blob: 9a8e95a6e190a3db2c422b9efe79f5e87e2e45da [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#import "base/message_loop/message_pump_mac.h"
#import <Foundation/Foundation.h>
#include <limits>
#include <stack>
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/mac/scoped_cftyperef.h"
#include "base/metrics/histogram.h"
#include "base/run_loop.h"
#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#if !defined(OS_IOS)
#import <AppKit/AppKit.h>
#endif // !defined(OS_IOS)
namespace {
void NoOp(void* info) {
}
const CFTimeInterval kCFTimeIntervalMax =
std::numeric_limits<CFTimeInterval>::max();
#if !defined(OS_IOS)
// Set to true if MessagePumpMac::Create() is called before NSApp is
// initialized. Only accessed from the main thread.
bool g_not_using_cr_app = false;
#endif
} // namespace
namespace base {
// A scoper for autorelease pools created from message pump run loops.
// Avoids dirtying up the ScopedNSAutoreleasePool interface for the rare
// case where an autorelease pool needs to be passed in.
class MessagePumpScopedAutoreleasePool {
public:
explicit MessagePumpScopedAutoreleasePool(MessagePumpCFRunLoopBase* pump) :
pool_(pump->CreateAutoreleasePool()) {
}
~MessagePumpScopedAutoreleasePool() {
[pool_ drain];
}
private:
NSAutoreleasePool* pool_;
DISALLOW_COPY_AND_ASSIGN(MessagePumpScopedAutoreleasePool);
};
// This class is used to instrument the MessagePump to gather various timing
// data about when the underlying run loop is entered, when it is waiting, and
// when it is servicing its delegate.
//
// The metrics are gathered as UMA-tracked histograms. To gather the data over
// time, sampling is used, such that a new histogram is created for each metric
// every |sampling_interval| for |sampling_duration|. After sampling is
// complete, this class deletes itself.
class MessagePumpInstrumentation {
public:
// Creates an instrument for the MessagePump on the current thread. Every
// |sampling_interval|, a new histogram will be created to track the metrics
// over time. After |sampling_duration|, this will delete itself, causing the
// WeakPtr to go NULL.
static WeakPtr<MessagePumpInstrumentation> Create(
const TimeDelta& sampling_interval,
const TimeDelta& sampling_duration) {
MessagePumpInstrumentation* instrument =
new MessagePumpInstrumentation(sampling_interval, sampling_duration);
return instrument->weak_ptr_factory_.GetWeakPtr();
}
// Starts the timer that runs the sampling instrumentation. Can be called
// multiple times as a noop.
void StartIfNeeded() {
if (timer_)
return;
sampling_start_time_ = generation_start_time_ = TimeTicks::Now();
CFRunLoopTimerContext timer_context = { .info = this };
timer_.reset(CFRunLoopTimerCreate(
NULL, // allocator
(Time::Now() + sampling_interval_).ToCFAbsoluteTime(),
sampling_interval_.InSecondsF(),
0, // flags
0, // order
&MessagePumpInstrumentation::TimerFired,
&timer_context));
CFRunLoopAddTimer(CFRunLoopGetCurrent(),
timer_,
kCFRunLoopCommonModes);
}
// Used to track kCFRunLoopEntry.
void LoopEntered() {
loop_run_times_.push(TimeTicks::Now());
}
// Used to track kCFRunLoopExit.
void LoopExited() {
TimeDelta duration = TimeTicks::Now() - loop_run_times_.top();
loop_run_times_.pop();
GetHistogram(LOOP_CYCLE)->AddTime(duration);
}
// Used to track kCFRunLoopBeforeWaiting.
void WaitingStarted() {
loop_wait_times_.push(TimeTicks::Now());
}
// Used to track kCFRunLoopAfterWaiting.
void WaitingFinished() {
TimeDelta duration = TimeTicks::Now() - loop_wait_times_.top();
loop_wait_times_.pop();
GetHistogram(LOOP_WAIT)->AddTime(duration);
}
// Used to track when the MessagePump will invoke its |delegate|.
void WorkSourceEntered(MessagePump::Delegate* delegate) {
work_source_times_.push(TimeTicks::Now());
if (delegate) {
size_t queue_size;
TimeDelta queuing_delay;
delegate->GetQueueingInformation(&queue_size, &queuing_delay);
GetHistogram(QUEUE_SIZE)->Add(queue_size);
GetHistogram(QUEUE_DELAY)->AddTime(queuing_delay);
}
}
// Used to track the completion of servicing the MessagePump::Delegate.
