr)) {
UMA_HISTOGRAM_ENUMERATION(
"Media.HardwareAudioSamplesPerSecond", asr, kAudioSampleRateMax + 1);
} else {
UMA_HISTOGRAM_COUNTS(
"Media.HardwareAudioSamplesPerSecondUnexpected",
output_params.sample_rate());
}
}
// Record UMA statistics for hardware output configuration after fallback.
static void RecordFallbackStats(const AudioParameters& output_params) {
UMA_HISTOGRAM_BOOLEAN("Media.FallbackToHighLatencyAudioPath", true);
// Note the 'PRESUBMIT_IGNORE_UMA_MAX's below, these silence the PRESUBMIT.py
// check for uma enum max usage, since we're abusing UMA_HISTOGRAM_ENUMERATION
// to report a discrete value.
UMA_HISTOGRAM_ENUMERATION(
"Media.FallbackHardwareAudioBitsPerChannel",
output_params.bits_per_sample(),
limits::kMaxBitsPerSample); // PRESUBMIT_IGNORE_UMA_MAX
UMA_HISTOGRAM_ENUMERATION(
"Media.FallbackHardwareAudioChannelLayout",
output_params.channel_layout(), CHANNEL_LAYOUT_MAX + 1);
UMA_HISTOGRAM_ENUMERATION(
"Media.FallbackHardwareAudioChannelCount", output_params.channels(),
limits::kMaxChannels); // PRESUBMIT_IGNORE_UMA_MAX
AudioSampleRate asr;
if (ToAudioSampleRate(output_params.sample_rate(), &asr)) {
UMA_HISTOGRAM_ENUMERATION(
"Media.FallbackHardwareAudioSamplesPerSecond",
asr, kAudioSampleRateMax + 1);
} else {
UMA_HISTOGRAM_COUNTS(
"Media.FallbackHardwareAudioSamplesPerSecondUnexpected",
output_params.sample_rate());
}
}
// Converts low latency based |output_params| into high latency appropriate
// output parameters in error situations.
void AudioOutputResampler::SetupFallbackParams() {
// Only Windows has a high latency output driver that is not the same as the low
// latency path.
#if defined(OS_WIN)
// Choose AudioParameters appropriate for opening the device in high latency
// mode. |kMinLowLatencyFrameSize| is arbitrarily based on Pepper Flash's
// MAXIMUM frame size for low latency.
static const int kMinLowLatencyFrameSize = 2048;
const int frames_per_buffer =
std::max(params_.frames_per_buffer(), kMinLowLatencyFrameSize);
output_params_ = AudioParameters(
AudioParameters::AUDIO_PCM_LINEAR, params_.channel_layout(),
params_.sample_rate(), params_.bits_per_sample(),
frames_per_buffer);
device_id_ = "";
Initialize();
#endif
}
AudioOutputResampler::AudioOutputResampler(AudioManager* audio_manager,
const AudioParameters& input_params,
const AudioParameters& output_params,
const std::string& output_device_id,
const base::TimeDelta& close_delay)
: AudioOutputDispatcher(audio_manager, input_params, output_device_id),
close_delay_(close_delay),
output_params_(output_params),
streams_opened_(false) {
DCHECK(input_params.IsValid());
DCHECK(output_params.IsValid());
DCHECK_EQ(output_params_.format(), AudioParameters::AUDIO_PCM_LOW_LATENCY);
// Record UMA statistics for the hardware configuration.
RecordStats(output_params);
Initialize();
}
AudioOutputResampler::~AudioOutputResampler() {
DCHECK(callbacks_.empty());
}
void AudioOutputResampler::Initialize() {
DCHECK(!streams_opened_);
DCHECK(callbacks_.empty());
dispatcher_ = new AudioOutputDispatcherImpl(
audio_manager_, output_params_, device_id_, close_delay_);
}
bool AudioOutputResampler::OpenStream() {
DCHECK(task_runner_->BelongsToCurrentThread());
if (dispatcher_->OpenStream()) {
// Only record the UMA statistic if we didn't fallback during construction
// and only for the first stream we open.
if (!streams_opened_ &&
output_params_.format() == AudioParameters::AUDIO_PCM_LOW_LATENCY) {
UMA_HISTOGRAM_BOOLEAN("Media.FallbackToHighLatencyAudioPath", false);
}
streams_opened_ = true;
return true;
}
// If we've already tried to open the stream in high latency mode or we've
// successfully opened a stream previously, there's nothing more to be done.
if (output_params_.format() != AudioParameters::AUDIO_PCM_LOW_LATENCY ||
streams_opened_ || !callbacks_.empty()) {
return false;
}
DCHECK_EQ(output_params_.format(), AudioParameters::AUDIO_PCM_LOW_LATENCY);
// Record UMA statistics about the hardware which triggered the failure so
// we can debug and triage later.
RecordFallbackStats(output_params_);
// Only Windows has a high latency output driver that is not the same as the
// low latency path.
