blob: 81c34e629e4b352335cca142c73a17529cecbfbe [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ash/wm/workspace/workspace_window_resizer.h"
#include <algorithm>
#include <cmath>
#include <utility>
#include <vector>
#include "ash/ash_switches.h"
#include "ash/display/display_controller.h"
#include "ash/root_window_controller.h"
#include "ash/screen_ash.h"
#include "ash/shell.h"
#include "ash/shell_window_ids.h"
#include "ash/wm/coordinate_conversion.h"
#include "ash/wm/default_window_resizer.h"
#include "ash/wm/dock/docked_window_layout_manager.h"
#include "ash/wm/dock/docked_window_resizer.h"
#include "ash/wm/drag_window_resizer.h"
#include "ash/wm/panels/panel_window_resizer.h"
#include "ash/wm/window_state.h"
#include "ash/wm/window_util.h"
#include "ash/wm/workspace/phantom_window_controller.h"
#include "ash/wm/workspace/snap_sizer.h"
#include "base/command_line.h"
#include "base/memory/weak_ptr.h"
#include "ui/aura/client/aura_constants.h"
#include "ui/aura/client/screen_position_client.h"
#include "ui/aura/client/window_types.h"
#include "ui/aura/root_window.h"
#include "ui/aura/window.h"
#include "ui/aura/window_delegate.h"
#include "ui/base/hit_test.h"
#include "ui/compositor/layer.h"
#include "ui/gfx/screen.h"
#include "ui/gfx/transform.h"
namespace ash {
scoped_ptr<WindowResizer> CreateWindowResizer(
aura::Window* window,
const gfx::Point& point_in_parent,
int window_component,
aura::client::WindowMoveSource source) {
DCHECK(window);
wm::WindowState* window_state = wm::GetWindowState(window);
// No need to return a resizer when the window cannot get resized.
if (!window_state->CanResize() && window_component != HTCAPTION)
return scoped_ptr<WindowResizer>();
// TODO(varkha): The chaining of window resizers causes some of the logic
// to be repeated and the logic flow difficult to control. With some windows
// classes using reparenting during drag operations it becomes challenging to
// implement proper transition from one resizer to another during or at the
// end of the drag. This also causes http://crbug.com/247085.
// It seems the only thing the panel or dock resizer needs to do is notify the
// layout manager when a docked window is being dragged. We should have a
// better way of doing this, perhaps by having a way of observing drags or
// having a generic drag window wrapper which informs a layout manager that a
// drag has started or stopped.
// It may be possible to refactor and eliminate chaining.
WindowResizer* window_resizer = NULL;
if (window->parent() &&
(window->parent()->id() == internal::kShellWindowId_DefaultContainer ||
window->parent()->id() == internal::kShellWindowId_DockedContainer ||
window->parent()->id() == internal::kShellWindowId_PanelContainer)) {
// Allow dragging maximized windows if it's not tracked by workspace. This
// is set by tab dragging code.
if (!window_state->IsNormalShowState() &&
(window_component != HTCAPTION ||
window_state->tracked_by_workspace())) {
return scoped_ptr<WindowResizer>();
}
window_resizer = internal::WorkspaceWindowResizer::Create(
window,
point_in_parent,
window_component,
source,
std::vector<aura::Window*>());
} else if (window_state->IsNormalShowState()) {
window_resizer = DefaultWindowResizer::Create(
window, point_in_parent, window_component, source);
}
if (window_resizer) {
window_resizer = internal::DragWindowResizer::Create(
window_resizer, window, point_in_parent, window_component, source);
}
if (window_resizer && window->type() == aura::client::WINDOW_TYPE_PANEL) {
window_resizer = PanelWindowResizer::Create(
window_resizer, window, point_in_parent, window_component, source);
}
if (CommandLine::ForCurrentProcess()->HasSwitch(
switches::kAshEnableDockedWindows) &&
window_resizer && window->parent() &&
(window->parent()->id() == internal::kShellWindowId_DefaultContainer ||
window->parent()->id() == internal::kShellWindowId_DockedContainer ||
window->parent()->id() == internal::kShellWindowId_PanelContainer)) {
window_resizer = internal::DockedWindowResizer::Create(
window_resizer, window, point_in_parent, window_component, source);
}
return make_scoped_ptr<WindowResizer>(window_resizer);
}
namespace internal {
namespace {
// Snapping distance used instead of WorkspaceWindowResizer::kScreenEdgeInset
// when resizing a window using touchscreen.
const int kScreenEdgeInsetForTouchResize = 32;
// Returns true if the window should stick to the edge.