void WorkSourceExited() {
TimeDelta duration = TimeTicks::Now() - work_source_times_.top();
work_source_times_.pop();
GetHistogram(WORK_SOURCE)->AddTime(duration);
}
private:
enum HistogramEvent {
// Time-based histograms:
LOOP_CYCLE, // LoopEntered/LoopExited
LOOP_WAIT, // WaitingStarted/WaitingEnded
WORK_SOURCE, // WorkSourceExited
QUEUE_DELAY, // WorkSourceEntered
// Value-based histograms:
// NOTE: Do not add value-based histograms before this event, only after.
QUEUE_SIZE, // WorkSourceEntered
HISTOGRAM_EVENT_MAX,
};
MessagePumpInstrumentation(const TimeDelta& sampling_interval,
const TimeDelta& sampling_duration)
: weak_ptr_factory_(this),
sampling_interval_(sampling_interval),
sampling_duration_(sampling_duration),
sample_generation_(0) {
// Create all the histogram objects that will be used for sampling.
const char kHistogramName[] = "MessagePumpMac.%s.SampleMs.%" PRId64;
for (TimeDelta i; i < sampling_duration_; i += sampling_interval_) {
int64 sample = i.InMilliseconds();
// Generate the time-based histograms.
for (int j = LOOP_CYCLE; j < QUEUE_SIZE; ++j) {
std::string name = StringPrintf(kHistogramName,
NameForEnum(static_cast<HistogramEvent>(j)), sample);
histograms_[j].push_back(
Histogram::FactoryTimeGet(name, TimeDelta::FromMilliseconds(1),
sampling_interval_, 50,
HistogramBase::kUmaTargetedHistogramFlag));
}
// Generate the value-based histograms.
for (int j = QUEUE_SIZE; j < HISTOGRAM_EVENT_MAX; ++j) {
std::string name = StringPrintf(kHistogramName,
NameForEnum(static_cast<HistogramEvent>(j)), sample);
histograms_[j].push_back(
Histogram::FactoryGet(name, 1, 10000, 50,
HistogramBase::kUmaTargetedHistogramFlag));
}
}
}
~MessagePumpInstrumentation() {
if (timer_)
CFRunLoopTimerInvalidate(timer_);
}
const char* NameForEnum(HistogramEvent event) {
switch (event) {
case LOOP_CYCLE: return "LoopCycle";
case LOOP_WAIT: return "Waiting";
case WORK_SOURCE: return "WorkSource";
case QUEUE_DELAY: return "QueueingDelay";
case QUEUE_SIZE: return "QueueSize";
default:
NOTREACHED();
return NULL;
}
}
static void TimerFired(CFRunLoopTimerRef timer, void* context) {
static_cast<MessagePumpInstrumentation*>(context)->TimerFired();
}
// Called by the run loop when the sampling_interval_ has elapsed. Advances
// the sample_generation_, which controls into which histogram data is
// recorded, while recording and accounting for timer skew. Will delete this
// object after |sampling_duration_| has elapsed.
void TimerFired() {
TimeTicks now = TimeTicks::Now();
TimeDelta delta = now - generation_start_time_;
// The timer fired, so advance the generation by at least one.
++sample_generation_;
// To account for large timer skew/drift, advance the generation by any
// more completed intervals.
for (TimeDelta skew_advance = delta - sampling_interval_;
skew_advance >= sampling_interval_;
skew_advance -= sampling_interval_) {
++sample_generation_;
}
generation_start_time_ = now;
if (now >= sampling_start_time_ + sampling_duration_)
delete this;
}
HistogramBase* GetHistogram(HistogramEvent event) {
DCHECK_LT(sample_generation_, histograms_[event].size());
return histograms_[event][sample_generation_];
}
// Vends the pointer to the Create()or.
WeakPtrFactory<MessagePumpInstrumentation> weak_ptr_factory_;
// The interval and duration of the sampling.
TimeDelta sampling_interval_;
TimeDelta sampling_duration_;
// The time at which sampling started.