#if defined(OS_WIN)
DLOG(ERROR) << "Unable to open audio device in low latency mode. Falling "
<< "back to high latency audio output.";
SetupFallbackParams();
if (dispatcher_->OpenStream()) {
streams_opened_ = true;
return true;
}
#endif
DLOG(ERROR) << "Unable to open audio device in high latency mode. Falling "
<< "back to fake audio output.";
// Finally fall back to a fake audio output device.
output_params_.Reset(
AudioParameters::AUDIO_FAKE, params_.channel_layout(),
params_.channels(), params_.input_channels(), params_.sample_rate(),
params_.bits_per_sample(), params_.frames_per_buffer());
Initialize();
if (dispatcher_->OpenStream()) {
streams_opened_ = true;
return true;
}
return false;
}
bool AudioOutputResampler::StartStream(
AudioOutputStream::AudioSourceCallback* callback,
AudioOutputProxy* stream_proxy) {
DCHECK(task_runner_->BelongsToCurrentThread());
OnMoreDataConverter* resampler_callback = NULL;
CallbackMap::iterator it = callbacks_.find(stream_proxy);
if (it == callbacks_.end()) {
resampler_callback = new OnMoreDataConverter(params_, output_params_);
callbacks_[stream_proxy] = resampler_callback;
} else {
resampler_callback = it->second;
}
resampler_callback->Start(callback);
bool result = dispatcher_->StartStream(resampler_callback, stream_proxy);
if (!result)
resampler_callback->Stop();
return result;
}
void AudioOutputResampler::StreamVolumeSet(AudioOutputProxy* stream_proxy,
double volume) {
DCHECK(task_runner_->BelongsToCurrentThread());
dispatcher_->StreamVolumeSet(stream_proxy, volume);
}
void AudioOutputResampler::StopStream(AudioOutputProxy* stream_proxy) {
DCHECK(task_runner_->BelongsToCurrentThread());
dispatcher_->StopStream(stream_proxy);
// Now that StopStream() has completed the underlying physical stream should
// be stopped and no longer calling OnMoreData(), making it safe to Stop() the
// OnMoreDataConverter.
CallbackMap::iterator it = callbacks_.find(stream_proxy);
if (it != callbacks_.end())
it->second->Stop();
}
void AudioOutputResampler::CloseStream(AudioOutputProxy* stream_proxy) {
DCHECK(task_runner_->BelongsToCurrentThread());
dispatcher_->CloseStream(stream_proxy);
// We assume that StopStream() is always called prior to CloseStream(), so
// that it is safe to delete the OnMoreDataConverter here.
CallbackMap::iterator it = callbacks_.find(stream_proxy);
if (it != callbacks_.end()) {
delete it->second;
callbacks_.erase(it);
}
}
void AudioOutputResampler::Shutdown() {
DCHECK(task_runner_->BelongsToCurrentThread());
// No AudioOutputProxy objects should hold a reference to us when we get
// to this stage.
DCHECK(HasOneRef()) << "Only the AudioManager should hold a reference";
dispatcher_->Shutdown();
DCHECK(callbacks_.empty());
}
OnMoreDataConverter::OnMoreDataConverter(const AudioParameters& input_params,
const AudioParameters& output_params)
: io_ratio_(static_cast<double>(input_params.GetBytesPerSecond()) /
output_params.GetBytesPerSecond()),
source_callback_(NULL),
input_bytes_per_second_(input_params.GetBytesPerSecond()),
audio_converter_(input_params, output_params, false) {}
OnMoreDataConverter::~OnMoreDataConverter() {
// Ensure Stop() has been called so we don't end up with an AudioOutputStream
// calling back into OnMoreData() after destruction.
CHECK(!source_callback_);
}
void OnMoreDataConverter::Start(
AudioOutputStream::AudioSourceCallback* callback) {
CHECK(!source_callback_);
source_callback_ = callback;
// While AudioConverter can handle multiple inputs, we're using it only with
// a single input currently. Eventually this may be the basis for a browser
// side mixer.
audio_converter_.AddInput(this);
}
void OnMoreDataConverter::Stop() {
CHECK(source_callback_);
source_callback_ = NULL;
audio_converter_.RemoveInput(this);
}
int OnMoreDataConverter::OnMoreData(AudioBus* dest,
AudioBuffersState buffers_state) {
current_buffers_state_ = buffers_state;
audio_converter_.Convert(dest);
// Always return the full number of frames requested, ProvideInput()
// will pad with silence if it wasn't able to acquire enough data.
return dest->frames();
}
double OnMoreDataConverter::ProvideInput(AudioBus* dest,
base::TimeDelta buffer_delay) {
// Adjust playback delay to include |buffer_delay|.
// TODO(dalecurtis): Stop passing bytes around, it doesn't make sense since
// AudioBus is just float data. Use TimeDelta instead.
AudioBuffersState new_buffers_state;
new_buffers_state.pending_bytes =
io_ratio_ * (current_buffers_state_.total_bytes() +
buffer_delay.InSecondsF() * input_bytes_per_second_);
// Retrieve data from the original callback.
const int frames = source_callback_->OnMoreData(dest, new_buffers_state);
// Zero any unfilled frames if anything was filled, otherwise we'll just
// return a volume of zero and let AudioConverter drop the output.
if (frames > 0 && frames < dest->frames())
dest->ZeroFramesPartial(frames, dest->frames() - frames);
return frames > 0 ? 1 : 0;
}
void OnMoreDataConverter::OnError(AudioOutputStream* stream) {
source_callback_->OnError(stream);
}
} // namespace media