bool ShouldStickToEdge(int distance_from_edge, int sticky_size) {
if (CommandLine::ForCurrentProcess()->HasSwitch(
switches::kAshEnableStickyEdges) ||
CommandLine::ForCurrentProcess()->HasSwitch(
switches::kAshEnableDockedWindows)) {
return distance_from_edge < 0 &&
distance_from_edge > -sticky_size;
}
return distance_from_edge < sticky_size &&
distance_from_edge > -sticky_size * 2;
}
// Returns the coordinate along the secondary axis to snap to.
int CoordinateAlongSecondaryAxis(SecondaryMagnetismEdge edge,
int leading,
int trailing,
int none) {
switch (edge) {
case SECONDARY_MAGNETISM_EDGE_LEADING:
return leading;
case SECONDARY_MAGNETISM_EDGE_TRAILING:
return trailing;
case SECONDARY_MAGNETISM_EDGE_NONE:
return none;
}
NOTREACHED();
return none;
}
// Returns the origin for |src| when magnetically attaching to |attach_to| along
// the edges |edges|. |edges| is a bitmask of the MagnetismEdges.
gfx::Point OriginForMagneticAttach(const gfx::Rect& src,
const gfx::Rect& attach_to,
const MatchedEdge& edge) {
int x = 0, y = 0;
switch (edge.primary_edge) {
case MAGNETISM_EDGE_TOP:
y = attach_to.bottom();
break;
case MAGNETISM_EDGE_LEFT:
x = attach_to.right();
break;
case MAGNETISM_EDGE_BOTTOM:
y = attach_to.y() - src.height();
break;
case MAGNETISM_EDGE_RIGHT:
x = attach_to.x() - src.width();
break;
}
switch (edge.primary_edge) {
case MAGNETISM_EDGE_TOP:
case MAGNETISM_EDGE_BOTTOM:
x = CoordinateAlongSecondaryAxis(
edge.secondary_edge, attach_to.x(), attach_to.right() - src.width(),
src.x());
break;
case MAGNETISM_EDGE_LEFT:
case MAGNETISM_EDGE_RIGHT:
y = CoordinateAlongSecondaryAxis(
edge.secondary_edge, attach_to.y(), attach_to.bottom() - src.height(),
src.y());
break;
}
return gfx::Point(x, y);
}
// Returns the bounds for a magnetic attach when resizing. |src| is the bounds
// of window being resized, |attach_to| the bounds of the window to attach to
// and |edge| identifies the edge to attach to.
gfx::Rect BoundsForMagneticResizeAttach(const gfx::Rect& src,
const gfx::Rect& attach_to,
const MatchedEdge& edge) {
int x = src.x();
int y = src.y();
int w = src.width();
int h = src.height();
gfx::Point attach_origin(OriginForMagneticAttach(src, attach_to, edge));
switch (edge.primary_edge) {
case MAGNETISM_EDGE_LEFT:
x = attach_origin.x();
w = src.right() - x;
break;
case MAGNETISM_EDGE_RIGHT:
w += attach_origin.x() - src.x();
break;
case MAGNETISM_EDGE_TOP:
y = attach_origin.y();
h = src.bottom() - y;
break;
case MAGNETISM_EDGE_BOTTOM:
h += attach_origin.y() - src.y();
break;
}
switch (edge.primary_edge) {
case MAGNETISM_EDGE_LEFT:
case MAGNETISM_EDGE_RIGHT:
if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
y = attach_origin.y();
h = src.bottom() - y;
} else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
h += attach_origin.y() - src.y();
}
break;
case MAGNETISM_EDGE_TOP:
case MAGNETISM_EDGE_BOTTOM:
if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_LEADING) {
x = attach_origin.x();
w = src.right() - x;
} else if (edge.secondary_edge == SECONDARY_MAGNETISM_EDGE_TRAILING) {
w += attach_origin.x() - src.x();
}
break;
}
return gfx::Rect(x, y, w, h);
}
// Converts a window component edge to the magnetic edge to snap to.