TimeTicks sampling_start_time_;
// The timer that advances the sample_generation_ and sets the
// generation_start_time_ for the current sample interval.
base::ScopedCFTypeRef<CFRunLoopTimerRef> timer_;
// The two-dimensional array of histograms. The first dimension is the
// HistogramEvent type. The second is for the sampling intervals.
std::vector<HistogramBase*> histograms_[HISTOGRAM_EVENT_MAX];
// The index in the second dimension of histograms_, which controls in which
// sampled histogram events are recorded.
size_t sample_generation_;
// The last time at which the timer fired. This is used to track timer skew
// (i.e. it did not fire on time) and properly account for it when advancing
// samle_generation_.
TimeTicks generation_start_time_;
// MessagePump activations can be nested. Use a stack for each of the
// possibly reentrant HistogramEvent types to properly balance and calculate
// the timing information.
std::stack<TimeTicks> loop_run_times_;
std::stack<TimeTicks> loop_wait_times_;
std::stack<TimeTicks> work_source_times_;
DISALLOW_COPY_AND_ASSIGN(MessagePumpInstrumentation);
};
// Must be called on the run loop thread.
MessagePumpCFRunLoopBase::MessagePumpCFRunLoopBase()
: delegate_(NULL),
delayed_work_fire_time_(kCFTimeIntervalMax),
nesting_level_(0),
run_nesting_level_(0),
deepest_nesting_level_(0),
delegateless_work_(false),
delegateless_idle_work_(false) {
run_loop_ = CFRunLoopGetCurrent();
CFRetain(run_loop_);
// Set a repeating timer with a preposterous firing time and interval. The
// timer will effectively never fire as-is. The firing time will be adjusted
// as needed when ScheduleDelayedWork is called.
CFRunLoopTimerContext timer_context = CFRunLoopTimerContext();
timer_context.info = this;
delayed_work_timer_ = CFRunLoopTimerCreate(NULL, // allocator
kCFTimeIntervalMax, // fire time
kCFTimeIntervalMax, // interval
0, // flags
0, // priority
RunDelayedWorkTimer,
&timer_context);
CFRunLoopAddTimer(run_loop_, delayed_work_timer_, kCFRunLoopCommonModes);
CFRunLoopSourceContext source_context = CFRunLoopSourceContext();
source_context.info = this;
source_context.perform = RunWorkSource;
work_source_ = CFRunLoopSourceCreate(NULL, // allocator
1, // priority
&source_context);
CFRunLoopAddSource(run_loop_, work_source_, kCFRunLoopCommonModes);
source_context.perform = RunIdleWorkSource;
idle_work_source_ = CFRunLoopSourceCreate(NULL, // allocator
2, // priority
&source_context);
CFRunLoopAddSource(run_loop_, idle_work_source_, kCFRunLoopCommonModes);
source_context.perform = RunNestingDeferredWorkSource;
nesting_deferred_work_source_ = CFRunLoopSourceCreate(NULL, // allocator
0, // priority
&source_context);
CFRunLoopAddSource(run_loop_, nesting_deferred_work_source_,
kCFRunLoopCommonModes);
CFRunLoopObserverContext observer_context = CFRunLoopObserverContext();
observer_context.info = this;
pre_wait_observer_ = CFRunLoopObserverCreate(NULL, // allocator
kCFRunLoopBeforeWaiting |
kCFRunLoopAfterWaiting,
true, // repeat
0, // priority
StartOrEndWaitObserver,
&observer_context);
CFRunLoopAddObserver(run_loop_, pre_wait_observer_, kCFRunLoopCommonModes);
pre_source_observer_ = CFRunLoopObserverCreate(NULL, // allocator
kCFRunLoopBeforeSources,
true, // repeat
0, // priority
PreSourceObserver,
&observer_context);
CFRunLoopAddObserver(run_loop_, pre_source_observer_, kCFRunLoopCommonModes);
enter_exit_observer_ = CFRunLoopObserverCreate(NULL, // allocator
kCFRunLoopEntry |
kCFRunLoopExit,
true, // repeat
0, // priority
EnterExitObserver,
&observer_context);
CFRunLoopAddObserver(run_loop_, enter_exit_observer_, kCFRunLoopCommonModes);
}
// Ideally called on the run loop thread. If other run loops were running
// lower on the run loop thread's stack when this object was created, the
// same number of run loops must be running when this object is destroyed.