uint32 WindowComponentToMagneticEdge(int window_component) {
switch (window_component) {
case HTTOPLEFT:
return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_TOP;
case HTTOPRIGHT:
return MAGNETISM_EDGE_TOP | MAGNETISM_EDGE_RIGHT;
case HTBOTTOMLEFT:
return MAGNETISM_EDGE_LEFT | MAGNETISM_EDGE_BOTTOM;
case HTBOTTOMRIGHT:
return MAGNETISM_EDGE_RIGHT | MAGNETISM_EDGE_BOTTOM;
case HTTOP:
return MAGNETISM_EDGE_TOP;
case HTBOTTOM:
return MAGNETISM_EDGE_BOTTOM;
case HTRIGHT:
return MAGNETISM_EDGE_RIGHT;
case HTLEFT:
return MAGNETISM_EDGE_LEFT;
default:
break;
}
return 0;
}
} // namespace
// static
const int WorkspaceWindowResizer::kMinOnscreenSize = 20;
// static
const int WorkspaceWindowResizer::kMinOnscreenHeight = 32;
// static
const int WorkspaceWindowResizer::kScreenEdgeInset = 8;
// static
const int WorkspaceWindowResizer::kStickyDistancePixels = 64;
// Represents the width or height of a window with constraints on its minimum
// and maximum size. 0 represents a lack of a constraint.
class WindowSize {
public:
WindowSize(int size, int min, int max)
: size_(size),
min_(min),
max_(max) {
// Grow the min/max bounds to include the starting size.
if (is_underflowing())
min_ = size_;
if (is_overflowing())
max_ = size_;
}
bool is_at_capacity(bool shrinking) {
return size_ == (shrinking ? min_ : max_);
}
int size() const {
return size_;
}
bool has_min() const {
return min_ != 0;
}
bool has_max() const {
return max_ != 0;
}
bool is_valid() const {
return !is_overflowing() && !is_underflowing();
}
bool is_overflowing() const {
return has_max() && size_ > max_;
}
bool is_underflowing() const {
return has_min() && size_ < min_;
}
// Add |amount| to this WindowSize not exceeding min or max size constraints.
// Returns by how much |size_| + |amount| exceeds the min/max constraints.
int Add(int amount) {
DCHECK(is_valid());
int new_value = size_ + amount;
if (has_min() && new_value < min_) {
size_ = min_;
return new_value - min_;
}
if (has_max() && new_value > max_) {
size_ = max_;
return new_value - max_;
}
size_ = new_value;
return 0;
}
private:
int size_;
int min_;
int max_;
};
WorkspaceWindowResizer::~WorkspaceWindowResizer() {
Shell* shell = Shell::GetInstance();
shell->cursor_manager()->UnlockCursor();
}
// static
WorkspaceWindowResizer* WorkspaceWindowResizer::Create(
aura::Window* window,
const gfx::Point& location_in_parent,
int window_component,
aura::client::WindowMoveSource source,
const std::vector<aura::Window*>& attached_windows) {
Details details(window, location_in_parent, window_component, source);
return details.is_resizable ?
new WorkspaceWindowResizer(details, attached_windows) : NULL;
}
void WorkspaceWindowResizer::Drag(const gfx::Point& location_in_parent,
int event_flags) {
last_mouse_location_ = location_in_parent;
int sticky_size;
if (event_flags & ui::EF_CONTROL_DOWN) {
sticky_size = 0;
} else if (CommandLine::ForCurrentProcess()->HasSwitch(
switches::kAshEnableStickyEdges) ||
CommandLine::ForCurrentProcess()->HasSwitch(
switches::kAshEnableDockedWindows)) {
sticky_size = kStickyDistancePixels;
} else if ((details_.bounds_change & kBoundsChange_Resizes) &&
details_.source == aura::client::WINDOW_MOVE_SOURCE_TOUCH) {
sticky_size = kScreenEdgeInsetForTouchResize;
} else {
sticky_size = kScreenEdgeInset;
}
// |bounds| is in |window()->parent()|'s coordinates.
gfx::Rect bounds = CalculateBoundsForDrag(details_, location_in_parent);
if (window_state()->IsNormalShowState())
AdjustBoundsForMainWindow(sticky_size, &bounds);
if (bounds != window()->bounds()) {
if (!did_move_or_resize_) {
if (!details_.restore_bounds.IsEmpty())
window_state()->ClearRestoreBounds();
RestackWindows();
}
did_move_or_resize_ = true;
}
gfx::Point location_in_screen = location_in_parent;
wm::ConvertPointToScreen(window()->parent(), &location_in_screen);
aura::RootWindow* root = NULL;
gfx::Display display =
ScreenAsh::FindDisplayContainingPoint(location_in_screen);
// Track the last screen that the pointer was on to keep the snap phantom
// window there.
if (display.is_valid()) {
root = Shell::GetInstance()->display_controller()->
GetRootWindowForDisplayId(display.id());
}
if (!attached_windows_.empty())
LayoutAttachedWindows(&bounds);
if (bounds != window()->bounds()) {
// SetBounds needs to be called to update the layout which affects where the
// phantom window is drawn. Keep track if the window was destroyed during
// the drag and quit early if so.
base::WeakPtr<WorkspaceWindowResizer> resizer(
weak_ptr_factory_.GetWeakPtr());
window()->SetBounds(bounds);
if (!resizer)
return;
}
const bool in_original_root = !root || root == window()->GetRootWindow();
// Hide a phantom window for snapping if the cursor is in another root window.
if (in_original_root) {
UpdateSnapPhantomWindow(location_in_parent, bounds);
} else {
snap_type_ = SNAP_NONE;
snap_phantom_window_controller_.reset();
snap_sizer_.reset();
SetDraggedWindowDocked(false);
}
}
void WorkspaceWindowResizer::CompleteDrag(int event_flags) {
window_state()->set_bounds_changed_by_user(true);
snap_phantom_window_controller_.reset();
if (!did_move_or_resize_ || details_.window_component != HTCAPTION)
return;
// When the window is not in the normal show state, we do not snap the window.
// This happens when the user minimizes or maximizes the window by keyboard
// shortcut while dragging it. If the window is the result of dragging a tab
// out of a maximized window, it's already in the normal show state when this
// is called, so it does not matter.
if (window_state()->IsNormalShowState() &&
(window()->type() != aura::client::WINDOW_TYPE_PANEL ||
!window_state()->panel_attached()) &&
(snap_type_ == SNAP_LEFT || snap_type_ == SNAP_RIGHT)) {
if (!window_state()->HasRestoreBounds()) {
gfx::Rect initial_bounds = ScreenAsh::ConvertRectToScreen(
window()->parent(), details_.initial_bounds_in_parent);
window_state()->SetRestoreBoundsInScreen(
details_.restore_bounds.IsEmpty() ?
initial_bounds :
details_.restore_bounds);
}
DCHECK(snap_sizer_);
if (window_state()->CanResize() &&
!dock_layout_->is_dragged_window_docked()) {
snap_sizer_->SnapWindowToTargetBounds();
}
}
}
void WorkspaceWindowResizer::RevertDrag() {
snap_phantom_window_controller_.reset();
if (!did_move_or_resize_)
return;
window()->SetBounds(details_.initial_bounds_in_parent);
if (!details_.restore_bounds.IsEmpty()) {
window_state()->SetRestoreBoundsInScreen(details_.restore_bounds);
}
if (details_.window_component == HTRIGHT) {
int last_x = details_.initial_bounds_in_parent.right();
for (size_t i = 0; i < attached_windows_.size(); ++i) {
gfx::Rect bounds(attached_windows_[i]->bounds());
bounds.set_x(last_x);
bounds.set_width(initial_size_[i]);
attached_windows_[i]->SetBounds(bounds);
last_x = attached_windows_[i]->bounds().right();
}
} else {
int last_y = details_.initial_bounds_in_parent.bottom();
for (size_t i = 0; i < attached_windows_.size(); ++i) {
gfx::Rect bounds(attached_windows_[i]->bounds());
bounds.set_y(last_y);
bounds.set_height(initial_size_[i]);
attached_windows_[i]->SetBounds(bounds);
last_y = attached_windows_[i]->bounds().bottom();
}
}
}
aura::Window* WorkspaceWindowResizer::GetTarget() {
return details_.window;
}
const gfx::Point& WorkspaceWindowResizer::GetInitialLocation() const {
return details_.initial_location_in_parent;
}
WorkspaceWindowResizer::WorkspaceWindowResizer(
const Details& details,
const std::vector<aura::Window*>& attached_windows)
: details_(details),
attached_windows_(attached_windows),
did_move_or_resize_(false),
total_min_(0),
total_initial_size_(0),
snap_type_(SNAP_NONE),
num_mouse_moves_since_bounds_change_(0),
magnetism_window_(NULL),
weak_ptr_factory_(this) {
DCHECK(details_.is_resizable);
Shell* shell = Shell::GetInstance();
shell->cursor_manager()->LockCursor();
aura::Window* dock_container = Shell::GetContainer(
window()->GetRootWindow(), kShellWindowId_DockedContainer);
dock_layout_ = static_cast<DockedWindowLayoutManager*>(
dock_container->layout_manager());
// Only support attaching to the right/bottom.
DCHECK(attached_windows_.empty() ||
(details.window_component == HTRIGHT ||
details.window_component == HTBOTTOM));
// TODO: figure out how to deal with window going off the edge.