MessagePumpCFRunLoopBase::~MessagePumpCFRunLoopBase() {
CFRunLoopRemoveObserver(run_loop_, enter_exit_observer_,
kCFRunLoopCommonModes);
CFRelease(enter_exit_observer_);
CFRunLoopRemoveObserver(run_loop_, pre_source_observer_,
kCFRunLoopCommonModes);
CFRelease(pre_source_observer_);
CFRunLoopRemoveObserver(run_loop_, pre_wait_observer_,
kCFRunLoopCommonModes);
CFRelease(pre_wait_observer_);
CFRunLoopRemoveSource(run_loop_, nesting_deferred_work_source_,
kCFRunLoopCommonModes);
CFRelease(nesting_deferred_work_source_);
CFRunLoopRemoveSource(run_loop_, idle_work_source_, kCFRunLoopCommonModes);
CFRelease(idle_work_source_);
CFRunLoopRemoveSource(run_loop_, work_source_, kCFRunLoopCommonModes);
CFRelease(work_source_);
CFRunLoopRemoveTimer(run_loop_, delayed_work_timer_, kCFRunLoopCommonModes);
CFRelease(delayed_work_timer_);
CFRelease(run_loop_);
}
// Must be called on the run loop thread.
void MessagePumpCFRunLoopBase::Run(Delegate* delegate) {
// nesting_level_ will be incremented in EnterExitRunLoop, so set
// run_nesting_level_ accordingly.
int last_run_nesting_level = run_nesting_level_;
run_nesting_level_ = nesting_level_ + 1;
Delegate* last_delegate = delegate_;
SetDelegate(delegate);
DoRun(delegate);
// Restore the previous state of the object.
SetDelegate(last_delegate);
run_nesting_level_ = last_run_nesting_level;
}
void MessagePumpCFRunLoopBase::SetDelegate(Delegate* delegate) {
delegate_ = delegate;
if (delegate) {
// If any work showed up but could not be dispatched for want of a
// delegate, set it up for dispatch again now that a delegate is
// available.
if (delegateless_work_) {
CFRunLoopSourceSignal(work_source_);
delegateless_work_ = false;
}
if (delegateless_idle_work_) {
CFRunLoopSourceSignal(idle_work_source_);
delegateless_idle_work_ = false;
}
}
}
void MessagePumpCFRunLoopBase::EnableInstrumentation() {
instrumentation_ = MessagePumpInstrumentation::Create(
TimeDelta::FromSeconds(1), TimeDelta::FromSeconds(15));
}
// May be called on any thread.
void MessagePumpCFRunLoopBase::ScheduleWork() {
CFRunLoopSourceSignal(work_source_);
CFRunLoopWakeUp(run_loop_);
}
// Must be called on the run loop thread.
void MessagePumpCFRunLoopBase::ScheduleDelayedWork(
const TimeTicks& delayed_work_time) {
TimeDelta delta = delayed_work_time - TimeTicks::Now();
delayed_work_fire_time_ = CFAbsoluteTimeGetCurrent() + delta.InSecondsF();
CFRunLoopTimerSetNextFireDate(delayed_work_timer_, delayed_work_fire_time_);
}
// Called from the run loop.
// static
void MessagePumpCFRunLoopBase::RunDelayedWorkTimer(CFRunLoopTimerRef timer,
void* info) {
MessagePumpCFRunLoopBase* self = static_cast<MessagePumpCFRunLoopBase*>(info);
// The timer won't fire again until it's reset.
self->delayed_work_fire_time_ = kCFTimeIntervalMax;
// CFRunLoopTimers fire outside of the priority scheme for CFRunLoopSources.
// In order to establish the proper priority in which work and delayed work
// are processed one for one, the timer used to schedule delayed work must
// signal a CFRunLoopSource used to dispatch both work and delayed work.
CFRunLoopSourceSignal(self->work_source_);
}
// Called from the run loop.