// Calculate sizes so that we can maintain the ratios if we need to resize.
int total_available = 0;
for (size_t i = 0; i < attached_windows_.size(); ++i) {
gfx::Size min(attached_windows_[i]->delegate()->GetMinimumSize());
int initial_size = PrimaryAxisSize(attached_windows_[i]->bounds().size());
initial_size_.push_back(initial_size);
// If current size is smaller than the min, use the current size as the min.
// This way we don't snap on resize.
int min_size = std::min(initial_size,
std::max(PrimaryAxisSize(min), kMinOnscreenSize));
total_min_ += min_size;
total_initial_size_ += initial_size;
total_available += std::max(min_size, initial_size) - min_size;
}
}
gfx::Rect WorkspaceWindowResizer::GetFinalBounds(
const gfx::Rect& bounds) const {
if (snap_phantom_window_controller_.get() &&
snap_phantom_window_controller_->IsShowing()) {
return snap_phantom_window_controller_->bounds_in_screen();
}
return bounds;
}
void WorkspaceWindowResizer::LayoutAttachedWindows(
gfx::Rect* bounds) {
gfx::Rect work_area(ScreenAsh::GetDisplayWorkAreaBoundsInParent(window()));
int initial_size = PrimaryAxisSize(details_.initial_bounds_in_parent.size());
int current_size = PrimaryAxisSize(bounds->size());
int start = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
int end = PrimaryAxisCoordinate(work_area.right(), work_area.bottom());
int delta = current_size - initial_size;
int available_size = end - start;
std::vector<int> sizes;
int leftovers = CalculateAttachedSizes(delta, available_size, &sizes);
// leftovers > 0 means that the attached windows can't grow to compensate for
// the shrinkage of the main window. This line causes the attached windows to
// be moved so they are still flush against the main window, rather than the
// main window being prevented from shrinking.
leftovers = std::min(0, leftovers);
// Reallocate any leftover pixels back into the main window. This is
// necessary when, for example, the main window shrinks, but none of the
// attached windows can grow without exceeding their max size constraints.
// Adding the pixels back to the main window effectively prevents the main
// window from resizing too far.
if (details_.window_component == HTRIGHT)
bounds->set_width(bounds->width() + leftovers);
else
bounds->set_height(bounds->height() + leftovers);
DCHECK_EQ(attached_windows_.size(), sizes.size());
int last = PrimaryAxisCoordinate(bounds->right(), bounds->bottom());
for (size_t i = 0; i < attached_windows_.size(); ++i) {
gfx::Rect attached_bounds(attached_windows_[i]->bounds());
if (details_.window_component == HTRIGHT) {
attached_bounds.set_x(last);
attached_bounds.set_width(sizes[i]);
} else {
attached_bounds.set_y(last);
attached_bounds.set_height(sizes[i]);
}
attached_windows_[i]->SetBounds(attached_bounds);
last += sizes[i];
}
}
int WorkspaceWindowResizer::CalculateAttachedSizes(
int delta,
int available_size,
std::vector<int>* sizes) const {
std::vector<WindowSize> window_sizes;
CreateBucketsForAttached(&window_sizes);
// How much we need to grow the attached by (collectively).
int grow_attached_by = 0;
if (delta > 0) {
// If the attached windows don't fit when at their initial size, we will
// have to shrink them by how much they overflow.
if (total_initial_size_ >= available_size)
grow_attached_by = available_size - total_initial_size_;
} else {
// If we're shrinking, we grow the attached so the total size remains
// constant.
grow_attached_by = -delta;
}
int leftover_pixels = 0;
while (grow_attached_by != 0) {
int leftovers = GrowFairly(grow_attached_by, window_sizes);
if (leftovers == grow_attached_by) {
leftover_pixels = leftovers;
break;
}
grow_attached_by = leftovers;
}
for (size_t i = 0; i < window_sizes.size(); ++i)
sizes->push_back(window_sizes[i].size());
return leftover_pixels;
}
int WorkspaceWindowResizer::GrowFairly(
int pixels,
std::vector<WindowSize>& sizes) const {
bool shrinking = pixels < 0;
std::vector<WindowSize*> nonfull_windows;
for (size_t i = 0; i < sizes.size(); ++i) {
if (!sizes[i].is_at_capacity(shrinking))
nonfull_windows.push_back(&sizes[i]);
}
std::vector<float> ratios;
CalculateGrowthRatios(nonfull_windows, &ratios);
int remaining_pixels = pixels;
bool add_leftover_pixels_to_last = true;
for (size_t i = 0; i < nonfull_windows.size(); ++i) {
int grow_by = pixels * ratios[i];
// Put any leftover pixels into the last window.