// static
void MessagePumpCFRunLoopBase::RunWorkSource(void* info) {
MessagePumpCFRunLoopBase* self = static_cast<MessagePumpCFRunLoopBase*>(info);
self->RunWork();
}
// Called by MessagePumpCFRunLoopBase::RunWorkSource.
bool MessagePumpCFRunLoopBase::RunWork() {
if (!delegate_) {
// This point can be reached with a NULL delegate_ if Run is not on the
// stack but foreign code is spinning the CFRunLoop. Arrange to come back
// here when a delegate is available.
delegateless_work_ = true;
return false;
}
if (instrumentation_)
instrumentation_->WorkSourceEntered(delegate_);
// The NSApplication-based run loop only drains the autorelease pool at each
// UI event (NSEvent). The autorelease pool is not drained for each
// CFRunLoopSource target that's run. Use a local pool for any autoreleased
// objects if the app is not currently handling a UI event to ensure they're
// released promptly even in the absence of UI events.
MessagePumpScopedAutoreleasePool autorelease_pool(this);
// Call DoWork and DoDelayedWork once, and if something was done, arrange to
// come back here again as long as the loop is still running.
bool did_work = delegate_->DoWork();
bool resignal_work_source = did_work;
TimeTicks next_time;
delegate_->DoDelayedWork(&next_time);
if (!did_work) {
// Determine whether there's more delayed work, and if so, if it needs to
// be done at some point in the future or if it's already time to do it.
// Only do these checks if did_work is false. If did_work is true, this
// function, and therefore any additional delayed work, will get another
// chance to run before the loop goes to sleep.
bool more_delayed_work = !next_time.is_null();
if (more_delayed_work) {
TimeDelta delay = next_time - TimeTicks::Now();
if (delay > TimeDelta()) {
// There's more delayed work to be done in the future.
ScheduleDelayedWork(next_time);
} else {
// There's more delayed work to be done, and its time is in the past.
// Arrange to come back here directly as long as the loop is still
// running.
resignal_work_source = true;
}
}
}
if (resignal_work_source) {
CFRunLoopSourceSignal(work_source_);
}
if (instrumentation_)
instrumentation_->WorkSourceExited();
return resignal_work_source;
}
// Called from the run loop.
// static
void MessagePumpCFRunLoopBase::RunIdleWorkSource(void* info) {
MessagePumpCFRunLoopBase* self = static_cast<MessagePumpCFRunLoopBase*>(info);
self->RunIdleWork();
}
// Called by MessagePumpCFRunLoopBase::RunIdleWorkSource.
bool MessagePumpCFRunLoopBase::RunIdleWork() {
if (!delegate_) {
// This point can be reached with a NULL delegate_ if Run is not on the
// stack but foreign code is spinning the CFRunLoop. Arrange to come back
// here when a delegate is available.
delegateless_idle_work_ = true;
return false;
}
// The NSApplication-based run loop only drains the autorelease pool at each
// UI event (NSEvent). The autorelease pool is not drained for each
// CFRunLoopSource target that's run. Use a local pool for any autoreleased
// objects if the app is not currently handling a UI event to ensure they're
// released promptly even in the absence of UI events.
MessagePumpScopedAutoreleasePool autorelease_pool(this);
// Call DoIdleWork once, and if something was done, arrange to come back here
// again as long as the loop is still running.
bool did_work = delegate_->DoIdleWork();
if (did_work) {
CFRunLoopSourceSignal(idle_work_source_);
}
return did_work;
}
// Called from the run loop.
// static
void MessagePumpCFRunLoopBase::RunNestingDeferredWorkSource(void* info) {
MessagePumpCFRunLoopBase* self = static_cast<MessagePumpCFRunLoopBase*>(info);
self->RunNestingDeferredWork();
}
// Called by MessagePumpCFRunLoopBase::RunNestingDeferredWorkSource.
bool MessagePumpCFRunLoopBase::RunNestingDeferredWork() {
if (!delegate_) {
// This point can be reached with a NULL delegate_ if Run is not on the
// stack but foreign code is spinning the CFRunLoop. There's no sense in
// attempting to do any work or signalling the work sources because
// without a delegate, work is not possible.
return false;
}
// Immediately try work in priority order.
if (!RunWork()) {
if (!RunIdleWork()) {
return false;
}
} else {
// Work was done. Arrange for the loop to try non-nestable idle work on
// a subsequent pass.