if (i == nonfull_windows.size() - 1 && add_leftover_pixels_to_last)
grow_by = remaining_pixels;
int remainder = nonfull_windows[i]->Add(grow_by);
int consumed = grow_by - remainder;
remaining_pixels -= consumed;
if (nonfull_windows[i]->is_at_capacity(shrinking) && remainder > 0) {
// Because this window overflowed, some of the pixels in
// |remaining_pixels| aren't there due to rounding errors. Rather than
// unfairly giving all those pixels to the last window, we refrain from
// allocating them so that this function can be called again to distribute
// the pixels fairly.
add_leftover_pixels_to_last = false;
}
}
return remaining_pixels;
}
void WorkspaceWindowResizer::CalculateGrowthRatios(
const std::vector<WindowSize*>& sizes,
std::vector<float>* out_ratios) const {
DCHECK(out_ratios->empty());
int total_value = 0;
for (size_t i = 0; i < sizes.size(); ++i)
total_value += sizes[i]->size();
for (size_t i = 0; i < sizes.size(); ++i)
out_ratios->push_back(
(static_cast<float>(sizes[i]->size())) / total_value);
}
void WorkspaceWindowResizer::CreateBucketsForAttached(
std::vector<WindowSize>* sizes) const {
for (size_t i = 0; i < attached_windows_.size(); i++) {
int initial_size = initial_size_[i];
aura::WindowDelegate* delegate = attached_windows_[i]->delegate();
int min = PrimaryAxisSize(delegate->GetMinimumSize());
int max = PrimaryAxisSize(delegate->GetMaximumSize());
sizes->push_back(WindowSize(initial_size, min, max));
}
}
void WorkspaceWindowResizer::MagneticallySnapToOtherWindows(gfx::Rect* bounds) {
if (UpdateMagnetismWindow(*bounds, kAllMagnetismEdges)) {
gfx::Point point = OriginForMagneticAttach(
ScreenAsh::ConvertRectToScreen(window()->parent(), *bounds),
magnetism_window_->GetBoundsInScreen(),
magnetism_edge_);
aura::client::GetScreenPositionClient(window()->GetRootWindow())->
ConvertPointFromScreen(window()->parent(), &point);
bounds->set_origin(point);
}
}
void WorkspaceWindowResizer::MagneticallySnapResizeToOtherWindows(
gfx::Rect* bounds) {
const uint32 edges = WindowComponentToMagneticEdge(details_.window_component);
if (UpdateMagnetismWindow(*bounds, edges)) {
*bounds = ScreenAsh::ConvertRectFromScreen(
window()->parent(),
BoundsForMagneticResizeAttach(
ScreenAsh::ConvertRectToScreen(window()->parent(), *bounds),
magnetism_window_->GetBoundsInScreen(),
magnetism_edge_));
}
}
bool WorkspaceWindowResizer::UpdateMagnetismWindow(const gfx::Rect& bounds,
uint32 edges) {
// |bounds| are in coordinates of original window's parent.
gfx::Rect bounds_in_screen =
ScreenAsh::ConvertRectToScreen(window()->parent(), bounds);
MagnetismMatcher matcher(bounds_in_screen, edges);
// If we snapped to a window then check it first. That way we don't bounce
// around when close to multiple edges.
if (magnetism_window_) {
if (window_tracker_.Contains(magnetism_window_) &&
matcher.ShouldAttach(magnetism_window_->GetBoundsInScreen(),
&magnetism_edge_)) {
return true;
}
window_tracker_.Remove(magnetism_window_);
magnetism_window_ = NULL;
}
// Avoid magnetically snapping to popups, menus, tooltips, controls and
// windows that are not tracked by workspace.
if (!window_state()->CanResize() || !window_state()->tracked_by_workspace())
return false;
Shell::RootWindowList root_windows = Shell::GetAllRootWindows();
for (Shell::RootWindowList::iterator iter = root_windows.begin();
iter != root_windows.end(); ++iter) {
const aura::RootWindow* root_window = *iter;
// Test all children from the desktop in each root window.
const aura::Window::Windows& children = Shell::GetContainer(
root_window, kShellWindowId_DefaultContainer)->children();
for (aura::Window::Windows::const_reverse_iterator i = children.rbegin();
i != children.rend() && !matcher.AreEdgesObscured(); ++i) {
wm::WindowState* other_state = wm::GetWindowState(*i);
if (other_state->window() == window() ||
!other_state->window()->IsVisible() ||
!other_state->IsNormalShowState() ||
!other_state->CanResize()) {
continue;
}
if (matcher.ShouldAttach(
other_state->window()->GetBoundsInScreen(), &magnetism_edge_)) {
magnetism_window_ = other_state->window();
window_tracker_.Add(magnetism_window_);
return true;
}
}
}
return false;
}
void WorkspaceWindowResizer::AdjustBoundsForMainWindow(
int sticky_size,
gfx::Rect* bounds) {
gfx::Point last_mouse_location_in_screen = last_mouse_location_;
wm::ConvertPointToScreen(window()->parent(), &last_mouse_location_in_screen);
gfx::Display display = Shell::GetScreen()->GetDisplayNearestPoint(
last_mouse_location_in_screen);
gfx::Rect work_area =
ScreenAsh::ConvertRectFromScreen(window()->parent(), display.work_area());
if (details_.window_component == HTCAPTION) {
// Adjust the bounds to the work area where the mouse cursor is located.
// Always keep kMinOnscreenHeight on the bottom.
int max_y = work_area.bottom() - kMinOnscreenHeight;
if (bounds->y() > max_y) {
bounds->set_y(max_y);
} else if (bounds->y() <= work_area.y()) {
// Don't allow dragging above the top of the display until the mouse
// cursor reaches the work area above if any.
bounds->set_y(work_area.y());
}
if (sticky_size > 0) {
// Possibly stick to edge except when a mouse pointer is outside the
// work area.
if (!(display.work_area().Contains(last_mouse_location_in_screen) &&
StickToWorkAreaOnMove(work_area, sticky_size, bounds))) {
MagneticallySnapToOtherWindows(bounds);
}
}
} else if (sticky_size > 0) {
MagneticallySnapResizeToOtherWindows(bounds);
if (!magnetism_window_ && sticky_size > 0)
StickToWorkAreaOnResize(work_area, sticky_size, bounds);
}
if (attached_windows_.empty())
return;
if (details_.window_component == HTRIGHT) {
bounds->set_width(std::min(bounds->width(),
work_area.right() - total_min_ - bounds->x()));
} else {
DCHECK_EQ(HTBOTTOM, details_.window_component);
bounds->set_height(std::min(bounds->height(),
work_area.bottom() - total_min_ - bounds->y()));
}
}
bool WorkspaceWindowResizer::StickToWorkAreaOnMove(
const gfx::Rect& work_area,
int sticky_size,
gfx::Rect* bounds) const {
const int left_edge = work_area.x();
const int right_edge = work_area.right();
const int top_edge = work_area.y();
const int bottom_edge = work_area.bottom();
if (ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
bounds->set_x(left_edge);
return true;
} else if (ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
bounds->set_x(right_edge - bounds->width());
return true;
}
if (ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
bounds->set_y(top_edge);
return true;
} else if (ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size) &&
bounds->height() < (bottom_edge - top_edge)) {
// Only snap to the bottom if the window is smaller than the work area.
// Doing otherwise can lead to window snapping in weird ways as it bounces
// between snapping to top then bottom.
bounds->set_y(bottom_edge - bounds->height());
return true;
}
return false;
}
void WorkspaceWindowResizer::StickToWorkAreaOnResize(
const gfx::Rect& work_area,
int sticky_size,
gfx::Rect* bounds) const {
const uint32 edges = WindowComponentToMagneticEdge(details_.window_component);
const int left_edge = work_area.x();
const int right_edge = work_area.right();
const int top_edge = work_area.y();
const int bottom_edge = work_area.bottom();
if (edges & MAGNETISM_EDGE_TOP &&
ShouldStickToEdge(bounds->y() - top_edge, sticky_size)) {
bounds->set_height(bounds->bottom() - top_edge);
bounds->set_y(top_edge);
}
if (edges & MAGNETISM_EDGE_LEFT &&
ShouldStickToEdge(bounds->x() - left_edge, sticky_size)) {
bounds->set_width(bounds->right() - left_edge);
bounds->set_x(left_edge);
}
if (edges & MAGNETISM_EDGE_BOTTOM &&
ShouldStickToEdge(bottom_edge - bounds->bottom(), sticky_size)) {
bounds->set_height(bottom_edge - bounds->y());
}
if (edges & MAGNETISM_EDGE_RIGHT &&
ShouldStickToEdge(right_edge - bounds->right(), sticky_size)) {
bounds->set_width(right_edge - bounds->x());
}
}
int WorkspaceWindowResizer::PrimaryAxisSize(const gfx::Size& size) const {
return PrimaryAxisCoordinate(size.width(), size.height());
}
int WorkspaceWindowResizer::PrimaryAxisCoordinate(int x, int y) const {
switch (details_.window_component) {
case HTRIGHT:
return x;
case HTBOTTOM:
return y;
default:
NOTREACHED();
}
return 0;
}
void WorkspaceWindowResizer::UpdateSnapPhantomWindow(const gfx::Point& location,
const gfx::Rect& bounds) {
if (!did_move_or_resize_ || details_.window_component != HTCAPTION)
return;
SnapType last_type = snap_type_;
snap_type_ = GetSnapType(location);
if (snap_type_ == SNAP_NONE || snap_type_ != last_type) {
snap_phantom_window_controller_.reset();
snap_sizer_.reset();
if (snap_type_ == SNAP_NONE) {
SetDraggedWindowDocked(false);
return;
}
}
SnapSizer::Edge edge = (snap_type_ == SNAP_LEFT) ?