CFRunLoopSourceSignal(idle_work_source_);
}
return true;
}
// Called before the run loop goes to sleep or exits, or processes sources.
void MessagePumpCFRunLoopBase::MaybeScheduleNestingDeferredWork() {
// deepest_nesting_level_ is set as run loops are entered. If the deepest
// level encountered is deeper than the current level, a nested loop
// (relative to the current level) ran since the last time nesting-deferred
// work was scheduled. When that situation is encountered, schedule
// nesting-deferred work in case any work was deferred because nested work
// was disallowed.
if (deepest_nesting_level_ > nesting_level_) {
deepest_nesting_level_ = nesting_level_;
CFRunLoopSourceSignal(nesting_deferred_work_source_);
}
}
// Called from the run loop.
// static
void MessagePumpCFRunLoopBase::StartOrEndWaitObserver(
CFRunLoopObserverRef observer,
CFRunLoopActivity activity,
void* info) {
MessagePumpCFRunLoopBase* self = static_cast<MessagePumpCFRunLoopBase*>(info);
if (activity == kCFRunLoopAfterWaiting) {
if (self->instrumentation_)
self->instrumentation_->WaitingFinished();
return;
}
// Attempt to do some idle work before going to sleep.
self->RunIdleWork();
// The run loop is about to go to sleep. If any of the work done since it
// started or woke up resulted in a nested run loop running,
// nesting-deferred work may have accumulated. Schedule it for processing
// if appropriate.
self->MaybeScheduleNestingDeferredWork();
if (self->instrumentation_)
self->instrumentation_->WaitingStarted();
}
// Called from the run loop.
// static
void MessagePumpCFRunLoopBase::PreSourceObserver(CFRunLoopObserverRef observer,
CFRunLoopActivity activity,
void* info) {
MessagePumpCFRunLoopBase* self = static_cast<MessagePumpCFRunLoopBase*>(info);
// The run loop has reached the top of the loop and is about to begin
// processing sources. If the last iteration of the loop at this nesting
// level did not sleep or exit, nesting-deferred work may have accumulated
// if a nested loop ran. Schedule nesting-deferred work for processing if
// appropriate.
self->MaybeScheduleNestingDeferredWork();
}
// Called from the run loop.
// static
void MessagePumpCFRunLoopBase::EnterExitObserver(CFRunLoopObserverRef observer,
CFRunLoopActivity activity,
void* info) {
MessagePumpCFRunLoopBase* self = static_cast<MessagePumpCFRunLoopBase*>(info);
switch (activity) {
case kCFRunLoopEntry:
if (self->instrumentation_)
self->instrumentation_->LoopEntered();
++self->nesting_level_;
if (self->nesting_level_ > self->deepest_nesting_level_) {
self->deepest_nesting_level_ = self->nesting_level_;
}
break;
case kCFRunLoopExit:
// Not all run loops go to sleep. If a run loop is stopped before it
// goes to sleep due to a CFRunLoopStop call, or if the timeout passed
// to CFRunLoopRunInMode expires, the run loop may proceed directly from
// handling sources to exiting without any sleep. This most commonly
// occurs when CFRunLoopRunInMode is passed a timeout of 0, causing it
// to make a single pass through the loop and exit without sleep. Some
// native loops use CFRunLoop in this way. Because StartOrEndWaitObserver
// will not be called in these case, MaybeScheduleNestingDeferredWork
// needs to be called here, as the run loop exits.
//
// MaybeScheduleNestingDeferredWork consults self->nesting_level_
// to determine whether to schedule nesting-deferred work. It expects
// the nesting level to be set to the depth of the loop that is going
// to sleep or exiting. It must be called before decrementing the
// value so that the value still corresponds to the level of the exiting
// loop.
self->MaybeScheduleNestingDeferredWork();
--self->nesting_level_;
if (self->instrumentation_)
self->instrumentation_->LoopExited();
break;
default:
break;
}
self->EnterExitRunLoop(activity);
}
// Called by MessagePumpCFRunLoopBase::EnterExitRunLoop. The default
// implementation is a no-op.
void MessagePumpCFRunLoopBase::EnterExitRunLoop(CFRunLoopActivity activity) {
}
// Base version returns a standard NSAutoreleasePool.