SnapSizer::LEFT_EDGE : SnapSizer::RIGHT_EDGE;
if (!snap_sizer_) {
snap_sizer_.reset(new SnapSizer(window(),
location,
edge,
internal::SnapSizer::OTHER_INPUT));
} else {
snap_sizer_->Update(location);
}
const bool can_dock = dock_layout_->CanDockWindow(window(), snap_type_);
const bool can_snap = window_state()->CanSnap();
if (!can_snap && !can_dock)
return;
// Update phantom window with snapped or docked guide bounds.
// Windows that cannot be snapped or are less wide than kMaxDockWidth can get
// docked without going through a snapping sequence.
gfx::Rect phantom_bounds;
if (can_snap &&
(!can_dock ||
window()->bounds().width() > DockedWindowLayoutManager::kMaxDockWidth))
phantom_bounds = snap_sizer_->target_bounds();
const bool should_dock = can_dock &&
(phantom_bounds.IsEmpty() ||
snap_sizer_->end_of_sequence() ||
dock_layout_->is_dragged_window_docked());
SetDraggedWindowDocked(should_dock);
snap_type_ = GetSnapType(location);
if (dock_layout_->is_dragged_window_docked()) {
phantom_bounds = ScreenAsh::ConvertRectFromScreen(
window()->parent(), dock_layout_->dragged_bounds());
}
if (phantom_bounds.IsEmpty()) {
snap_phantom_window_controller_.reset();
return;
}
if (!snap_phantom_window_controller_) {
snap_phantom_window_controller_.reset(
new PhantomWindowController(window()));
}
snap_phantom_window_controller_->Show(ScreenAsh::ConvertRectToScreen(
window()->parent(), phantom_bounds));
}
void WorkspaceWindowResizer::RestackWindows() {
if (attached_windows_.empty())
return;
// Build a map from index in children to window, returning if there is a
// window with a different parent.
typedef std::map<size_t, aura::Window*> IndexToWindowMap;
IndexToWindowMap map;
aura::Window* parent = window()->parent();
const aura::Window::Windows& windows(parent->children());
map[std::find(windows.begin(), windows.end(), window()) -
windows.begin()] = window();
for (std::vector<aura::Window*>::const_iterator i =
attached_windows_.begin(); i != attached_windows_.end(); ++i) {
if ((*i)->parent() != parent)
return;
size_t index =
std::find(windows.begin(), windows.end(), *i) - windows.begin();
map[index] = *i;
}
// Reorder the windows starting at the topmost.
parent->StackChildAtTop(map.rbegin()->second);
for (IndexToWindowMap::const_reverse_iterator i = map.rbegin();
i != map.rend(); ) {
aura::Window* window = i->second;
++i;
if (i != map.rend())
parent->StackChildBelow(i->second, window);
}
}
SnapType WorkspaceWindowResizer::GetSnapType(
const gfx::Point& location) const {
// TODO: this likely only wants total display area, not the area of a single
// display.
gfx::Rect area(ScreenAsh::GetDisplayWorkAreaBoundsInParent(window()));
if (location.x() <= area.x())
return SNAP_LEFT;
if (location.x() >= area.right() - 1)
return SNAP_RIGHT;
return SNAP_NONE;
}
void WorkspaceWindowResizer::SetDraggedWindowDocked(bool should_dock) {
if (should_dock &&
dock_layout_->GetAlignmentOfWindow(window()) != DOCKED_ALIGNMENT_NONE) {
if (!dock_layout_->is_dragged_window_docked())
dock_layout_->DockDraggedWindow(window());
} else {
if (dock_layout_->is_dragged_window_docked())
dock_layout_->UndockDraggedWindow();
}
}
} // namespace internal
} // namespace ash