NSAutoreleasePool* MessagePumpCFRunLoopBase::CreateAutoreleasePool() {
return [[NSAutoreleasePool alloc] init];
}
MessagePumpCFRunLoop::MessagePumpCFRunLoop()
: quit_pending_(false) {
}
MessagePumpCFRunLoop::~MessagePumpCFRunLoop() {}
// Called by MessagePumpCFRunLoopBase::DoRun. If other CFRunLoopRun loops were
// running lower on the run loop thread's stack when this object was created,
// the same number of CFRunLoopRun loops must be running for the outermost call
// to Run. Run/DoRun are reentrant after that point.
void MessagePumpCFRunLoop::DoRun(Delegate* delegate) {
// This is completely identical to calling CFRunLoopRun(), except autorelease
// pool management is introduced.
int result;
do {
MessagePumpScopedAutoreleasePool autorelease_pool(this);
result = CFRunLoopRunInMode(kCFRunLoopDefaultMode,
kCFTimeIntervalMax,
false);
} while (result != kCFRunLoopRunStopped && result != kCFRunLoopRunFinished);
}
// Must be called on the run loop thread.
void MessagePumpCFRunLoop::Quit() {
// Stop the innermost run loop managed by this MessagePumpCFRunLoop object.
if (nesting_level() == run_nesting_level()) {
// This object is running the innermost loop, just stop it.
CFRunLoopStop(run_loop());
} else {
// There's another loop running inside the loop managed by this object.
// In other words, someone else called CFRunLoopRunInMode on the same
// thread, deeper on the stack than the deepest Run call. Don't preempt
// other run loops, just mark this object to quit the innermost Run as
// soon as the other inner loops not managed by Run are done.
quit_pending_ = true;
}
}
// Called by MessagePumpCFRunLoopBase::EnterExitObserver.
void MessagePumpCFRunLoop::EnterExitRunLoop(CFRunLoopActivity activity) {
if (activity == kCFRunLoopExit &&
nesting_level() == run_nesting_level() &&
quit_pending_) {
// Quit was called while loops other than those managed by this object
// were running further inside a run loop managed by this object. Now
// that all unmanaged inner run loops are gone, stop the loop running
// just inside Run.
CFRunLoopStop(run_loop());
quit_pending_ = false;
}
}
MessagePumpNSRunLoop::MessagePumpNSRunLoop()
: keep_running_(true) {
CFRunLoopSourceContext source_context = CFRunLoopSourceContext();
source_context.perform = NoOp;
quit_source_ = CFRunLoopSourceCreate(NULL, // allocator
0, // priority
&source_context);
CFRunLoopAddSource(run_loop(), quit_source_, kCFRunLoopCommonModes);
}
MessagePumpNSRunLoop::~MessagePumpNSRunLoop() {
CFRunLoopRemoveSource(run_loop(), quit_source_, kCFRunLoopCommonModes);
CFRelease(quit_source_);
}
void MessagePumpNSRunLoop::DoRun(Delegate* delegate) {
while (keep_running_) {
// NSRunLoop manages autorelease pools itself.
[[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode
beforeDate:[NSDate distantFuture]];
}
keep_running_ = true;
}
void MessagePumpNSRunLoop::Quit() {
keep_running_ = false;
CFRunLoopSourceSignal(quit_source_);
CFRunLoopWakeUp(run_loop());
}
#if defined(OS_IOS)
MessagePumpUIApplication::MessagePumpUIApplication()
: run_loop_(NULL) {
}
MessagePumpUIApplication::~MessagePumpUIApplication() {}
void MessagePumpUIApplication::DoRun(Delegate* delegate) {
NOTREACHED();
}
void MessagePumpUIApplication::Quit() {
NOTREACHED();
}
void MessagePumpUIApplication::Attach(Delegate* delegate) {
DCHECK(!run_loop_);
run_loop_ = new RunLoop();
CHECK(run_loop_->BeforeRun());
SetDelegate(delegate);
}
#else
MessagePumpNSApplication::MessagePumpNSApplication()
: keep_running_(true),
running_own_loop_(false) {
EnableInstrumentation();
}
MessagePumpNSApplication::~MessagePumpNSApplication() {}
void MessagePumpNSApplication::DoRun(Delegate* delegate) {
if (instrumentation_)
instrumentation_->StartIfNeeded();
bool last_running_own_loop_ = running_own_loop_;
// NSApp must be initialized by calling:
// [{some class which implements CrAppProtocol} sharedApplication]
// Most likely candidates are CrApplication or BrowserCrApplication.
// These can be initialized from C++ code by calling
// RegisterCrApp() or RegisterBrowserCrApp().
CHECK(NSApp);
if (![NSApp isRunning]) {
running_own_loop_ = false;
// NSApplication manages autorelease pools itself when run this way.
[NSApp run];
} else {
running_own_loop_ = true;
NSDate* distant_future = [NSDate distantFuture];
while (keep_running_) {
MessagePumpScopedAutoreleasePool autorelease_pool(this);
NSEvent* event = [NSApp nextEventMatchingMask:NSAnyEventMask
untilDate:distant_future
inMode:NSDefaultRunLoopMode
dequeue:YES];
if (event) {
[NSApp sendEvent:event];
}
}
keep_running_ = true;
}
running_own_loop_ = last_running_own_loop_;
}
void MessagePumpNSApplication::Quit() {
if (!running_own_loop_) {
[[NSApplication sharedApplication] stop:nil];
} else {
keep_running_ = false;
}
// Send a fake event to wake the loop up.
[NSApp postEvent:[NSEvent otherEventWithType:NSApplicationDefined
location:NSZeroPoint
modifierFlags:0
timestamp:0
windowNumber:0
context:NULL
subtype:0
data1:0
data2:0]
atStart:NO];
}
MessagePumpCrApplication::MessagePumpCrApplication() {
}
MessagePumpCrApplication::~MessagePumpCrApplication() {
}
// Prevents an autorelease pool from being created if the app is in the midst of
// handling a UI event because various parts of AppKit depend on objects that
// are created while handling a UI event to be autoreleased in the event loop.
// An example of this is NSWindowController. When a window with a window
// controller is closed it goes through a stack like this:
// (Several stack frames elided for clarity)
//
// #0 [NSWindowController autorelease]
// #1 DoAClose
// #2 MessagePumpCFRunLoopBase::DoWork()
// #3 [NSRunLoop run]
// #4 [NSButton performClick:]
// #5 [NSWindow sendEvent:]
// #6 [NSApp sendEvent:]
// #7 [NSApp run]
//
// -performClick: spins a nested run loop. If the pool created in DoWork was a
// standard NSAutoreleasePool, it would release the objects that were
// autoreleased into it once DoWork released it. This would cause the window
// controller, which autoreleased itself in frame #0, to release itself, and
// possibly free itself. Unfortunately this window controller controls the
// window in frame #5. When the stack is unwound to frame #5, the window would
// no longer exists and crashes may occur. Apple gets around this by never
// releasing the pool it creates in frame #4, and letting frame #7 clean it up
// when it cleans up the pool that wraps frame #7. When an autorelease pool is
// released it releases all other pools that were created after it on the
// autorelease pool stack.
//
// CrApplication is responsible for setting handlingSendEvent to true just
// before it sends the event through the event handling mechanism, and
// returning it to its previous value once the event has been sent.
NSAutoreleasePool* MessagePumpCrApplication::CreateAutoreleasePool() {
if (MessagePumpMac::IsHandlingSendEvent())
return nil;
return MessagePumpNSApplication::CreateAutoreleasePool();
}
// static
bool MessagePumpMac::UsingCrApp() {
DCHECK([NSThread isMainThread]);
// If NSApp is still not initialized, then the subclass used cannot
// be determined.
DCHECK(NSApp);
// The pump was created using MessagePumpNSApplication.
if (g_not_using_cr_app)
return false;
return [NSApp conformsToProtocol:@protocol(CrAppProtocol)];
}
// static
bool MessagePumpMac::IsHandlingSendEvent() {
DCHECK([NSApp conformsToProtocol:@protocol(CrAppProtocol)]);
NSObject<CrAppProtocol>* app = static_cast<NSObject<CrAppProtocol>*>(NSApp);
return [app isHandlingSendEvent];
}
#endif // !defined(OS_IOS)
// static
MessagePump* MessagePumpMac::Create() {
if ([NSThread isMainThread]) {
#if defined(OS_IOS)
return new MessagePumpUIApplication;
#else
if ([NSApp conformsToProtocol:@protocol(CrAppProtocol)])
return new MessagePumpCrApplication;
// The main-thread MessagePump implementations REQUIRE an NSApp.
// Executables which have specific requirements for their
// NSApplication subclass should initialize appropriately before
// creating an event loop.
[NSApplication sharedApplication];
g_not_using_cr_app = true;
return new MessagePumpNSApplication;
#endif
}
return new MessagePumpNSRunLoop;
}
} // namespace base